# 3-Methoxalylchromone - A Novel Versatile Reagent for the Regioselective Purine Isostere Synthesis 

Satenik Mkrtchyan, ${ }^{a}$ Viktor O. Iaroshenko, ${ }^{a, b *}$ Sergii Dudkin, ${ }^{a}$ Ashot Gevorgyan, ${ }^{a}$ Marcelo VilchesHerrera, ${ }^{a}$ Gagik Ghazaryan, ${ }^{a}$ Dmitriy M. Volochnyuk, ${ }^{b, c}$ Dmytro Ostrovskyi, ${ }^{a}$ Zeeshan Ahmed, ${ }^{a}$ Alexander Villinger, ${ }^{a}$ Vyacheslav Ya. Sosnovskikh, ${ }^{d}$ Peter Langer ${ }^{a, e_{*}}$<br>${ }^{a}$ Institut für Chemie, Universität Rostock,, Albert-Einstein-Str. 3a, 18059 Rostock, Germany. Fax: 0049381 49864112; Tel: 0049381 4986410; E-mail: viktor.iaroshenko@uni-rostock.de, iva108@googlemail.com, peter.langer@uni-rostock.de<br>${ }^{b}$ National Taras Shevchenko University, 62 Volodymyrska st., Kyiv-33, 01033, Ukraine.E-mail: iva108@googlemail.com.<br>c "Enamine Ltd." 23 A. Matrosova st., 01103 Kyiv, Ukraine.<br>${ }^{d}$ Department of Chemistry, Ural State University, 620083 Ekaterinburg, Russian Federation<br>${ }^{e}$ Leibniz-Institut für Katalyse e. V. an der Universität Rostock,, Albert-Einstein-Str. 29a, 18059 Rostock, Germany.

General: Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products were carried out by flash chromatography on silica gel. Column chromatography was performed on silica gel (63-200 mesh, Merck). Silica gel Merck 60F254 plates were used for TLC. Satisfactory microanalysis obtained $\mathrm{C} \pm 0.33 ; \mathrm{H} \pm 0.45 ; \mathrm{N} \pm 0.25$.

Chemical yields refer to pure isolated substances. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained using a Bruker DPX-300 spectrometer. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{h}=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad .

General procedures for the synthesis of 3-methoxalylchromone (2)


To a round-bottom 250 ml flask, fitted with a septum, containing $20 \mathrm{~g}(0.105 \mathrm{~mol})$ of 3-(dimethylamino)-1-(2-hydroxyphenyl)prop-2-en-1-one, dissolved in 100 ml of dry dichloromethane, 28 ml of dry pyridine ( 3,3 eq.) was added. The solution was set on stirring
on ice bath, and $10,60 \mathrm{ml}$ ( 1,1 eq.) of methyloxalylchloride was added dropwise. The reaction mixture stirred at the room temperature for 8 hours, and after was stripped of solvents and liquid residues. The obtained solid was washed well with water to give $19,1 \mathrm{~g}(79 \%)$ of 3 methoxalylchromone, as light pink crystals.
(2)


Yellow solid ( $0.8 \mathrm{~mol}, 18.6 \mathrm{~g}, 80 \%$ ) mp 133-135 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO- $d_{6}$ ): $\delta=$ $3.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 7.61\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J=7.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.78-7.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.90-7.95(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$ ), 8.11 (dd, $1 \mathrm{H},{ }^{3} J=7.9 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}$ ), 9.12 ( $\mathrm{s}, 1 \mathrm{H}$, Pyranone).
${ }^{13} \mathrm{C}$ NMR ( 62.9 MHz , DMSO- $d_{6}$ ): $\delta=52.7,118.5,118.9,123.9,125.2,127.0,135.6,155.6$, 164.0, 164.6, 174.1, 184.6.

MS (GC, 70 eV ): $m / z(\%)=232\left(\mathrm{M}^{+}, 3\right), 204(21), 189(16), 173(100), 121$ (40).
HRMS (ESI): calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H}) 233.0459$, found 233.0461.

General procedures for the synthesis of pyridines (12)


Reagents and conditions: (i): AcOH, reflux, $2-5 \mathrm{~h}$ (for 3, 4, 6, 7, 8); (iii): DMF/TMSCl, $80-100^{\circ} \mathrm{C}$ (for 5).

## A: In acetic acid

1.56 mmol of the corresponding amine and 1.2 mmol of 3-methoxalylchromone (2) were dissolved in 20 ml of acetic acid and heated under reflux in the inert atmosphere during 2-5 h (controlled by TLC). Then the solution was evaporated under reduced pressure, treated with water, filtrated, dried on the air and recrystallized from an appropriate solvent, or was subjected to a column chromatography over silica gel.

B: In DMF/TMSCl

In the pressure tube, 1.56 mmol of the corresponding amine and 1.2 mmol of 3 methoxalylchromone (2) in inert atmosphere were dissolved in 8 ml of dry DMF and 1 ml of TMSCl was added. The reaction mixture was heated at $80-100{ }^{\circ} \mathrm{C}$ for 5 h (controlled by TLC). Then the solution was evaporated under reduced pressure, treated with water, filtrated, dried on the air and recrystallized from an appropriate solvent, or was subjected to a column chromatography over silica gel.

## Compounds:

(12a)


Brown solid ( $1.01 \mathrm{mmol}, 447 \mathrm{mg}, 78 \%$ ), mp 186-187 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta$ $=3.72(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{MeO}), 5.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.91-7.02(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.34-7.55(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar})$, 8.39 (s, 1 H, Py), 8.88 ( s, $1 \mathrm{H},=\mathrm{CHN}$ ), 11.06 (s, $1 \mathrm{H}, \mathrm{OH}$ );
${ }^{13} \mathrm{C}$ NMR ( 62.9 MHz , DMSO- $d_{6}$ ): $\delta=47.9,52.7,55.1,84.3,114.1,114.2,117.4,119.3$, $120.4,121.8,128.2,128.5,129.4,131.2,132.1,135.8,141.6,142.1,145.1,159.1,159.8$, 165.4, 197.7;

MS (EI, 70 eV ): $m / z(\%)=441\left(\mathrm{M}^{+}, 27\right), 121$ (100), 91 (13), 77 (20);
HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}_{4}(\mathrm{M}+\mathrm{H}) 442.1244$, found 442.1242;
IR (ATR): $v=3056$ (w), 2946 (w), 2236 (w), 1645 (m), 1627 (m), 1600 (m), 1515 (m), 1481 (w), 1458 (m), 1446 (m), 1409 (m), 1360 (s), 1332 (w), 1309 (m), 1291 (s), 1256 (m), 1244 (m), 1217 (m), 1209 (m), 1155 (w), 1142 (m), 1114 (w), 1084 (w), 1038 (w), 993 (w), 932 (w), 918 (m), $905(\mathrm{~m}), 887(\mathrm{w}), 857(\mathrm{w}), 827(\mathrm{w}), 781(\mathrm{~m}), 763(\mathrm{~s}), 751$ (s), 741 (s), 726 (s), $675(\mathrm{w}), 653(\mathrm{~m}), 616(\mathrm{~m}), 575(\mathrm{w}), 560(\mathrm{~m}), 531(\mathrm{w}) \mathrm{cm}^{-1}$.
(12b)


Brown solid ( $0.98 \mathrm{mmol}, 393 \mathrm{mg}, 75 \%$ ), mp $185-187{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta$ $=1.25-2.05\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 4.79-4.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 6.90\left(\mathrm{td}, 1 \mathrm{H},{ }^{3} J\right.$
$\left.=8.0 \mathrm{~Hz},{ }^{4} J=0.9 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.99\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=8.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 7.37\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=7.7 \mathrm{~Hz},{ }^{4} J=\right.$ $1.7 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$ ), $7.50-7.53$ (m, $\left.1 \mathrm{H}, \mathrm{H}^{\prime} 4^{\prime}\right), 8.36$ ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{Py}$ ), 8.99 (s, $1 \mathrm{H},=\mathrm{CHN}$ ), 11.05 (s, 1 H, OH);
${ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO- $d_{6}$ ): $\delta=24.7,25.1,32.4,52.8,54.3,84.1,114.5,117.4,119.3$, $120.4,121.9,128.5,131.0,132.0,135.8,139.5,141.9,144.7,160.0,165.5,197.6$;
MS (GC, 70 eV$): m / z(\%)=403\left(\mathrm{M}^{+}, 6\right), 371(5), 344\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 100\right), 289(23), 262$ (38);

HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}_{3}\left(\mathrm{M}^{+}+1\right) 404.1605$, found 404.1607;
IR (ATR): $v=3113$ (w), 2933 (w), 2855 (w), 2226 (m), 1719 (m), 1636 (m), 1607 (m), 1524 (w), 1483 (w), 1448 (m), 1425 (m), 1399 (m), 1374 (m), 1341 (w), 1300 (m), 1263 (s), 1247 (s), 1202 (s), 1164 (m), 1147 (s), 1119 (m), 1083 (m), 1034 (w), 1008 (w), 958 (w), 919 (w), 903 (w), 874 (w), 858 (w), 818 (w), 785 (w), 748 (s), 706 (m), 671 (m), 644 (m), 630 (m), 614 (m), 529 (m) cm ${ }^{-1}$.
(12c)


Yellow solid ( $1.16 \mathrm{mmol}, 436 \mathrm{mg}, 89 \%$ ), mp $145-147{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=$ $1.88\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 6.79\left(\mathrm{td}, 1 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=0.9 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.06$ (d, $1 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$ ), 7.16 (dd, $1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$ ), $7.45-7.51$ (m, 1 H , H-4'), 8.10 (s, 1 H, Py), 8.12 (s, $1 \mathrm{H},=\mathrm{CHN}$ ), $11.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$;
${ }^{13} \mathrm{C}$ NMR ( 62.9 MHz , DMSO- $d_{6}$ ): $\delta=28.6,52.7,59.4,83.0,114.6,117.4,119.3$, 121.7, $121.8,127.9,130.7,132.1,135.8,140.2,140.5,145.3,159.8,165.4,197.8 ;$
MS (GC, 70 eV ): $m / z(\%)=377\left(\mathrm{M}^{+}, 4\right), 318(49), 289(35), 262(100) ;$
HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}_{3}\left(\mathrm{M}^{+}+1\right) 378.1448$, found 378.1448;
IR (ATR): $v=3140(\mathrm{w}), 2224(\mathrm{~m}), 1709(\mathrm{~m}), 1628(\mathrm{~m}), 1606$ (m), 1519 (w), 1484 (w), 1452 (m), 1436 (m), 1417 (m), 1377 (m), 1326 (w), 1301 (m), 1264 (s), 1244 (s), 1198 (s), 1163 (m), 1147 (m), 1119 (m), 1102 (m), 1073 (w), 1031 (w), 947 (m), $877(\mathrm{~m}), 821(\mathrm{~m}), 764(\mathrm{~m})$, 729 (s), 973 (m), $622(\mathrm{~m}) \mathrm{cm}^{-1}$.
(12d)


Green solid ( $0.74 \mathrm{mmol}, 288 \mathrm{mg}, 57 \%$ ), mp 222-224 ${ }^{0} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO- $d_{6}$ ): $\delta=$ 3.76 (s, $3 \mathrm{H}, \mathrm{MeO}$ ), 6.93-7.02 (m, 2 H, H-5', H-3'), 7.33 (t, $1 \mathrm{H},{ }^{3} J=7.6 \mathrm{~Hz}, \mathrm{Ph}$ ), 7.46-7.58 (m, 4 H, H-6', H-4', Ph), 7.88 (d, 2 H, ${ }^{3} J=8.1 \mathrm{~Hz}, \mathrm{Ph}$ ), 8.34 (s, $1 \mathrm{H}, \mathrm{Py}$ ), 10.77 (s, $1 \mathrm{H}, \mathrm{OH}$ );
${ }^{13} \mathrm{C}$ NMR (62.9 MHz, DMSO- $d_{6}$ ): $\delta=52.8,110.0,117.2,119.4,120.1,122.6,126.0,128.0$, 129.2, 131.5, 135.2, 135.8, 136.4, 152.0, 155.2, 157.0, 158.5, 165.6, 195.2;

MS (EI, 70 eV ): $m / z(\%)=389\left(\mathrm{M}^{+}, 14\right), 357(28), 344(11), 330\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 100\right)$; HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{~N}_{3}\left(\mathrm{M}^{+}+1\right) 390.1084$, found 390.1083;

IR (ATR): $\boldsymbol{v =} 3033$ (w), 2957 (w), 2916 (w), 2849 (w), 1720 (w), 1643 (s), 1626 (m), 1609 (m), 1596 (m), 1573 (w), 1496 (w), 1482 (w), 1463 (w), 1438 (w), 1414 (w), 1356 (m), 1296 (m), 1253 (m), 1237 ( s$), 1201$ (m), 1182 (m), 1147 (m), 1120 (m), 1088 (m), 1053 (w), 1033 (w), 962 (w), 949 (w), 928 (w), 870 (w), 828 (w), 807 (w), 799 (w), 784 (w), 752 (s), 684 (s), $662(\mathrm{~m}), 644(\mathrm{~m}), 602(\mathrm{~m}), 569(\mathrm{~m}), 540(\mathrm{~m}) \mathrm{cm}^{-1}$.

## (12e)



White solid ( $1.04 \mathrm{mmol}, 340 \mathrm{mg}, 80 \%$ ), mp 245-247 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO- $d_{6}$ ): $\delta=$ 3.49 (s, $3 \mathrm{H}, \mathrm{NMe}$ ), 3.73 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{MeO}$ ), $6.91-7.01$ (m, $2 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-3^{\prime}$ ), 7.41 (t, $1 \mathrm{H},{ }^{3} J=7.8$ Hz, H-6'), 7.50 (d, $2 \mathrm{H},{ }^{3} J=7.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$ ), 8.22 (s, $1 \mathrm{H}, \mathrm{Py}$ ), 10.71 (s, $1 \mathrm{H}, \mathrm{OH}$ ), 12.37 (s, 1 H, NH);
${ }^{13} \mathrm{C}$ NMR ( 62.9 MHz , DMSO- $d_{6}$ ): $\delta=30.7,52.7,108.4,117.2,119.3,122.8,126.5,131.4$, 135.0, 135.3, 151.7, 153.4, 156.6, 158.3, 165.9, 195.3;

MS (EI, 70 eV ): $m / z(\%)=327\left(\mathrm{M}^{+}, 9\right), 295(10), 268(100), 239(12), 196(10), 121$ (18), HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{~N}_{3}(\mathrm{M}+1)$ 328.0928, found 328.0927;
IR (ATR): $v=3106$ (w), 1715 (m), 1682 (s), 1614 (s), 1598 (m), 1567 (w), 1480 (w), 1439 (m), 1404 (w), 1360 (w), 1310 (m), 1241 (s), 1196 (m), 1174 (m), 1148 (s), 1115 (w), 1080 (w), 1031 (w), 973 (w), 936 (m), 918 (m), 850 (w), 825 (w), 803 (w), 786 (m), 767 (s), 731 (s), 723 (s), $651(\mathrm{~s}), 632(\mathrm{~m}), 614(\mathrm{~s}) \mathrm{cm}^{-1}$.

## (12f)



White solid ( $0.92 \mathrm{mmol}, 330 \mathrm{mg}, 71 \%$ ), mp 273-275 ${ }^{0} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( 250 MHz, DMSO- $d_{6}$ ): $\delta=$ 3.33 (br s, $3 \mathrm{H}, \mathrm{MeN}$ ), 3.73 (br s, $6 \mathrm{H}, \mathrm{MeN}, \mathrm{MeO}$ ), 6.88-7.01 (m, $2 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-3^{\prime}$ ), 7.327.54 (m, 2 H, H-6', H-4'), 8.07 (s, 1 H, Py), 11.20 (s, $1 \mathrm{H}, \mathrm{OH}$ );
${ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO-d): $\delta=26.2,32.5,52.6,115.4,117.6,119.4,121.3,131.7$, 136.3, 137.9, 138.1, 140.2, 145.6, 160.0, 163.9, 175.4, 195.7;

MS (GC, 70 eV ): $m / z(\%)=357\left(\mathrm{M}^{+}, 1\right), 325(100), 297\left(\mathrm{M}^{+}-1-\mathrm{CO}_{2} \mathrm{Me}, 22\right), 281$ (14), 264 (23), 207 (18);
HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H}) 358.0856$, found 358.0849;
IR (ATR): $v=3072(\mathrm{w}), 2950(\mathrm{w}), 1716(\mathrm{~m}), 1631(\mathrm{~m}), 1614(\mathrm{w}), 1582(\mathrm{w}), 1485(\mathrm{~m}), 1444$ (m), 1417 ( s$), 1397$ (m), 1350 (m), 1328 (m), 1302 ( s$), 1272$ ( s$), 1246$ ( s$), 1215$ ( s$), 1163(\mathrm{~m})$, 1149 (m), 1123 (s), 1056 (w), 1033 (w), 987 (w), 961 (w), 912 (w), 872 (m), 822 (m), 797 (m), 749 (s), 711 (m), $675(\mathrm{~m}), 664(\mathrm{w}), 631(\mathrm{~m}), 586(\mathrm{w}), 567(\mathrm{~m}) \mathrm{cm}^{-1}$.

## (12g)



White solid ( $0.95 \mathrm{mmol}, 398 \mathrm{mg}, 73 \%$ ), mp 291-292 ${ }^{0} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 250 MHz , DMSO- $d_{6}$, $\left.80^{\circ} \mathrm{C}\right): \delta=3.57(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeN}), 3.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 6.88\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.02(\mathrm{~d}, 1$ $\left.\mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 7.35\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.54-7.63$ (m, $6 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{Ph}$ ), 8.04 (s, $1 \mathrm{H}, \mathrm{Py}), 11.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$;
${ }^{13} \mathrm{C}$ NMR (125.7 MHz, DMSO- $d_{6}, 303 \mathrm{~K}$ ): $\delta=31.3,52.4,115.7,117.4,119.1,121.1,128.0$, $128.5,129.0,129.1,132.0,133.3,134.2,136.0,138.3,145.1,160.1,164.7,173.5,197.6$;
MS (EI, 70 eV ): $m / z(\%)=419\left(\mathrm{M}^{+}, 10\right), 387(55), 360\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 100\right), 342(15), 121$ (14), 93 (10), 77 (33), 65 (18), 51 (11);

HRMS (EI): calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right) 419.09343$, found 419.09360;
IR (ATR): $v=3053(\mathrm{w}), 2958(\mathrm{w}), 1710(\mathrm{~m}), 1668(\mathrm{w}), 1621(\mathrm{~m}), 1607(\mathrm{~s}), 1580(\mathrm{w}), 1498$ (m), 1489 (m), 1469 (m), 1447 (s), 1419 ( s), 1387 (s), 1340 (s), 1328 ( s), 1296 (m), 1267 (s), 1237 (s), 1224 (s), 1192 (m), 1165 (m), 1148 (m), 1125 (s), 1109 (m), 1073 (w), 1055 (m), 1030 (m), 970 (w), 954 (m), 924 (w), 904 (w), 879 (m), 864 (m), 824 (w), 816 (w), $798(\mathrm{~m})$, 786 (w), 760 (s), 704 (s), 689 (s), 672 (m), 631 (m), $570(\mathrm{~m}), 545(\mathrm{~m}) \mathrm{cm}^{-1}$.

## (12h)



Pink solid ( $0.83 \mathrm{mmol}, 354 \mathrm{mg}, 64 \%$ ), mp 220-222 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO- $d_{6}$ ): $\delta=$ 1.16-1.95 (m, 10 H ), 3.37 (m, $1 \mathrm{H}, \mathrm{CHN}$ ), 3.70 (s, $3 \mathrm{H}, \mathrm{MeN}$ ), 3.75 (s, $3 \mathrm{H}, \mathrm{MeO}$ ), 6.89-6.94 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime}$ ), 7.03 (d, $1 \mathrm{H},{ }^{3} J=7.7 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$ ), 7.46-7.56 (m, $\left.2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}^{\prime} \mathrm{b}^{\prime}\right), 8.08$ (s, 1 H , Py), 11.01 (s, $1 \mathrm{H}, \mathrm{OH}$ );
${ }^{13} \mathrm{C}$ NMR ( 75.5 MHz, DMSO- $d_{6}$ ): $\delta=24.2,24.7,31.8,48.6,53.0,112.4,117.6,119.3,120.2$, $121.3,128.6,131.7,134.2,136.2,137.9,138.1,145.8,160.0,163.9,195.7$;
MS (GC, 70 eV$): m / z(\%)=425\left(\mathrm{M}^{+}, 33\right), 382(100), 366\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 62\right), 310(9), 284$ (17);

HRMS (EI): calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right) 425.14038$, found 425.14045;
IR (ATR): $v=3062$ (w), 2929 (w), 2853 (w), 2677 (w), 2509 (w), 2414 (w), 2139 (w), 1947 (w), 1737 (m), 1627 (s), 1614 (s), 1574 (s), 1495 (w), 1452 (m), 1438 (m), 1408 (w), 1377 (w), 1340 (m), 1297 (m), 1275 (w), 1241 (s), 1178 (m), 1150 (m), 1129 (m), 1069 (w), 1031 (w), 1002 (w), 976 (w), 912 (w), 887 (m), 834 (w), 822 (m), 793 (m), 758 (s), 7.24 (m), 712 (s), $679(\mathrm{~m}), 663(\mathrm{~m}), 603(\mathrm{~m}), 559(\mathrm{~m}) \mathrm{cm}^{-1}$.


Yellow solid ( $0.91 \mathrm{mmol}, 338 \mathrm{mg}, 70 \%$ ), mp 212-213 ${ }^{0} \mathrm{C}^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO- $d_{6}, 70$
$\left.{ }^{0} \mathrm{C}\right): \delta=1.34\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz}, \mathrm{Me}\right), 3.48\left(\mathrm{q}, 2 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.69(\mathrm{~s}, 6 \mathrm{H}, \mathrm{MeO}$, MeN ), $6.90\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.04\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 7.10-7.42(\mathrm{~m}, 1 \mathrm{H}$, H-4'), 7.52-7.55 (m, 1 H, H-6'), 7.94 (s, 1 H, Py), 11.0 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$ );
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, DMSO- $d_{6}, 70{ }^{0} \mathrm{C}$ ): $\delta=13.8,31.9,46.0,52.1,116.3,117.4,118.9$, $120.9,131.5,135.9,137.0,137.7,138.2,141.6,145.8,160.0,163.6,196.1 ;$
MS (GC, 70 eV$): m / z(\%)=371\left(\mathrm{M}^{+}, 11\right), 356(23), 324(18), 312(100)$;
HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}^{+}+1\right)$ 372.1013, found 372.1015;
IR (ATR): $v=3078$ (w), 2983 (w), 2952 (w), 2561 (w), 1719 (m), 1625 (s), 1609 (s), 1575 (s), 1555 (m), 1485 (m), 1438 (m), 1404 (w), 1369 (m), 1348 (m), 1328 (m), 1299 (s), 1261 (s), 1243 (s), 1216 (s), 1184 (s), 1148 (m), 1126 (s), 1107 (m), 1088 (m), 1032 (w), 998 (w), 953 (w), 922 (w), 910 (m), 887 (m), 821 (m), 800 (m), 759 (s), 731 (s), 710 (m), 985 (s), 666 (m), $603(\mathrm{w}), 656(\mathrm{w}), 549(\mathrm{w}) \mathrm{cm}^{-1}$.
(12j)


White solid ( $0.90 \mathrm{mmol}, 392 \mathrm{mg}, 69 \%$ ), mp 275-277 ${ }^{0} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO- $d_{6}$ ): $\delta=$ 3.46 (s, $3 \mathrm{H}, \mathrm{MeN}$ ), $3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}\right.$ ), 6.87 (td, $1 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=0.9 \mathrm{~Hz}, \mathrm{H}-5^{\prime}$ ), 7.03 (dd, $\left.1 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=0.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 7.30\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.55$ (td, $\left.1 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 7.66-7.76\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.88$ (s, $1 \mathrm{H}, \mathrm{Py}$ ), 11.30 (s, $1 \mathrm{H}, \mathrm{OH}$ );
${ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO- $d_{6}$ ): $\delta=27.5,52.3,113.5,117.6,119.3$, 121.1, 127.1, 128.2, 129.1, 131.8, 132.1, 132.3, 133.0, 135.7, 136.2, 142.6, 152.8, 160.4, 164.9, 198.6;

MS (EI, 70 eV ): $m / z(\%)=437\left(\mathrm{M}^{+}, 3\right), 405(24), 378\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 100\right), 348(11)$;
HRMS (EI): calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 437.07730$, found 437.07733;
IR (ATR): $v=3063$ (w), 2953 (w), 1735 (s), 1713 (s), 1628 (s), 1612 (m), 1583 (w), 1499 (m), 1482 (s), 1450 (m), 1420 (m), 1399 (m), 1318 (w), 1301 (m), 1260 (s), 1245 (s), 1217 (s), 1190 (m), 1165 (m), 11550 (m), 1133 (w), 1118 (m), 1106 (m), 1095 (m), 1086 (m), 1058 (w), 1032 (w), 1015 (m), 961 (w), 929 (s), 910 (m), 874 (w), 846 (m), 835 (w), 826 (m), 799 (w), 758 (s), 742 (s), 733 (s), $708(\mathrm{~m}), 674(\mathrm{~m}), 624(\mathrm{w}), 587(\mathrm{~s}), 566(\mathrm{~m}) \mathrm{cm}^{-1}$.

## (12k)



Yellow solid ( $0.95 \mathrm{mmol}, 368 \mathrm{mg}, 73 \%$ ), mp 179-180 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO- $d_{6}$ ): $\delta$ $\left.=2.65(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 6.93\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz}, \mathrm{H}-5\right)^{\prime}\right), 7.01\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=8.0\right.$ Hz, H-3'), 7.37 (t, $\left.1 \mathrm{H},{ }^{3} J=7.4 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 7.48$ (dd, $1 \mathrm{H},{ }^{3} J=8.2 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$ ), $7.52-7.60(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 8.23$ (d, $2 \mathrm{H},{ }^{3} J=7.7 \mathrm{~Hz}, \mathrm{Ph}$ ), 8.65 (s, $1 \mathrm{H}, \mathrm{Py}$ ), 10.94 (s, $1 \mathrm{H}, \mathrm{OH}$ );
${ }^{13} \mathrm{C}$ NMR (125.7 MHz, DMSO- $d_{6}$ ): $\delta=12.2,52.8,116.9,117.4,119.3,120.4,122.1,126.2$, 129.3, 129.6, 131.9, 132.2, 135.7, 138.5, 144.3, 147.0, 148.8, 159.4, 165.5, 196.8;

MS (GC, 70 eV ): $m / z(\%)=387\left(\mathrm{M}^{+}, 5\right), 328\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 100\right)$;
HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}\left(\mathrm{M}^{+}+1\right) 388.1292$, found 388.1297;
IR (ATR): $v=3049(\mathrm{w}), 2925(\mathrm{w}), 1710(\mathrm{~m}), 1625(\mathrm{w}), 1610(\mathrm{w}), 1595(\mathrm{~m}), 1556(\mathrm{w}), 1504$ (w), 1486 (m), 1441 (m), 1415 (w), 1377 (w), 1330 (w), 1292 (m), 1266 (s), 1240 (s), 1223 (s), 1166 (s), 1151 (m), 1119 (m), 1102 (m), 1050 (w), 1034 (w), 1011 (w), 943 (m), 874 (w), 837 (w), 819 (w), 800 (w), 780 (m), 752 (s), 709 (m), 691 (s), 667 (s), 637 (s), 618 (m), 588 $(\mathrm{m}), 569(\mathrm{~m}), 530(\mathrm{~m}) \mathrm{cm}^{-1}$.

## (12I)



Yellow solid ( $0.88 \mathrm{mmol}, 316 \mathrm{mg}, 68 \%$ ), mp 190-192 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 250 MHz, DMSO- $d_{6}$ ): $\delta$ $=3.23(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{MeN}), 3.67(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 6.90\left(\mathrm{td}, 1 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right)$, $7.00\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 7.36\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right)$, $7.48-7.54$ (m, 1 H, H-4'), 8.40 (s, 1 H, Py), 11.00 (s, 1 H, OH);
${ }^{13} \mathrm{C}$ NMR ( 62.9 MHz , DMSO- $d_{6}$ ): $\delta=40.0,52.3,117.4,119.3,122.1,127.5,127.6,130.1$, 131.7, 135.5, 144.8, 159.4, 164.5, 165.9, 171.9, 197.3;

MS (GC, 70 eV$): m / z(\%)=357\left(\mathrm{M}^{+}, 1\right), 298\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 100\right)$;
HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}^{+}+1\right) 358.0856$, found 358.0856 ;
IR (ATR): $v=3031(\mathrm{w}), 2947(\mathrm{w}), 1712(\mathrm{~m}), 1625(\mathrm{w}), 1601(\mathrm{~s}), 1562(\mathrm{~m}), 1504(\mathrm{w}), 1483$ (w), 1436 (m), 1417 (m), 1386 (w), 1352 (m), 1335 (s), 1286 (s), 1254 (s), 1228 (s), 1151 (m), 1122 (s), 1104 (s), 1062 (w), 1030 (w), 960 (w), 943 (m), 927 (w), 915 (w), 877 (w), 832 (w), 811 (m), 771 (s), 760 (s), 725 (m), 705 (w), 678 (m), 632 (w), 619 (m), 566 (w), 535 (w) $\mathrm{cm}^{-1}$.

## (12m)



Brown solid ( $0.92 \mathrm{mmol}, 368 \mathrm{mg}, 71 \%$ ), mp. $244-246{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO- $d_{6}$ ): $\delta$ $=3.67(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 3.70-3.77\left(\mathrm{~m}, 8 \mathrm{H}\right.$, morph.), $6.90\left(\mathrm{td}, 1 \mathrm{H},{ }^{3} J=8.1 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, \mathrm{H}-\right.$ $\left.5^{\prime}\right), 7.00\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, \mathrm{H}-3\right.$ '), $7.36\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, \mathrm{H}-\right.$ $6^{\prime}$ ), $7.50-7.53$ (m, 1 H, H-4'), 8.44 (s, $1 \mathrm{H}, \mathrm{Py}$ ), 10.97 (s, $1 \mathrm{H}, \mathrm{OH}$ );
${ }^{13} \mathrm{C}$ NMR (125.8 MHz, DMSO- $d_{6}$ ): $\delta=48.0,52.3,65.4,117.4,119.3,122.0,127.2,128.2$, 130.4, 131.7, 135.5, 144.7, 159.4, 164.1, 165.8, 172.1, 197.2;

MS (EI, 70 eV$): m / z(\%)=399\left(\mathrm{M}^{+}, 3\right), 367(10), 340\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 100\right), 282(13), 69(12)$; HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\left(\mathrm{M}^{+}+1\right) 400.0962$, found 400.0964;
IR (ATR): $v=3065(\mathrm{w}), 2970(\mathrm{w}), 2922(\mathrm{w}), 2854(\mathrm{w}), 1716(\mathrm{~m}), 1623(\mathrm{w}), 1598(\mathrm{~m}), 1558$ (s), 1507 (w), 1484 (w), 1437 (m), 1423 (m), 1389 (m), 1350 (m), 1331 (s), 1299 (m), 1280 (s), 1257 (s), 1240 )s), 1205 (s), 1146 (m), 1124 (m), 1105 (s), 1063 (s), 1024 (m), 957 (w), 939 (m), 885 (m), 862 (w), 829 (w), 808 (w), 795 (w), 757 (s), 743 (s), 717 (m), 677 (m), 624 (m), $603(\mathrm{~m}), 567(\mathrm{w}) \mathrm{cm}^{-1}$.

## (12n)



Orange solid ( $1.00 \mathrm{mmol}, 397 \mathrm{mg}, 77 \%$ ), mp $166-168{ }^{0} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta$ $=1.66\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.66\left(\mathrm{~s}, 7 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{~N}, \mathrm{MeO}\right), 6.88-6.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.00(\mathrm{dd}, 1 \mathrm{H}$, $\left.{ }^{3} J=8.2 \mathrm{~Hz},{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 7.35\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.48-7.54(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 8.38$ (s, $1 \mathrm{H}, \mathrm{Py}$ ), 11.00 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$ );
${ }^{13} \mathrm{C}$ NMR (62.9 MHz, DMSO- $d_{6}$ ): $\delta=23.4,24.9,49.2,52.3,117.4,119.2,122.0,127.3$, $127.7,130.0,131.7,135.5,144.7,159.5,164.6,165.9,171.3,197.3 ;$
MS (EI, 70 eV$): m / z(\%)=397\left(\mathrm{M}^{+}, 14\right), 365(48), 338\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 100\right), 308(24), 282$ (38), 269 (18), 121 (11), 69 (10), 41 (15);

HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+1\right) 398.1169$, found 398.1177;
IR (ATR): $v=3057$ (w), 2938 (w), 2852 (w), 1711 (m), 1672 (m), 1586 (m), 1547 (s), 1505 (m), 1487 (m), 1461 ( w ), 1439 (m), 1428 (m), 1392 (m), 1346 (s), 1324 (s), 1296 (m), 1283 (s), 1274 (s), 1238 (s), 1215 (s), 1155 (m), 1124 (s), 1106 (s), 1033 (w), 1008 (w), 960 (w), 941 (m), 890 (m), 883 (m), 855 (m), 830 (w), 813 (w), 799 (w), 756 (s), 730 (s), 719 (s), 699 (m), $677(\mathrm{~m}), 655(\mathrm{w}), 632(\mathrm{~s}), 579(\mathrm{w}), 566(\mathrm{w}), 534(\mathrm{w}) \mathrm{cm}^{-1}$.

## (120)



White solid ( $0.83 \mathrm{mmol}, 284 \mathrm{mg}, 64 \%$ ), mp 262-264 ${ }^{0} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=$ 3.73 (s, $3 \mathrm{H}, \mathrm{MeO}$ ), 6.92-7.00 (m, 2 H, H-5', H-3'), 7.43 (dd, $1 \mathrm{H},{ }^{3} J=7.9 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}$, H-6'), 7.48-7.54 (m, 1 H, H-4'), 8.32 (s, $1 \mathrm{H}, \mathrm{Py}$ ), 10.68 (s, $1 \mathrm{H}, \mathrm{OH}$ ), 11.73 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ ), 12.22 (s, $1 \mathrm{H}, \mathrm{NH}$ );
${ }^{13} \mathrm{C}$ NMR (62.9 MHz, DMSO- $d_{6}$ ): $\delta=52.9,111.0,117.2,119.5,122.7,129.1,131.3,135.3$, $138.4,150.3,152.3,153.1,158.3,161.5,165.2,194.3 ;$
MS (EI, 70 eV$): m / z(\%)=341\left(\mathrm{M}^{+}, 7\right), 282\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 100\right), 238(41), 210(22), 121$ (19), 65 (10);

HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{6}\left(\mathrm{M}^{+}+1\right) 342.0721$, found 342.0726;
IR (ATR): $v=3197$ (w), 3095 (w), 2811 (w), 1748 (w), 1731 (m), 1692 (m), 1636 (m), 1604 (m), 1574 (m), 1505 (w), 1484 (w), 1447 (w), 1399 (w), 1360 (w), 1328 (m), 1309 (w), 1270
(s), 1243 (m), 1218 (m), 1170 (w), 1147 (m), 1116 (w), 1053 (w), 1015 (w), 962 (w), 920 (w), 829 (m), 818 (m), 805 (m), 793 (w), 759 (s), 722 (m), 688 (m), 657 (m), 627 (w), 584 (w), 555 (m), $532(\mathrm{~s}) \mathrm{cm}^{-1}$.

## (12p)



White solid ( $0.72 \mathrm{mmol}, 264 \mathrm{mg}, 55 \%$ ), mp 203-204 ${ }^{0} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO- $d_{6}$ ): $\delta=$ 3.31 (s, $3 \mathrm{H}, \mathrm{NMe}$ ), 3.59 (s, $3 \mathrm{H}, \mathrm{NMe}$ ), 3.74 (s, $3 \mathrm{H}, \mathrm{MeO}$ ), 6.93-7.00 (m, $2 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-3^{\prime}$ ), 7.45 (dd, $\left.1 \mathrm{H},{ }^{3} J=7.4 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.49-7.55$ (m, $1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}$ ), 8.44 (s, 1 H, Py), 10.66 (s, $1 \mathrm{H}, \mathrm{OH}$ );
${ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO- $d_{6}$ ): $\delta=28.3,29.5,52.9,111.3,117.2,119.4,122.7,129.3$, 131.2, 135.3, 138.7, 150.8, 151.1, 151.5, 158.2, 160.0, 165.1, 193.9;

MS (EI, 70 eV ): $m / z(\%)=369\left(\mathrm{M}^{+}, 1\right), 337(71), 309(51), 280(21), 225(10), 197$ (100), 140 (9), 81 (10);
HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{6} \mathrm{~N}_{3}(\mathrm{M}+1)$ 370.1034, found 370.1034;
IR (ATR): $v=3060(\mathrm{w}), 1714(\mathrm{~m}), 1660(\mathrm{~s}), 1633(\mathrm{~s}), 1603(\mathrm{~s}), 1574(\mathrm{~m}), 1464(\mathrm{~m}), 1409$ (w), 1352 (m), 1290 (s), 1264 (s), 1239 (s), 1214 (s), 1163 (m), 1151 (m), 1128 (w), 1081 (w), 1052 (w), 959 (w), 906 (m), 868 (m), 812 (w), 788 (s), 751 (s), 713 (m), 689 (m), 663 (m) $\mathrm{cm}^{-1}$.
(12q)


Yellow solid ( $0.78 \mathrm{mmol}, 277 \mathrm{mg}, 60 \%$ ), mp 243-245 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta$ $=3.51(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeN}), 3.74(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 6.93-7.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-3^{\prime}\right)$, 7.43-7.54 (m, 2 H , H-6', H-4'), 8.38 (s, 1 H, Py), 10.66 (s, 1 H, OH), 12.00 (s, $1 \mathrm{H}, \mathrm{NH}$ );
${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=28.6,52.9,112.1,117.2,119.4,122.7,128.9,131.2,135.3$, 138.4, 150.5, 151.6, 152.6, 158.2, 160.4, 165.2, 194.0;

MS (EI, 70 eV ): $m / z(\%)=355\left(\mathrm{M}^{+}, 2\right), 296$ (100), 253 (29), 197 (33), 121 (12);
HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{6}\left(\mathrm{M}^{+}-1\right) 354.0732$, found 354.0737;
IR (ATR): $v=3051(\mathrm{w}), 1724(\mathrm{~m}), 1690(\mathrm{~s}), 1630(\mathrm{~s}), 1598(\mathrm{~s}), 1577(\mathrm{~m}), 1470(\mathrm{~m}), 1449$ (m), 1371 (w), 1338 (m), 1297 (m), 1241 (s), 1207 (s), 1144 (m), 1122 (m), 1101 (m), 1024 (s), $965(\mathrm{w}), 940(\mathrm{w}), 896(\mathrm{~m}), 854(\mathrm{~m}), 828(\mathrm{~m}), 785$ (s), 751 (s), 711 (s), $672(\mathrm{~s}), 640(\mathrm{~m})$ $\mathrm{cm}^{-1}$.
(12r)


Yellow solid ( $0.57 \mathrm{mmol}, 204 \mathrm{mg}, 44 \%$ ), mp 260-262 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta$ $=3.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 6.93-7.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-3^{\prime}\right), 7.44-7.55\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime}, \mathrm{H}-4^{\prime}\right), 8.33(\mathrm{~s}, 1$ H, Py), 10.69 (s, $1 \mathrm{H}, \mathrm{OH}$ ), 12.83 (s, $1 \mathrm{H}, \mathrm{OH}$ ), 13.54 ( s, $1 \mathrm{H}, \mathrm{SH}$ );
${ }^{13} \mathrm{C}$ NMR ( 75.5 MHz , DMSO- $d_{6}$ ): $\delta=52.9,113.0,117.2,119.4,122.5,130.4,131.3,135.4$, 138.1, 151.9, 152.3, 158.3, 158.9, 164.9, 176.6, 193.9;

MS (EI, 70 eV$): m / z(\%)=357\left(\mathrm{M}^{+}, 15\right), 325(13), 298\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 100\right), 281$ (15), 239 (58), 210 (9), 121 (16), 78 (12), 63 (13);

HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+1\right)$ 358.0492, found 358.0493;
IR (ATR): $v=3090(\mathrm{w}), 3023(\mathrm{w}), 2916(\mathrm{w}), 1728(\mathrm{~m}), 1682(\mathrm{~m}), 1615(\mathrm{~s}), 1594(\mathrm{~s}), 1573$
(m), 1551 (s), 1488 (w), 1450 (m), 1403 (w), 1368 (m), 1340 (m), 1317 (m), 1275 (s), 1245 (m), 1227 (s), 1135 (s), 1052 (m), 1027 (w), 968 (w), $954(\mathrm{w}), 921(\mathrm{~m}), 861(\mathrm{w}), 835(\mathrm{~m})$, $813(\mathrm{~m}), 799(\mathrm{~m}), 783(\mathrm{~m}), 760(\mathrm{~s}), 733(\mathrm{~m}), 705(\mathrm{~m}), 694(\mathrm{~m}), 652(\mathrm{~m}), 640(\mathrm{~m}), 613(\mathrm{w})$, $566(\mathrm{~m}), 554(\mathrm{~s}), 528(\mathrm{~m}) \mathrm{cm}^{-1}$

General procedures for the synthesis of acids (13)


Reagents and conditions: (i): a) $\mathrm{MeOH}, \mathrm{KOH}$, reflux, 2 h ; b) conc. HCl .

Compound 12 ( 1 mmol ) was dissolved in 15 ml of methanol and $0.224 \mathrm{~g}(4 \mathrm{mmol})$ of KOH was added, then the reaction mixture was kept under reflux for 2-3 hours. Afterwards reaction mixture was chilled to the room temperature and conc. HCl was added dropwise till the pH turned to be slightly acidic $(\mathrm{pH}=4-5)$. The precipitate formed was filtrate, washed once with methanol and three times with distilled water, and dried on the air.

## (13d)



White solid ( $0.80 \mathrm{mmol}, 300 \mathrm{mg}, 80 \%$ ), mp $165-166{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( 300 MHz, DMSO- $d_{6}$ ): $\delta=$ 6.93-7.04 (m, 2 H, H-5', H-3'), 7.34 (t, $1 \mathrm{H},{ }^{3} J=7.4 \mathrm{~Hz}, \mathrm{Ph}$ ), 7.46-7.60 (m, $4 \mathrm{H}, \mathrm{H}-6^{\prime}, \mathrm{H}-4^{\prime}$,

Ph), 7.91 (d, $2 \mathrm{H},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, \mathrm{Ph}$ ), 8.33 (s, $1 \mathrm{H}, \mathrm{Py}$ ), 10.99 (s, $1 \mathrm{H}, \mathrm{OH}$ ), 12.57 (s, $1 \mathrm{H}, \mathrm{NH}$ ), 13.85 (s, $1 \mathrm{H}, \mathrm{OH}$ );
${ }^{13} \mathrm{C}$ NMR ( 62.9 MHz, DMSO- $d_{6}$ ): $\delta=110.0,117.4,119.3,120.0,122.2,125.9,128.1,129.2$, $131.9,135.1,135.5,136.5,153.3,157.3,166.5,196.4$;
MS (EI, 70 eV ): $m / z(\%)=375\left(\mathrm{M}^{+}, 14\right), 330(100), 253(37)$;
HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{~N}_{3}(\mathrm{M}+1)$ 376.0928, found 376.0924;
IR (ATR): $v=3401(\mathrm{w}), 3046(\mathrm{w}), 2910(\mathrm{w}), 1722(\mathrm{~m}), 1682(\mathrm{w}), 1653(\mathrm{~s}), 1625(\mathrm{~m}), 1596$
(s), 1575 (m), 1490 (s), 1461 (w), 1446 (m), 1348 (m), 1325 (w), 1304 (m), 1245 (s), 1199
(m), 1186 (m), 1156 ( s$), 1080$ (w), 951 (w), 925 (m), 847 (w), 824 (m), 812 (m), 762 ( s$), 706$ (m), $691(\mathrm{~s}), 655(\mathrm{~s}), 635(\mathrm{~s}) \mathrm{cm}^{-1}$.
(13k)


White solid ( $0.81 \mathrm{mmol}, 302 \mathrm{mg}, 82 \%$ ), mp 128-130 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , DMSO- $d_{6}$ ): $\delta=$ 2.65 (s, 3 H, Me), 6.89-7.02 (m, 2 H, H-5', H-3'), 7.35-7.63 (m, 5 H, H-6', Ph), 8.36 (d, 2 H, $\left.{ }^{3} J=7.7 \mathrm{~Hz}, \mathrm{Ph}\right), 8.61$ (s, $\left.1 \mathrm{H}, \mathrm{Py}\right), 11.19$ (s, $1 \mathrm{H}, \mathrm{OH}$ ), 13.71 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$ );
${ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO- $d_{6}$ ): $\delta=12.2,116.8,117.5,119.3,120.3,121.7,126.1,129.3$, 129.7, 131.5, 132.3, 135.9, 138.6, 144.1, 137.9, 148.8, 160.1, 166.5, 198.0;

MS (EI, 70 eV ): $m / z(\%)=373\left(\mathrm{M}^{+}, 11\right), 328$ (100), 251 (23), 236 (19);
HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~N}_{3}(\mathrm{M}+1)$ 374.1136, found 374.1135;
IR (ATR): $v=3371(\mathrm{w}), 2920(\mathrm{w}), 1742(\mathrm{~m}), 1721(\mathrm{w}), 1629(\mathrm{~s}), 1598(\mathrm{~m}), 1563(\mathrm{w}), 1484$
(m), 1460 (m), 1444 (m), 1425 (m), 1397 (m), 1330 (m), 1294 (s), 1242 (s), 1142 (m), 1117
(m), 1103 (m), 1029 (m), 945 ( s), 909 (m), 787 (m), 760 ( s), 746 (s), $687(\mathrm{~s}), 668(\mathrm{~s}), 640(\mathrm{~s})$.

## (131)



White solid ( $0.79 \mathrm{mmol}, 271 \mathrm{mg}, 79 \%$ ), mp 132-134 ${ }^{0} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( 250 MHz, DMSO- $d_{6}$ ): $\delta=$ 3.25 (s, $6 \mathrm{H}, \mathrm{NMe}_{2}$ ), $6.89\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J=7.7 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.99\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=8.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 7.31(\mathrm{t}$, $\left.1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.48-7.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 8.36$ ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{Py}$ ), 11.28 (s, 1 H , OH );
${ }^{13} \mathrm{C}$ NMR ( 62.9 MHz, DMSO- $d_{6}$ ): $\delta=39.7,117.5,119.3,121.5,127.7,127.9,129.6,132.1$, 135.8, 145.0, 160.3, 164.2, 166.7, 171.7, 198.7;

MS (EI, 70 eV ): $m / z(\%)=343\left(\mathrm{M}^{+}, 9\right), 298$ (100), 254 (23);
HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{~S}(\mathrm{M}+1) 344.0689$, found 344.0690 ;
IR (ATR): $v=2924$ (w), 2535 (w), 1706 (m), 1620 (m), 1597 (s), 1565 (s), 1519 (w), 1486 (w), 1449 (w), 1403 (s), 1339 (s), 1286 (s), 1239 (s), 1215 (s), 1151 (m), 1127 (m), 1106 (m), 1036 (w), 945 (m), 914 (w), 896 (m), 829 (w), 798 (w), 781 (w), 758 (s), 720 (s), 681 (m), 627 (m).

## (13p)



White solid ( $0.82 \mathrm{mmol}, 291 \mathrm{mg}, 81 \%$ ), mp 254-256 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , DMSO- $d_{6}$ ): $\delta=$ 3.31 (s, $1 \mathrm{H}, \mathrm{NMe}$ ), 3.62 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{NMe}$ ), 6.91-7.00 (m, $\left.2 \mathrm{H}, \mathrm{H}-5^{\prime}, ~ H-3 '\right), ~ 7.41-7.55$ (m, 2 H , H-6', H-4'), 8.41 (s, 1 H, Py), 10.84 (s, 1 H, OH), 13.94 ( s, $1 \mathrm{H}, \mathrm{OH}$ ); ${ }^{13} \mathrm{C}$ NMR (62.9 MHz, DMSO- $d_{6}$ ): $\delta=28.3,29.5,111.0,117.3,119.3,122.2,129.6,131.5$, 135.6, 138.1, 150.8, 150.9, 152.3, 160.0, 161.1, 166.0, 195.1;

MS (EI, 70 eV ): $m / z(\%)=355\left(\mathrm{M}^{+}, 7\right), 310$ (100), 280 (15);
HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{6} \mathrm{~N}_{3}(\mathrm{M}+1) 356.0877$, found 356.087;
IR (ATR): $v=3052$ (w), 1706 (m), 1650 ( s$), 1625(\mathrm{~s}), 1598$ ( s$), 1471$ (m), 1449 (m), 1409 ( w ), 1358 (m), 1288 (m), 1262 (w), 1213 ( s), 1152 ( s$), 1085$ '(w), $1052(\mathrm{~m}), 954(\mathrm{w}), 908$ (m), $870(\mathrm{w}), 812(\mathrm{w}), 790(\mathrm{~m}), 763(\mathrm{~m}), 751(\mathrm{~s}), 704(\mathrm{~m}), 663(\mathrm{~s})$.

## Supporting Information <br> ${ }^{1} H$ and ${ }^{13} C$ NMR Spectra

Mkrtchyan Od 211, DMSO, 1H






Gevorgyan, AG 028, DMSO, 13C

| Current Da <br> NAME <br> PROCNO <br> PROCN | $\begin{gathered} \text { Parameters } \\ \text { 100205. } 1035 \text { ag } 028 \mathrm{C} \\ 10 \end{gathered}$ |
| :---: | :---: |
| F2-ACquistoon ParametersDate20100205 |  |
|  |  |
|  | 15.40 |
| INSTRUM |  |
| PROBHD | 5 mm PABBO B8- |
| PULPROG | 0553 zpg 30 |
| Solvent | DMSO |
| NS | 1024 |
| DS | 析 |
| SWH | 18022.845 Hz |
| FIDRES | 0275098 Hz |
| $A Q$ | 8175818 sec |
| RG | 2050 |
| DW | 27.733 usec |
| DE | 10.00 usec |
| TE | 20820 |
| ${ }_{011}$ | 2.00000000 sec |
| D11 | 0.03000000 sec |
| TDO | 1 |
| ANNEL |  |
| NUC1 | ${ }^{13 C}$ |
| PL1 | ${ }_{-0.50}^{10.00 ~ u s e c ~}$ |
| PLTW | 33.25001008 W |
| SFO1 | 75.4752 |
|  |  |
|  |  |
| NUC2 What |  |
| ${ }_{P L 2}{ }^{\text {PCPD2 }}$ ( ${ }^{\text {a }}$ |  |
| PL12 17.00 |  |
|  |  |
|  |  |
| PL12W 0.22453187 W |  |
| SFO2 | 300.1312 |
|  | 300.15 |
| $\mathrm{Fs} 2^{2}$ - Processing parameters |  |
| SF 75.467 |  |
| WDW |  |
|  |  |
| LB 1.00 |  |
| GB |  |
| PC | 1.40 |










Mkrtchyan Satenik, SM 263, 1H (wdh.) in DMSO, 80 grd/C


Mkrtchyan, Satenik, SM 263, 13C in DMSO, 303 K , AV 500




Mkrtchyan Satenik, SM 290, 1H (wdh.) in DMSO, 70 grd/C


Mkrtchyan Satenik, SM 290, 13C in DMSO, 70 grd/C


## -





Mkrtchyan, sd 054, 1H in DMSO


## -2



Mkrtchyan, sd 054, 13C in DMSO


Mkrtchyan, SM-285-2, DMSO, 1H


- Eff


Mkrtchyan, SM-285-2, DMSO, 13C




## -c.



Mkrtchyan Satenik, SM 284, 1H in DMSO







Mkrtchyan, SM309-2, DMSO, 1H


Mkrtchyan, SM309-2, DMSO, 13C




Mkrtchyan, AG 027, DMSO, 1H

|  |  |
| :---: | :---: |
|  |  |
|  |  |




2




Mkrtchyan, AG 027 DMSO 13C

| 8 <br> 8 | 3 | 8 |  | 8985 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\stackrel{\square}{\square}$ | $\stackrel{+}{0}$ | ¢ ${ }_{\text {¢ }}^{\text {¢ }}$ | ¢ ¢ |  |
|  |  |  | $\sqrt{V}$ | 11 V |  |












