Asymmetric Total Synthesis of (+)-Swainsonine

Soontorn Chooprayoon, Chutima Kuhakarn, Patoomratana Tuchinda, Vichai Reutrakul, and Manat Pohmakotr*

Department of Chemistry and Center for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand. scmpk@mahidol.ac.th

1. 1 H and 13 C spectra

¹H-NMR spectrum of **3** (500 MHz, CDCl₃) 173.05 1719.40 2.72 -0.38 -3.66 11174.0 11166.3 950.0, 950.0, 950.0, 929.11 929.12 929.12 929.12 929.12 929.12 929.12 929.12 920.17 920.17 179.76 \mathbb{V} NH(CH₂)₃SPh 3 3 2.175 2.145 2.151 1.079 2.132 Integral 1.027 3 ppm 1 4 1 ¹³C-NMR spectrum of **3** (125 MHz, CDCl₃) - 169. 351 -135.694 -129.627 -129.038 -126.355 31. 324 28. 738 27. 574 25. 779 77.374 77.255 77.000 76.746 77.374 77.255 77.000 76.746 - 38. 274 \mathbb{V} NH(CH₂)₃SPh 1 0 3 Ċ 78 ממ 77 190 180 170 160 150 140 130 120 110 100 90 80 50 30 20 10 ppm 70 60 40

¹³C-NMR spectrum of **5** (125 MHz, CDCl₃) 136.153 129.701 128.871 126.126 172.345 31.544 23.152 27.526 25.630 25.630 77. 250 76. 996 76. 743 76. 743 ---- 39.041 -4.699 **OTBS** SPh Ö -10 ppm

 Table 1. 500 MHz COSY-45 correlations of some protons of compound 8a.

δ _H (ppm)	$\delta_{\rm H}$ (ppm) of correlated protons
5.20 (C ₈ -H)	2.17-2.12 (C ₆ - <i>H</i>), 1.88-1.84 (C ₇ - <i>H</i>)
2.94-2.85 (C ₆ -H)	1.88-1.84 (C ₇ - <i>H</i>), 2.47 (C ₇ - <i>H</i>)
2.47 (C ₇ -H)	1.88-1.84 (C ₇ -H)
2.17-2.12 (C ₆ -H)	1.88-1.84 (C ₇ -H)
3.91 (C ₃ - <i>H</i>)	2.94-2.85 (C ₂ - <i>H</i>), 2.07 (C ₂ - <i>H</i>)
3.76 (C ₃ - <i>H</i>)	2.94-2.85 (C ₂ - <i>H</i>), 2.07 (C ₂ - <i>H</i>)

 Table 2. Observed C-H correlations from HMQC spectrum of 8a.

δ _C (ppm)	δ _H (ppm)	Assignment
167.9	-	C ₅
148.8	-	C _{8a}
120.8	-	C ₂
60.0	5.20 (dd, <i>J</i> = 4.0, 2.2 Hz, 1H)	C ₈
44.3	3.91 (ddd, J = 12.0, 12.0, 5.6 Hz, 1H) and 3.76 (ddd, J = 12.0, 12.0, 8.2 Hz, 1H)	C ₃
28.8	2.47 (ddd, <i>J</i> = 17.3, 4.8, 2.8 Hz, 1H) and 1.88-1.84 (m, 1H)	C ₇
27.1	2.94-2.85 (m, 1H) and 2.17-2.12 (m, 1H)	C ₆
22.2	2.94-2.85 (m, 1H) and 2.07 (ddd, <i>J</i> = 15.7, 11.5, 8.2 Hz, 1H)	C ₂

 Table 3. 500 MHz COSY-45 correlations of some protons of compound 8b.

δ _H (ppm)	$\delta_{\rm H}$ (ppm) of correlated protons
5.18-5.17 (C ₈ -H)	1.97-1.90 (C ₇ -H)
3.87 (C ₃ - <i>H</i>)	2.08-2.00 (C ₂ -H), 2.83 (C ₂ -H)
3.78 (C ₃ -H)	2.08-2.00 (C ₂ - <i>H</i>), 2.83 (C ₂ - <i>H</i>)
2.83 (C ₂ -H)	2.08-2.00 (C ₂ - <i>H</i>)
2.74 (C ₆ - <i>H</i>)	1.97-1.90 (C ₇ -H)
2.44 (C ₆ - <i>H</i>)	1.97-1.90 (C ₇ -H)

Table 4. Observed C-H correlations from HMQC spectrum of 8b.

δ_{C} (ppm)	δ _H (ppm)	Assignment
167.7	-	C ₅
149.5	-	C _{8a}
141.6	-	C_1
60.7	5.18-5.17 (m, 1H)	C ₈
44.3	3.87 (ddd, J = 12.0, 12.0, 6.7 Hz, 1H) and 3.78 (ddd, J = 12.0, 12.0, 7.1 Hz, 1H)	C3
28.5	2.08-2.00 (m, 2H) and 1.97-1.90 (m, 1H)	C ₇
27.0	2.74 (ddd, J = 17.0, 12.5, 4.9 Hz, 1H) and 2.44 (dt, J = 17.2, 3.8 Hz, 1H)	C ₆
22.2	2.83 (ddd, <i>J</i> = 16.1, 11.8, 7.1 Hz, 1H) and 2.08-2.00 (m, 2H)	C ₂

 Table 5. 500 MHz COSY-45 correlations of some protons of compound 9a.

δ _H (ppm)	$\delta_{\rm H}$ (ppm) of correlated protons
4.55 (C ₈ - <i>H</i>)	1.95-1.87 (C ₇ -H), 2.22-2.15 (C ₇ -H), 3.77 (C _{8a} -H)
4.14 (C ₃ - <i>H</i>)	1.95-1.87 (C ₂ - <i>H</i>), 2.43-2.33 (C ₂ - <i>H</i>), 3.26 (C ₃ - <i>H</i>)
3.77 (C _{8a} - <i>H</i>)	3.33 (C ₁ - <i>H</i>)
3.33 (C ₁ - <i>H</i>)	1.95-1.87 (C ₂ - <i>H</i>), 2.43-2.33 (C ₂ - <i>H</i>)
3.26 (C ₃ - <i>H</i>)	1.95-1.87 (C ₂ - <i>H</i>), 2.43-2.33 (C ₂ - <i>H</i>)
2.58 (C ₆ -H)	1.95-1.87 (C ₇ -H), 2.22-2.15 (C ₇ -H), 2.43-2.33 (C ₆ -H)
2.22-2.15 (C ₇ -H)	1.95-1.87 (С ₇ - <i>H</i>)

 Table 6. Observed C-H correlations from HMQC spectrum of 9a.

δ_{C} (ppm)	δ _H (ppm)	Assignment
168.6	-	C ₅
66.4	4.55 (dt, <i>J</i> = 5.6, 3.0 Hz, 1H)	C_8
66.1	3.33 (app. q, <i>J</i> = 7.1 Hz, 1H)	C ₁
62.7	3.77 (dd, <i>J</i> = 7.0, 3.1 Hz, 1H)	C _{8a}
44.9	4.14 (ddd, $J = 11.5$, 8.6, 5.6 Hz, 1H) and 3.26	C ₂
11.9	(ddd, <i>J</i> = 11.5, 8.2, 6.7 Hz, 1H)	0,5
29.3	2.22-2.15 (m, 1H) and 1.95-1.87 (m, 2H)	C ₇
27.7	2.58 (dt, <i>J</i> = 17.7, 7.8 Hz, 1H) and	C
27.7	2.43-2.33 (m, 2H)	0
22.2	2.43-2.33 (m, 2H) and 1.95-1.87 (m, 2H)	C ₂

³J_{H8-H8a} = 3 Hz

Irradiation	Results
	2.7% enhancement of C_3 - H_a
C_1 -H	8.9% enhancement of C_{8a} -H
	3.7% enhancement of C_2 - H_a
	8.3% enhancement of C_8 -H
C _{8a} -H	8.7% enhancement of C_1 -H
	3.9% enhancement of C_2 - H_a
	8.1% enhancement of C_{8a} -H
C_8-H	2.3% enhancement of C_7 - H_a
	3.0% enhancement of C_2 - H_a

¹³C-NMR spectrum of **9b** (125 MHz, CDCl₃)

 Table 8. 500 MHz COSY-45 correlations of some protons of compound 9b.

δ _H (ppm)	$\delta_{\rm H}$ (ppm) of correlated protons
4.80 (C ₈ - <i>H</i>)	1.94-1.73 (C ₇ - <i>H</i>), 3.82 (C _{8a} - <i>H</i>)
3.82 (C _{8a} -H)	3.54 (C ₁ - <i>H</i>)
3.54 (C ₁ - <i>H</i>)	1.94-1.73 (C ₂ - <i>H</i>)
3.29 (C ₃ - <i>H</i>)	1.94-1.73 (C ₂ - <i>H</i>), 3.16 (C ₃ - <i>H</i>)
3.16 (C ₃ - <i>H</i>)	1.94-1.73 (C ₂ - <i>H</i>)
2.55 (C ₆ -H)	1.94-1.73 (C ₇ - <i>H</i>), 2.16-2.10 (C ₇ - <i>H</i>), 2.44 (C ₆ - <i>H</i>)
2.44(C ₆ - <i>H</i>)	1.94-1.73 (C ₇ - <i>H</i>), 2.16-2.10 (C ₇ - <i>H</i>)
2.16-2.10 (C ₇ -H)	1.94-1.73 (C ₇ -H)

Table 9. NOE enhancements observed in compound 9b.

 $^{3}J_{H8-H8a} = 8.0 \text{ Hz}$

Irradiation	Results
С1-Н	3.5% enhancement of C2-He $8.4%$ enhancement of C8a-H
C _{8a} -H	5.0% enhancement of C_2 - H_e 8.5% enhancement of C_1 - H
C ₈ -H	2.0% enhancement of C_6 - H_a 3.5% enhancement of C_7 - H_e

 Table 10. 500 MHz COSY-45 correlations of some protons of compound 10a.

δ _H (ppm)	$\delta_{\rm H}$ (ppm) of correlated protons
5.93-5.90 (C ₂ -H)	4.05-4.01 (C ₃ - <i>H</i>), 4.37-4.35 (C _{8a} - <i>H</i>), 4.53-4.48 (C ₃ - <i>H</i>),
	5.69-5.66 (C ₁ - <i>H</i>)
5.69-5.66 (C ₁ -H)	$4.05-4.01 (C_3-H), 4.37-4.35 (C_{8a}-H), 4.53-4.48 (C_3-H)$
4.53-4.48 (C ₃ -H)	4.05-4.01 (C ₃ - <i>H</i>)
4.24-4.22 (C ₈ -H)	1.94-1.90 (C ₇ -H)
2.49 (C ₆ - <i>H</i>)	1.94-1.90 (C ₇ -H)
2.40 (C ₆ -H)	1.94-1.90 (C ₇ -H)

 Table 11. Observed C-H correlations from HMQC spectrum of 10a.

$\delta_{\rm C}$ (ppm)	δ _H (ppm)	Assignment
169.3	-	C ₅
127.3	5.69-5.66 (m, 1H)	C1
127.0	5.93-5.90 (m, 1H)	C ₂
68.9	4.37-4.35 (m, 1H)	C _{8a}
65.1	4.24-4.22 (m, 1H)	C ₈
53.3	4.53-4.48 (m, 1H) and	C ₂
55.5	4.05-4.01 (m, 1H)	03
28.7	1.94-1.90 (m, 2H)	C ₇
26.7	2.49 (dt, $J = 17.8$, 9.1 Hz, 1H) and	C
20.7	2.40 (ddd, <i>J</i> = 17.8, 6.7, 4.3 Hz, 1H)	C_6

10a

Irradiation	Results
Co-H	5.8% enhancement of C_{8a} - <i>H</i>
C8-11	5.3% enhancement of C_7 - H_a
	5.3% enhancement of C ₈ -H
$\mathrm{C}_{8\mathrm{a}} ext{-}H$	2.7% enhancement of C_1 -H
	2.4% enhancement of C_7 - H_a

¹H-NMR spectrum of **10b** (500 MHz, CDCl₃)

¹³C-NMR spectrum of **10b** (125 MHz, CDCl₃)

 Table 13. 500 MHz COSY-45 correlations of some protons of compound 10b.

δ _H (ppm)	$\delta_{\rm H}$ (ppm) of correlated protons
5.96-5.90 (C ₂ -H)	4.50-4.46 (C ₃ - <i>H</i>), 4.06-4.03 (C ₃ - <i>H</i>),
4.50-4.46 (C ₃ - <i>H</i>)	4.06-4.03 (C ₃ - <i>H</i>)
4.17-4.14 (C _{8a} - <i>H</i>)	3.57 (C ₈ -H)
3.57 (C ₈ - <i>H</i>)	1.84-1.75 (C ₇ - <i>H</i>), 2.05-1.99 (C ₇ - <i>H</i>)
2.63 (C ₆ - <i>H</i>)	1.84-1.75 (C ₇ - <i>H</i>), 2.05-1.99 (C ₇ - <i>H</i>), 2.42 (C ₆ - <i>H</i>)
2.42 (C ₆ - <i>H</i>)	1.84-1.75 (C ₇ - <i>H</i>), 2.05-1.99 (C ₇ - <i>H</i>)
2.05-1.99 (C ₇ -H)	1.84-1.75 (C ₇ -H)

 Table 14. Observed C-H correlations from HMQC spectrum of 10b.

$\delta_{\rm C}$ (ppm)	δ _H (ppm)	Assignment
168.4	-	C ₅
128.5	5.96-5.90 (m, 2H)	C ₂
126.7	5.96-5.90 (m, 2H)	C ₁
71.1	3.57 (td, <i>J</i> = 9.5, 5.2 Hz, 1H)	C ₈
69.1	4.17-4.14 (m, 1H)	C _{8a}
53.3	4.50-4.46 (m, 1H) and 4.06-4.03 (m, 1H)	C ₃
30.2	2.05-1.99 (m, 1H) and 1.84-1.75 (m, 1H)	C ₇
29.7	2.63 (ddd, <i>J</i> = 17.8, 8.5, 3.6 Hz, 1H) and	C ₆
	2.42 (dt, <i>J</i> = 17.9, 8.5 Hz, 1H)	-0

Irradiation	Results
C ₈ -H	2.48% enhancement of C_7 - H_e
C _{8a} -H	2.98% enhancement of C_7 - H_a

¹H-NMR spectrum of **11** (500 MHz, CD₃OD)

¹H-NMR spectrum of (+)-swainsonine (*ent*-1) (500 MHz, CD₃OD)

¹³C-NMR spectrum of (+)-swainsonine (*ent-*1) (125 MHz, CD₃OD)

