Electronic Supplementary Information

Peptide Bond Formation by Aminolysin-A Catalysis: A Simple Approach to Enzymatic Synthesis of Diverse Short Oligopeptides and Biologically Active Puromycins

Hirokazu Usuki, Yukihiro Yamamoto, Jiro Arima, Masaki Iwabuchi, Shozo Miyoshi, Teruhiko Nitoda, and Tadashi Hatanaka*

E-mail: hatanaka@bio-ribs.com

Contents

1. List of family S9 peptidases used for the construction of an unrooted dendrogram (Figure 1 of the main text).

- 2. Enzymatic characteristics of wild type S9-ACAP.
- 3. MS spectra of synthesized homo-peptides shown in Figure 3[A] of the main text.
- 4. Homo-peptide synthesis
- 5. Confirmation of non-enzymatic cyclization of _D-F-_D-F-OBn to give cyclo(_D-F-_D-F)
- 6. Hetero-peptide synthesis
- 7. Puromycin analogue synthesis

7-1. MS/MS analysis of synthesized puromycin analogues (X-PANs) and authentic puromycin (Figure 4 of the main text)

7-2: MRM quantification of synthesized puromycin analogues (X-PANs) as a substitute for authentic puromycin (Table 1, 2, figure 4, and 5 of main text)

Section-1. List of family S99 perfer as a section of the main text). Section of the main text of the main te

Entry	Species	Domain of life	AccesionNO	Subfamily
1	Leishmania major	Eukarya	CAJ02700.1	S9A
2	Trypanosoma cruzi	Eukarya	EAN84486.1	S9A
3	T. brucei	Eukarya	EAN80234.1	S9A
4	Mycobacterium leprae	Bacteria	CAB08412	S9A
5	M. tuberculosis H37Rv	Bacteria	CAB02371	S9A
6	M. lacunata	Bacteria	BAA07460	S9A
7	T. denticola	Eukarya	AAK39550	S9A
8	Estercia coli	Bacteria	BAA01750	S9A
9	Pyrococcus furiosus	Archaea	AAA73423	S9A
10	Streptomyces griseus	bacteria	B1VWJ6	S9A
11	Aeromonas hydrophila	Bacteria	BAA03105	S9A
12	Elizabethkingia meningoseptica	Bacteria	BAA01755	S9A
13	Sphingomonas capsulata	Bacteria	BAA34052	S9A
14	Arabidopsis thalian	Eukaryota	NP_001117606	S9A
15	Arabidopsis thalian	Eukaryota	Q9LN30	S9A
16	Porcine	 Eukaryota	AAA31110	S9A
17	Arabidopsis thaliana	Eukaryota	O9FNF6	S9B
18	Drosophila melanogaster	Eukaryota	Q9VC19	S9B
19	Homo sapiens	Eukaryota	EAW77731	S9B
20	Homo sapiens	 Eukaryota	EAW69199	S9B
21	Porphyromonas gingivalis	Bacteria	MER005196 ¹⁾	S9B
22	Pseudomonas sp. WO24	Bacteria	BAD27580	S9B
23	Chryseobacterium meningosepticum	Bacteria	Q47900	S9B
24	Aspergillus oryzae	Eukaryota	042812	S9B
25	Saccharomyces cerevisiae	Eukaryota	P18962	S9B
26	Saccharomyces cerevisiae	Eukaryota	P33894	S9B
27	Homo sapiens	Eukaryota	P27487	S9B
28	Homo sapiens	Eukaryota	Q12884	S9B
29	Acidothermus cellulolyticus	Bacteria	YP_873767	S9C
30	Streptomyces avermitilis	Bacteria	NP_825741	S9C
31	Streptomyces coelicolor	Bacteria	Q9XAJ2	S9C
32	Arabidopsis thaliana	Eukaryota	Q84LM4	S9C
33	Oryza sativa	Eukaryota	A3C4R4	S9C
34	Oryza sativa	Eukaryota	ABB47613	S9C
35	Nematostella vectensis	Eukaryota	EDO40564	S9C
36	Sus scrofa	Eukaryota	P19205	S9C
37	Homo sapiens	Eukaryota	P13798	S9C
S. morookaensis, PMH	Streptomyces morookaensis	Bacteria	BAE79346	unknown
S. coelicolor, AP	S. coelicolor	Bacteria	Q9ZBI6	unknown
S. griseus, AP	S. griseus	Bacteria	SGR1153 ²⁾	unknown
S. thermocyaneoviolaceus, AP	S. thermocyaneoviolaceus	Bacteria	AB480284	unknown

Table S1. Family S9 enzymes from different species used for the construction of phylogenetic trees

1) ID of MEROPS data base (http://merops.sanger.ac.uk/), 2) ID of Streptomyces griseus genome project (http://streptomyces.nih.go.jp/griseus/)

Section-2: Enzymatic characteristics Material (ES) for Sonic & Bipnolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

The purified enzyme was used for these experiments. The standard assays were performed as follows: 10 μ l of the enzyme solution was added to the 2 mM _L leucine paranitroanilide. (Leu-*p*NA) in 12.5 mM Mes/NaOH buffer (pH 6.4) which contain 10% (v/v) DMSO. Enzyme reaction was carried out at 37 °C for 1 to 5 min. The increase in absorbance at 405 nm attributable to release of *p*-nitroaniline was monitored continuously using a microplate reader (SH-8000 Lab; CORONA ELECTRIC Co.,Ltd.). The initial rates of the hydrolytic activity were determined from the linear portion of the optical density profile.

The optimum pH of enzyme activities was tested in a four-component buffer, which consisted of 5 mM glycine, 5 mM acetic acid, 5 mM Mes, and 15 mM Tris. The buffer was titrated to the desired pH with HCl or NaOH. In the assays, Leu-*p*NA at 100 μ M was used as substrate. Thermal stability testing was carried out as follows: the enzyme solutions were incubated at various temperatures (20–75°C) for 30 min at pH 6.4. Then, their residual activity toward Leu-pNA were measured. The substrate specificity toward *p*NA derivative of amino acids were tested at pH 6.4 and at pH 7.5 in the above fore-component buffer system. The kinetic parameters (K_{cat} and K_m) against Leu-pNA was determined by the Lineweaver-Burk plot.

The hydrolytic activity toward puromycin was evaluated by the LC/UV method described as follows. The reaction mixture (50 μ L) was composed of 12.5 mM Mes/NaOH buffer (pH 6.4), 2.0 mM puromycin, and 4.7 μ g of purified ACAP. The enzyme reaction was conducted at 37 °C for 60 min followed by the addition of 100 μ L of 3% (v/v) HCOOH for quenching the reaction. The solution was centrifuged and 10 μ l of the supernatant was applied to ODS-HPLC analysis monitored at UV 270 nm. The mobile phase was water containing 0.1 % (v/v) HCOOH (A) and MeOH containing 0.1 % (v/v) HCOOH (B) at a flow rate of 0.2 mL/ min. The LC condition was 15% B during 0–5 min and a linear increase from 15–60 % B during 5–30 min. Under these conditions, the PM substrate and its hydrolyzed product PAN were eluted at 22.6 min and 5.1 min, respectively.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Properties		Supporting information
Molecular mass (kDa)	69.8	
Catalytic Ser	Ser ⁴⁹¹	
Optimum pH	6.4	Figure S1
Thermal stability (°C)		Figure S2
Optimum temperature	65	Figure S3
Inhibitor ²⁾		
Hydrolytic activity (µmol/min/		
Substrates		
Leu- p NA (2.0 mM) ³⁾	105 (±0.65)	Figure S4
Phe- p NA (1.0 mM) ³⁾	57.1 (±0.01)	Figure S4
Met- p NA (2.0 mM) ³⁾	44.2 (±1.18)	Figure S4
Pro- <i>p</i> NA (2.0 mM) ³⁾	9.55 (±0.09)	Figure S4
Phe-NH ₂ (5.0 mM) $^{4)}$	23.9 (±1.15)	
Phe-Phe-NH ₂ $(5.0 \text{ mM})^{4)}$	18.7 (±0.96)	
Phe-Phe $(5.0 \text{ mM})^{4)}$	16.0 (±1.47)	
Phe-Ala (5.0 mM) ⁴⁾	2.85 (±0.19)	
Leu-Phe $(5.0 \text{ mM})^{4)}$	2.30 (±0.87)	
Phe-OMe $(10.0 \text{ mM})^{4)}$	30.7 (±2.18)	
Puromycin (2.0 mM) ⁵⁾	0.124 (±0.01)	
$K_{\rm m}({\rm mM})^{6)}$	0.693 (±0.05)	Figure S5
$K_{\rm cat}({\rm s}^{-1})^{6}$	154 (±1.90)	Figure S5

1) Approximately 80% of enzyme activity remained after heat treatment at 65 °C for 30 min. In addition, as shown in Figure S2, activity-enhancement was observed by heat treatment at around 60 °C for 30 min. For this experiment, Leu-*p*NA was used as substrate. 2) 100 μ l (0.1 mg/ml) of enzyme solution was treated with 2.0 mM phenylmethylsulfonyl fluoride (PMSF) at 30 °C for 30 min, after which the residual activity toward 2mM Leu-*p*NA was measured. The residual activity was 47.3%. 3) At pH 6.4 in 12.5 mM Mes/NaOH buffer containing 10 % (v/v) DMSO. 4) At pH 5.5 in 80 mM AcOH/NaOH buffer. 5) At pH 6.4 in 12.5 mM Mes/NaOH buffer without DMSO. 6) Toward Leu-*p*NA at pH 6.4 in 12.5 mM Mes/NaOH buffer.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

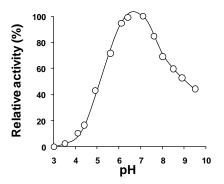


Figure S1. Optimum pH of ACAP for Leu-pNA hydrolysis

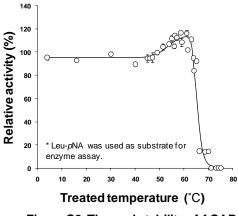


Figure S2. Thermal stability of ACAP

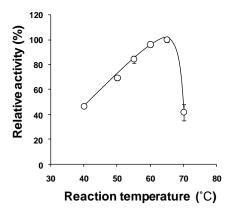


Figure S3. Optimum temperature of ACAP for Leu-pNA hydrolysis

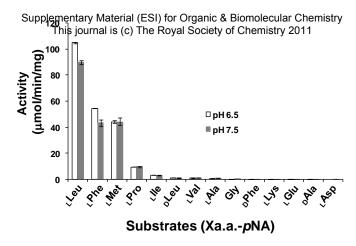
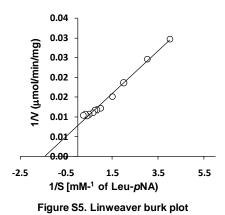



Figure S4. Aminopeptidase activity of ACAP toward pNA derivatives of amino acids.

Section-3: MS spectra of synthespect/heprino for the main text. This journal is (c) The Royal Society of Chemistry 2011

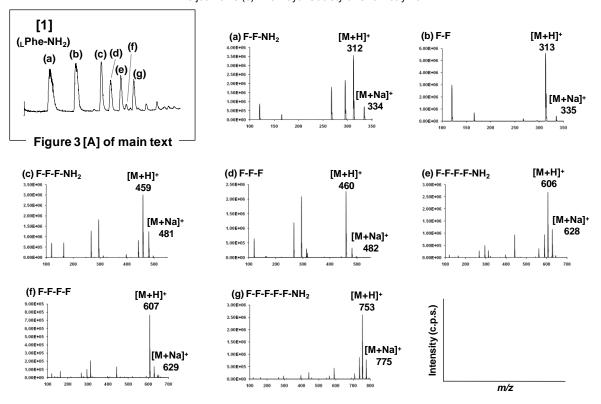


Figure S6-1. MS spectra of produced homo-peptides shown in Figure 3 [A] of main text.

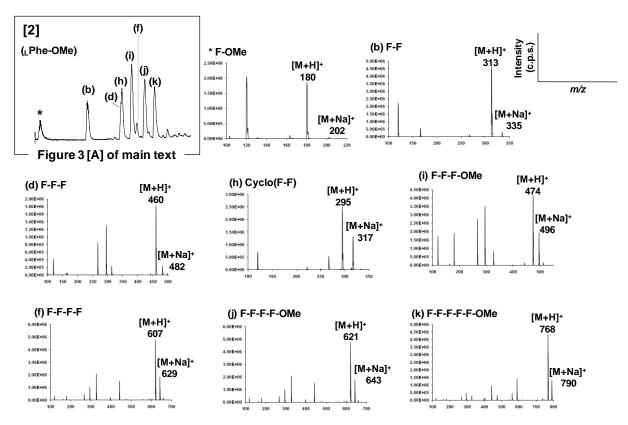


Figure S6-2. MS spectra of produced homo-peptides shown in Figure 3 [A] of main text.

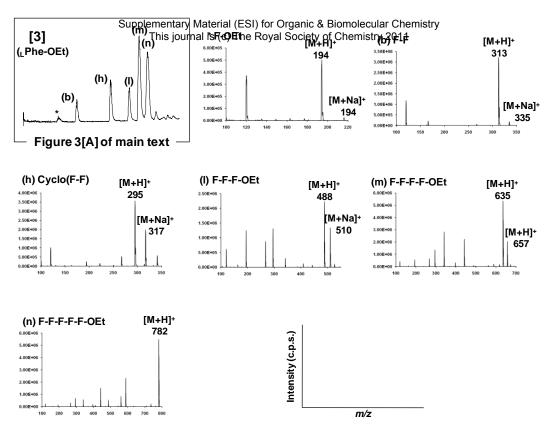


Figure S6-3. MS spectra of produced homo-peptides shown in Figure 3[A] of main text.

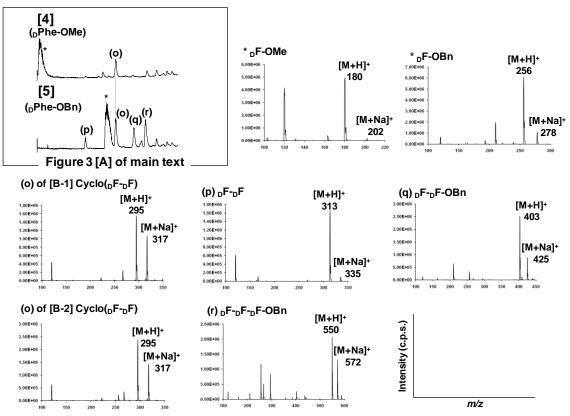


Figure S6-4. MS spectra of produced homo-peptides shown in Figure 3 [A] of main text.

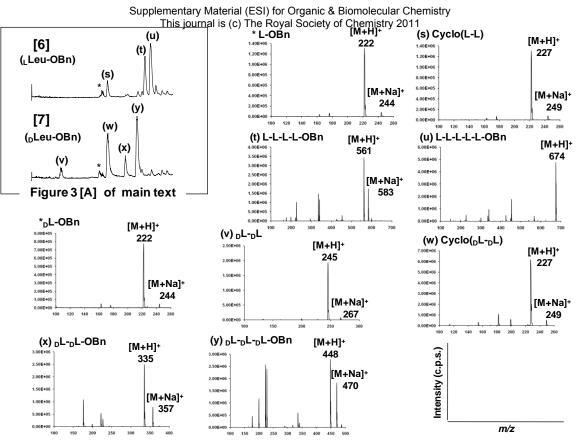


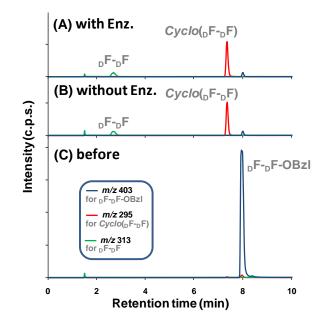
Figure S6-5. MS spectra of produced homopeptides shown in Figure 3 [A] of main text.

Section-4. Homo-peptide synthesis

The procedure of the enzyme reaction was described in the Experimental Section of the main text. The C-terminal modified amino acids listed in Table S3 were subjected to the reaction. The underlined compounds were recognized by aminolysin-*A*. The total ion chromatograms (TICs) of the reaction mixtures and MS spectra of products, obtained by the use of L-Phe-NH₂, L-Phe-OMe, L-Phe-OEt, D-Phe-OMe, D-Phe-OBn, L-Leu-OBn, and D-Leu-OBn, were already shown in the Figure 3[A] of the main text and Figure S6s as typical examples of these experiments. Product identification for the others (underlined compounds in Table S3) is summarized in Table S4.

	d amino acid derivatives for Home	his journal is (e). The	Reyal Seciety of Chemic	otry 2011	
A mino acid moieties	Types of derivatization of carboxyl group	Companies	Amino acid moieties	Types of derivatization of carboxyl group	Companies
-Lys	OMe	SIGMA	_L .Ala	NH ₂	novabiochem
	OBzl	BACHEM		OMe	ALDRICH
-Arg	OMe	BACHEM		OBzl	Tokyo Chemical Industry
-His	OMe	ALDRICH	_D -Ala	NH2	BACHEM
-lle	OBzl	BACHEM		OMe	BACHEM
- I-Phe	NH ₂	novabiochem		OBzl	BACHEM
	OMe	ALDRICH		Ot-butyl	BACHEM
	OEt	ALDRICH	<u>ı-Met</u>	OMe	SIGMA
_o -Phe	OMe	ALDRICH	L-Pro	OMe	ALDRICH
	OBzl	BACHEM		OBzl	BACHEM
-Leu	NH2	novabiochem	_D -Pro	OBzl	BACHEM
	OMe	ALDRICH	_L -Asp	O(Me) ₂	ALDRICH
	<u>OEt</u>	BACHEM		OBzl	BACHEM
	OBzl	PEPTIDE INSTITUE	_D -Asp	OBzl	BACHEM
	Ot-butyl	SIGMA	∟-Glu	O(Et) ₂	ALDRICH
	Oallyl	SIGMA		OBzl	BACHEM
_o -Leu	OBzl	BACHEM	_D -Glu	OBzl	BACHEM
-lle	OBzl	BACHEM	∟-Thr	OMe	SIGMA
_o -lle	OBzl	BACHEM		OBzl	novabiochem
-Trp	OBzl	BACHEM	_D -Thr	OBzl	BACHEM
	OMe	ALDRICH		NH2	BACHEM
<u>Trp</u>	OBzl	BACHEM	_D -Gln	NH2	BACHEM
-Cys	OMe	ALDRICH	<u>-Tvr</u>	NH2	novabiochem
-Asn	OMe	BACHEM		OMe	ALDRICH
-Val	OMe	ALDRICH		OBzl	BACHEM
-	OBzl	BACHEM	_D -Tyr	OBzl	BACHEM
_p -Val	OBzl	BACHEM	Gly	OMe	ALDRICH
, . .				OBzl	SIGMA
			-Ser	OMe	ALDRICH
				OBzl	BACHEM
			_D -Ser	OBzl	BACHEM

*The underlined compounds were recognized by aminolysin-A.


Substrates Poducts ¹⁾		Retention time (min.)	Observed m/z , $[M+H]^+$	
L-Ile-OBn	Cyclo (Ile-Ile)	25.8	227.2	
	Ile-Ile-OBn	33.6	335.3	
	Ile-Ile-OBn	37.8	448.2	
L-Leu-OMe	Cyclo (Leu-Leu)	26.6	227.2	
L-Leu-OEt	Cyclo (Leu -Leu)	26.6	227.2	
L-Leu-NH2	Leu-Leu-Leu-NH ₂	23.3	357.2	
	Cyclo (Leu -Leu)	26.6	227.2	
_L -Trp-OMe	Trp-Trp	25.3	391.2	
-	Cyclo (Trp-Trp)	26.8	373.1	
	Trp-Trp-Trp	30.4	577.2	
	Trp-Trp-Trp-OMe	34.0	591.2	
_L -Trp-OBn	Cyclo (Trp-Trp)	26.8	373.1	
_D -Trp-OBn	Cyclo (_D Trp- _D Trp)	26.8	373.1	
L-Met-OMe	Met-Met	9.4	281.1	
	Cyclo (Met-Met)	20.6	263.2	
L-Tyr-NH2	Tyr-Tyr	10.0	345.2	
	Cyclo (Tyr-Tyr)	14.7	327.2	
	Tyr-Tyr-Tyr-NH ₂	16.6	507.3	
	Tyr-Tyr-Tyr	19.1	508.3	
_L -Tyr-OBn	Cyclo (Tyr-Tyr)	14.7	327.2	
	Tyr-Tyr-Tyr	19.1	508.3	
_L -Tyr-OMe	Tyr-Tyr	10.2	345.2	
	Cyclo (Tyr-Tyr)	14.9	327.1	
	Tyr-Tyr-Tyr	19.1	508.3	

Supplementary Material (ESI) for Organic & Biomolecular Chemistry Table S4. C-terminal modified aming scills are control of the mistry 2011

1) Speculated compounds judged from its observed m/z and retention time on HPLC/MS analysis were shown.

Section-5. Confirmation of a contraction of the contract of th

In order to clarify the reaction mechanism to give cyclic dipeptides, we tried to isolate the intermediate dipeptide ester and then subject it to enzymatic and non-enzymatic treatments. In this experiment, p-F-OBn was selected as the model substrate because of its ability to give a linear dipeptide ester and cyclic dipeptide under our reaction system (see Figure S6-4). The reaction mixture (1000 µl) was composed of 0.1 M phosphate buffer (pH 8.0), 10 mM pF-OBn, 100 µg purified aminolysin-A, and 10% (v/v) DMSO. The reaction was performed at 21 °C (room temperature) for 6 h using a Capsule HF 120 centrifuge (TOMY, Tokyo, Japan), in which three separate reactions were conducted. It should be noted that the conditions, including a low reaction temperature and centrifugation, were effective for obtaining the final product cyclo(p-F-p-F) as an insoluble pellet. After the reaction, the three separate reaction mixtures were combined and centrifuged, and the upper layer containing _D-F-_D-F-OBn was subjected to preparative ODS HPLC with the gradient solvent system of MeOH/H₂O to isolate 8.7 µg of produced _D-F-D-F-OBn. The isolate was subjected to the following treatment. The reaction mixture (100 µL) was composed of 0.1 M NaPi (pH 8.0), 50 µM of isolated p-F-p-F-OBn, and 10% (v/v) DMSO with or without 10 μ g of aminolysin-A. The reaction was conducted at 50 °C for 6 h followed by the addition of 100 μ L of MeOH for quenching. After centrifugation, 10 μ L of the supernatant was subjected to a UPLC/MS analysis, for which the ACQUITY Ultra Performance LC® System (Waters) connected to the API 2000 LC/MS/MS System (Applied Biosystems) was used. In this experiment, selected ion monitoring was used for the detection of the substrate, $_{\rm D}F$ - $_{\rm D}F$ -OBn; the putative products, $cyclo(_{\rm D}$ -F- $_{\rm D}$ -F); and the linear dipeptide, p-F-p-F. The column used was an ACQUITY UPLC BEH C18 (1.7 µm, 2.1 x 50 mm). The mobile phase was water containing 0.1% (v/v) HCOOH (A) and MeOH containing 0.1%(v/v) HCOOH (B) at a flow rate of 0.3 ml/min. The LC condition was 20% B during 0–2 min and a linear increase from 20% to 65% B from 2 min to 10 min, while the flow was diverted from the mass spectrometer to the waste during 0-1.5 min. The results are shown in Figure S7. Apparently, p-F-p-F-OBn was non-enzymatically converted to cyclo(_D-F-_D-F). From this observation, we concluded that the cyclization (intramolecular aminolysis) of the intermediate dipeptide ester took place in a non-enzymatic manner.

Figure S7. Non-enzymatic intramolecular aminolysis of $_{D}F_{-D}F_{-D}Bn$ to give *cyclo* ($_{D}F_{-D}F$). (A) 50 μ M of $_{D}$ -F- $_{D}$ -F-OBn was treated at 50°C for 6 h with 10 μ g of aminolysin-*A*.(B) Treated without aminolysin-*A*. (C) $_{D}$ -F- $_{D}$ -F-OBn as substrate (before the above treatment).

Section-6: Hetero-peptide synthesis

The procedure of the enzyme reaction was described in the Experimental Section of the main text. The free amines listed in Table S5 were subjected to the reaction. The underlined compounds were recognized by aminolysin-*A* to give _L-Phe- and _L-Met-containing dipeptides. Figure S8 shown the extracted ion chromatograms (XICs) for the synthesis of _L-Met-containing dipeptides. The procedures for the construction of XICs were described in the Experimental section of the main text. LC elution programs for Figure S8 were following. The mobile phase was water containing 0.1 % (v/v) HCOOH (A) and MeOH containing 0.1 % (v/v) HCOOH (B) at a flow rate of 0.2 ml/ min. The LC condition was 5.0 % B during 0–5 min, a linear increase from 5.0–99 % B during 5–40 min, and 99% B during 40–45 min.

Compounds	Companies	Compounds	Company
_L -Lys	WAKO	(R) - α -Methylphenylalanine	NAGASE and CO., LTD. (Japan)
_L -Arg	WAKO	(S) - α -Methylphenylalanine	NAGASE and CO., LTD. (Japan)
_L -His	WAKO	(R) - α -Methyl-3-nitrophenylalanine	NAGASE and CO., LTD. (Japan)
_D -His	WAKO	(S) - α -Methyl-3-nitrophenylalanine	NAGASE and CO., LTD. (Japan)
<u>L-Ile</u>	nacalai	(S) - β - $(4$ -Bisphenyl)- α -methylalanine	NAGASE and CO., LTD. (Japan)
L-Phe	WAKO	(S)-4-Bromo- α -methylphenylalanine	NAGASE and CO., LTD. (Japan)
_D -Phe	BACHEM	(S)-4-Iodo- α -methylphenylalanine	NAGASE and CO., LTD. (Japan)
L-Leu	WAKO	(R) - α -Methyltyrosine	NAGASE and CO., LTD. (Japan)
D-Leu	ALDRICH	(S) - α -Methyltyrosine	NAGASE and CO., LTD. (Japan)
 L-Trp	WAKO	(R) - α -Allylglycine	NAGASE and CO., LTD. (Japan)
D-Trp	SIGMA	(S) - α -Allylglycine	NAGASE and CO., LTD. (Japan)
L-Ala	WAKO	(R) - α -Propargylglycine	NAGASE and CO., LTD. (Japan)
_D -Ala	WAKO	(S) - α -Propargylglycine	NAGASE and CO., LTD. (Japan)
L-Met	WAKO	(R) - α -Methylleucine	NAGASE and CO., LTD. (Japan)
L-Pro	nacalai	(S) - α -Methylleucine	NAGASE and CO., LTD. (Japan)
L-Val	WAKO	Puromycin aminonucleoside	SIGMA ARDRICH
L-Asp	WAKO		
_L -Glu	WAKO		
_L -Thr	nacalai		
<u>Thr</u>	SIGMA		
_L -Gln	WAKO		
_D -Gln	SIGMA		
<u>L-Tyr</u>	WAKO		
<u>D-Tyr</u>	ALDRICH		
Gly	WAKO WAKO		
L-Ser	SIGMA		
_L -Cys _D -Cys	WAKO		
_L -Cys	WAKO		
_D -Asn	WAKO		
_D -alpha-Ala	WAKO		

Table S5. List of tested free amines for hetero-peptide synthesis

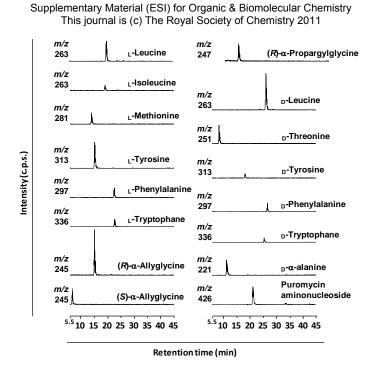


Figure S8. Methionine-containing dipeptide synthesis

7-1: MSMS analysis of synthesized puromycin analogues (X-PANs) and authentic puromycin (Figure 4 of the main text)

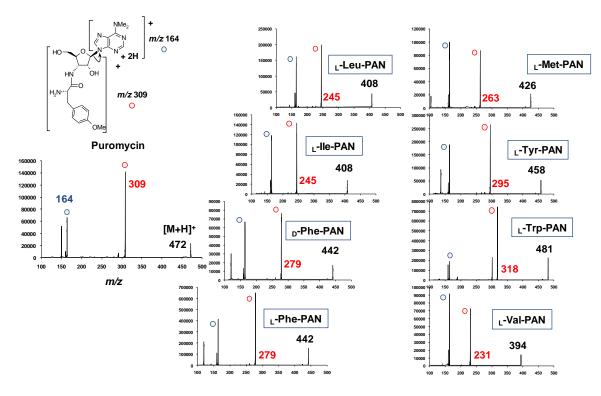


Figure S9. MS/MS spectra of puromycin and synthesized puromycin analogues (X-PANs) corresponding to Figure 4[A] of the main text

7-2. MRM quantification^{3upplenswirth} (Spiron and Construction & Single Schemistry 2011) This journal is (c) The Royal Society of Chemistry 2011 authentic puromycin (Table 1, 2, and figure 4,5 of main text)

The MS/MS spectrum of the authentic puromycin was shown in Figure S9. As shown, 2 ions corresponding to m/z 309 and m/z 164 were characteristic fragmentation ions of puromycin skeleton. Therefore, we created the 2 kinds of MRM transition sets, in those the experimental parameters were optimized using authentic puromycin. The MRM transitions (Q1>Q3) for each compounds was shown in the main text. For the quantification of each X-PAN as substitute for puromycin, MRM transition set as "m/z of precursor ions" > "m/z of fragmentation ions corresponding to m/z 309 from puromycin" was used (see Figure S9).