### Supplementary information

*Title:* Effective Construction of Quaternary Stereocenters by Highly Enanitioselective . α-Amination of Branched Aldehydes

Author(s): Ji-Ya Fu, Xiao-Ying Xu, Yan-Chun Li, Qing-Chun Huang, Li-Xin Wang\*

#### Contents

| 1. General methods                                                                    | <b>S2</b>  |
|---------------------------------------------------------------------------------------|------------|
| 2. Screening reaction conditions                                                      | S2         |
| 3. General procedure for organocatalysts                                              | <b>S4</b>  |
| 4. General procedure for branched aldehydes                                           | <b>S</b> 5 |
| 5. General procedure for asymmetric amination of branched aldehydes azodicarboxylates | with<br>S7 |
| 6. Selected NMR spectra                                                               | <b>S10</b> |
| 7. HPLC data                                                                          | S20        |

#### 1.0. General information

All reagents were obtained from commercial supplier without further purification. Commercial grade solvent was dried and purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997). NMR spectra were recorded with tetramethylsilane as the internal standard. <sup>1</sup>H NMR spectra were recorded at 300 MHz, and <sup>13</sup>C NMR spectra were recorded at 75 MHz (Bruker Avance). Chemical shifts ( $\delta$ ) are reported in ppm downfield from CDCl<sub>3</sub> ( $\delta$  = 7.26 ppm) for <sup>1</sup>H NMR and relative to the central CDCl<sub>3</sub> resonance ( $\delta$  = 77.0 ppm) for <sup>13</sup>C NMR spectroscopy. Flash column chromatography was carried out using silica gel eluting with ethyl acetate and petroleum ether. Reactions were measured on a Perkin-Elmer 341 polarimeter. The enantiomeric excess (ee) of the products were determined by HPLC using Daicel Chiralpak AD or AS columns with *i*-PrOH/ hexane as eluent.

#### 2.0 Screening reaction conditions

|       |            | Me N OEt<br>Ph CHO OEt<br>2a 3a                      | cat.1 (20 mol%)<br>TFA (20 mol%)<br>Solvent, 25°C | Eto O Me<br>HN, N CHO<br>Eto O<br>4a |                       |
|-------|------------|------------------------------------------------------|---------------------------------------------------|--------------------------------------|-----------------------|
| Entry | Catalyst   | Solvent                                              | Time (h)                                          | Yield (%) <sup>[b]</sup>             | ee (%) <sup>[c]</sup> |
| 1     | 1a         | o-Xylene                                             | 11                                                | 91                                   | 77                    |
| 2     | 1a         | CHCl <sub>2</sub> CH <sub>3</sub>                    | 21.5                                              | 76                                   | 84                    |
| 3     | <b>1</b> a | $CCl_4$                                              | 21.5                                              | 67                                   | 70                    |
| 4     | 1a         | CHCl <sub>2</sub> CH <sub>2</sub> Cl                 | 26                                                | 58                                   | 83                    |
| 5     | 1a         | CCl <sub>3</sub> CH <sub>3</sub>                     | 26                                                | 74                                   | 78                    |
| 6     | <b>1</b> a | DCM                                                  | 8.5                                               | 96                                   | 87                    |
| 7     | 1a         | MTBE                                                 | 6.5                                               | 86                                   | 77                    |
| 8     | <b>1</b> a | CH <sub>3</sub> OCH <sub>2</sub> CH <sub>2</sub> OCH | 6.5                                               | 90                                   | 80                    |
| 9     | 1a         | EtOAc                                                | 49                                                | 78                                   | 79                    |

Table 1. Screening solvents <sup>[a]</sup>

<sup>a</sup> Unless otherwise specified, all reactions were carried out with 2a (0.30 mmol), 3a (0.20 mmol), the catalyst (0.04 mmol) in the specified solvent (1.0 mL) at 25 °C. <sup>b</sup> Isolated yield . <sup>c</sup> Determined by HPLC with a Chiralpak-AS column

#### Table 2. The effect of additives.<sup>[a]</sup>



| Entry | Additive                   | Time   | Yield (%) <sup>[b]</sup> | Ee (%) <sup>[c]</sup> |
|-------|----------------------------|--------|--------------------------|-----------------------|
| 1     |                            | 4d     | 38                       | 64                    |
| 2     | НСООН                      | 4 h    | 78                       | 89                    |
| 3     | AcOH                       | 50 h   | 39                       | 90                    |
| 4     | PhCOOH                     | 26 h   | 79                       | 89                    |
| 5     | 2-OHPhCOOH                 | 1 h    | 99                       | 90                    |
| 6     | 4-ClPhCOOH                 | 4 h    | 78                       | 90                    |
| 7     | 4-OHPhCOOH                 | 20.5 h | 67                       | 91                    |
| 8     | 4-COOHPhCOOH               | 26 h   | 48                       | 63                    |
| 9     | 4-NO <sub>2</sub> PhCOOH   | 4 h    | 86                       | 88                    |
| 10    | 2,6-diFPhCOOH              | 3.5 h  | 56                       | 83                    |
| 11    | 3-OHPhCOOH                 | 3.5 h  | 67                       | 87                    |
| 12    | 4-NO <sub>2</sub> PhOH     | 51.5 h | 61                       | 94                    |
| 13    | 2,4-diNO <sub>2</sub> PhOH | 6.5 h  | 71                       | 90                    |
| 14    | 3-OHPhOH                   | 6.5 h  | 53                       | 79                    |
| 15    | $H_2O$                     | 4 d    | 29                       | 47                    |
| 16    | DMAP                       | 3.5 h  | 71                       | 3                     |
| 17    | DIPEA                      | 9 h    | 11                       | 10                    |

<sup>a</sup> Unless otherwise specified, all reactions were carried out with 2a(0.30) mmol), 3a(0.20 mmol), the catalyst 1a(0.04 mmol) and additive (0.04 mmol) in DCM (1.0 mL) at 25 °C. <sup>b</sup> Isolated yield. <sup>c</sup> Determined by HPLC with a Chiralpak-AS column.

|                   | Me<br>Ph CHO<br>2a | N<br>OEt<br>3a | cat.1a (X mol%)<br>Additive (X mol%)<br>DCM | EtO<br>HN, *<br>CHO<br>EtO<br>O<br>4a |                    |              |
|-------------------|--------------------|----------------|---------------------------------------------|---------------------------------------|--------------------|--------------|
| Entry             | Cat. Loading (X    | 2a             | Temp.                                       | Time                                  | Yield              | Ee           |
|                   | mol%)              | (equiv)        | (°C)                                        | (h)                                   | (%) <sup>[b]</sup> | $(\%)^{[c]}$ |
| 1                 | 20                 | 1.5            | 25                                          | 1                                     | 99                 | 90           |
| 2                 | 20                 | 1.5            | 0                                           | 6                                     | 91                 | 93           |
| 3                 | 20                 | 1.5            | -10                                         | 26                                    | 81                 | 92           |
| 4                 | 20                 | 1.5            | -40                                         | 98                                    | 77                 | 94           |
| 5                 | 15                 | 1.5            | 0                                           | 6.5                                   | 78                 | 93           |
| 6                 | 10                 | 1.5            | 0                                           | 21.5                                  | 88                 | 95           |
| 7                 | 5                  | 1.5            | 0                                           | 47.5                                  | 77                 | 96           |
| 8                 | 10                 | 2.0            | 0                                           | 29.5                                  | 57                 | 96           |
| 9                 | 10                 | 3.0            | 0                                           | 14.5                                  | 75                 | 92           |
| 10                | 10                 | 4.0            | 0                                           | 14.5                                  | 75                 | 93           |
| 11 <sup>[d]</sup> | 10                 | 1.5            | 0                                           | 23                                    | 96                 | 96           |
| 12 <sup>[e]</sup> | 10                 | 1.5            | 0                                           | 37.5                                  | 92                 | 94           |

| Table 5. The chect of catalyst loading, amount of <b>Za</b> and temperture. | Table 3. The effect of catal | lyst loading, amount of 2a and tem | perture. <sup>[a]</sup> |
|-----------------------------------------------------------------------------|------------------------------|------------------------------------|-------------------------|
|-----------------------------------------------------------------------------|------------------------------|------------------------------------|-------------------------|

<sup>a</sup> Unless otherwise specified, all reactions were carried out with **2a**, **3a** (0.20 mmol), the catalyst **1a** and additive in DCM (1.0 mL). <sup>b</sup> Isolated yield. <sup>c</sup> Determined by HPLC with a Chiralpak-AS column..<sup>d</sup> additive (0.02 mmol). <sup>e</sup> additive (0.04 mmol)

#### 3.0 The organocatalysts 1a-1d were synthesized as reported procedures.



#### N-((1R,2R)-2-aminocyclohexyl)-N'-(3,5-bis(trifluoromethyl)phenyl)thiourea (6).<sup>[1]</sup>

To a solution of compound **5** (1.23 g, 10.7 mmol, 1.0 eq) in  $CH_2Cl_2$  (30 mL) was added isothiocyanate (2.33 g, 8.6 mmol, 0.8 eq). The reaction mixture was stirred at 0 °C for 20 hours. After the reaction was completed (monitored by TLC), the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (eluent PE:EtOAc = 8:1 to EtOAc) to afford pure products **6** (3.5 g) as a light yellow solid in 85.7% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 8.02 (s, 1H), 7.57 (s, 1H), 6.50 (s, 1H), 3.49 (s, 1H), 2.73-2.66 (m, 1H), 2.08-1.26 (m, 4H), 1.28-1.26 (m, 4H).

(S)-N-Boc-((1R,2R)-2-(3-(3,5-Bis(trifluoromethyl)phenyl)thioureido) cyclohexyl-pyrrolidine-2-carboxamide (7).<sup>[1]</sup> The a solution of (S) Boc-proline (3.00 g, 14.1 mmol, 1.1 eq), TEA (1.41 mg, 14.3 mmol, 1.1 eq) in THF (40 mL) was stirred for 1 h at 0 °C, and ethyl chlorocarbonate (1.25 mL, 14.3 mmol, 1.1 eq) was added and stirred at 0 °C for 30 min. Then compound **6** (5.00 g, 13.0 mmol, 1.0 eq) was added, and the solution was stirred for 12 h at 0 °C. After the reaction was completed (monitored by TLC), the mixture was filtered, and the organic layer was removed under reduced pressure and the residue was purified by column chromatography on silica gel (eluent PE:EtOAc = 8:1 to EtOAc) to afford pure products 7 (6.06 g) as a white solid in 80% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 9.63 (s, 1H), 8.07 (s, 2H), 7.60-7.56 (m, 1H), 6.93-6.90 (m, 1H), 4.60 (m, 1H), 2.01-1.07 (m, 7H), 1.43-1.26 (m, 13H).

# (S)-N((1R,2R)-2-(3-(3,5-Bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)pyrrolidine-2-carb oxamide (1a).<sup>[1]</sup>

Trifluoroacetic acid (9.0 mL) was added dropwise to a solution of 7 (6.06 g, 10.4 mmol) in  $CH_2Cl_2$  (20 mL) at ambient temperature, stirred for 2 hours (monitored by TLC), then adjust the pH value to 8.0 by aqueous NaHCO<sub>3</sub>. The mixture was extracted with  $CH_2Cl_2$  (30 mLx3), and the organic layer was combined and dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent PE:tOAc = 10:1 to EtOAc) to afford 1a (4.11 g) as a white solid in 82% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  9.89 (s, 1H), 8.21 (d, J = 9.57 Hz, 1H), 8.12 (s, 2H), 7.80 (s, 1H), 7.55 (s, 1H), 4.63-4.60 (m, 1H), 3.74-3.67 (m, 2H), 3.01-2.96 (m, 2H), 1.99-1.94 (m,1H), 1.63-1.70 (m, 6H), 1.47-1.55 (m, 4H), 1.30-1.35 (m, 2H) ppm.

### $(S)-N((1S,2S)-2-(3-(3,5-Bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)pyrrolidine-2-carboxamide (1b). \label{eq:scalar}$

white solid, 64% overall yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): 9.90 (br, s, 1H), 8.21 (d, J = 9.84 Hz, 1H), 8.13 (s, 2H), 7.79 (d, J = 8.98 Hz, 1H), 7.55 (s, 1H), 4.59-4.62 (m, 1H), 3.69-3.73 (m, 2H),

2.97-3.03 (m, 2H), 2.10-2.40 (m, 1H), 1.89-2.01 (m, 6H), 1.30-1.70 (m, 6H).

**(S)-N-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-1,2-diphenylethl)pyrrolidine -2-carboxamide (1c).**<sup>[1]</sup> <sup>1</sup>H NMR (300 MHz CDCl<sub>3</sub>) δ (ppm): 10.11 (m, 1H), 8.97 (d, *J* = 9.96 Hz, 1H), 8.53 (d, *J* = 8.94 Hz,1H), 8.09 (s, 2H), 7.59 (s, 1H), 7.11-7.33 (m, 10 H), 6.44-6.47 (m, 1H), 5.41-5.48 (m, 1H), 3.67-3.71 (m, 1H), 3.12-3.15 (m, 1H), 2.98-3.03 (m, 1H), 1.60-1.96 (m, 4H), 1.60-1.63(m,1H).

### (S)-N-((1S2S)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-1,2-diphenylethl)pyrrolidine-2-carboxamide (1d).<sup>[1]</sup>

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ (ppm): 1.25-1.63 (m, 2H), 1.83-1.85 (m, 1H), 2.09-2.13 (m, 2H), 2.74-2.78 (m, 1H), 2.98-3.02 (m, 1H), 3.83-3.88 (m, 1H), 5.23-5.29(m, 1H),5.35-5.37(m, 1H), 6.53-6.55 (d, *J* = 6 Hz, 1H), 7.08-7.19 (m, 13H), 7.43 (s, 1H), 8.65-8.68 (d, *J* = 9 Hz, 1H).

#### 4.0 General procedure for branched aldehydes <sup>[2]</sup>



**General Procedure 1 for the Synthesis of 1-Methoxy-2-(3- Nitrophenyl) propene (9c):** A suspension of 1.5 equiv. of methoxymethyl(triphenyl)phosphonium chloride in abs. THF (12 mL/mmol acetophenone) is carefully treated under argon with 1.5 equiv. of a 2.5 M solution of *n*-butyllithium in hexane at -78 °C. The resulting orange to red suspension is stirred for 30 min at -78 °C, the cooling bath removed and the mixture stirred for another 30 min at room temperature. After cooling to -78 °C again 1 equiv. of the acetophenone is added as a solution in abs. THF. The reaction mixture is left stirring in the cooling bath to warm to room temperature (typically within 18 h) (monitored by TLC). The reaction is then quenched with water (5 mL/mmol acetophenone), the organic phase separated and the aqueous phase extracted twice with diethyl ether (3 mL/mmol acetophenone). The combined organic phases are washed with brine and dried with magnesium sulfate. The orgnic phases was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent: PE) to afford pure products **9**. The known products were identified by spectroscopic data (MS, <sup>1</sup>H and <sup>13</sup>C NMR) which are in good agreement with those reported.<sup>[2]</sup>

#### General Procedure 2 for the Synthesis of 2-(4'-Nitrophenyl)propionaldehyde (2c)<sup>[2]</sup>:

A solution of the 2-aryl-1-nitrophenyl propene (9c) obtained by general procedure 1 in acetone/water, 4:1 is treated at 0°C with 10 mL of 48% aqueous hydrobromic acid and stirred for 1 d. The addition of hydrobromic acid and stirring at room temperature is repeated until the TLC indicates complete consumption of the enol ether. Most of the acetone was removed by

evaporation. The residue is then neutralized by addition of saturated aqueous sodium carbonate solution, and the aqueous phase extracted three times with diethyl ether. The combined organic phases are washed with brine, dried with magnesium sulfate, and the solvent is removed by evaporation. The residue is purified by flash chromatography on silica (eluent: PE).

#### 2-(4'-Nitrophenyl)propionaldehyde (2c)<sup>[2]</sup>:

The product was synthesized according to GP 2, employing **9c** (2.70g, 13.97mmol). Flash chromatography on silica delivered 1.11g (Yield: 44%) of a yellow oil. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta = 1.49$  (d, J = 7.2 Hz, 3H), 3.79 (q, J = 7.1 Hz, 1H), 7.38 (d, J = 8.6 Hz, 2H), 8.19 (d, J = 8.7 Hz, 2H), 9.69 (d, J = 1.1 Hz, 1H) ppm.

#### 2-(4'-Bromophenyl)propionaldehyde (2d)<sup>[2]</sup>:

The product was synthesized according to GP 2, employing **9d** (2.50 g, 11.00 mmol). Flash chromatography on silica delivered 1.26 g (Yield: 55%) of a yellow oil. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta = 1.40$  (d, J = 7.1 Hz, 3H), 3.58 (q, J = 7.0 Hz, 1H), 7.06 (d, J = 8.3 Hz, 2H), 7.46 (d, J = 8.2 Hz, 2H), 9.62 (s, 1H) ppm..

#### 2-(4'-Fluorophenyl)propionaldehyde (2e)<sup>[2]</sup>:

The product was synthesized according to GP 2, employing **9e** (2.00 g, 12.03 mmol). Flash chromatography on silica delivered 0.648 g (Yield: 35%) of a colorless oil. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta$  = 1.42 (d, *J* = 7.1 Hz, 3H), 3.62 (q, *J* = 7.0 Hz, 1H), 7.02-7.19 (m, 4H), 9.65 (d, *J* = 1.1 Hz, 1H) ppm..

#### 2-(3'-Chlorophenyl)propionaldehyde (2f):

The product was synthesized according to GP 2, employing **9f** (1.80 g, 9.85 mmol). Flash chromatography on silica delivered 0.875 g (Yield: 53%) of a colorless oil. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta = 1.44$  (d, J = 7.1 Hz, 3H), 3.63 (q, J = 7.1 Hz, 1H), 7.09-7.34 (m, 4H), 9.67 (t, J = 0.7 Hz, 1H) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta = 14.29$ , 52.33, 126.33, 127.50, 128.27, 130.11, 134.66, 139.65, 199.96 ppm. HRMS (ESI-TOF) calcd for C<sub>9</sub>H<sub>9</sub>OClNa ([M+Na]<sup>+</sup>): 191.0240, found: 191.0240.

#### 2-(2'-Chlorophenyl)propionaldehyde (2g)

The product was synthesized according to GP 2, employing **9g** (1.78 g, 9.74 mmol). Flash chromatography on silica delivered 0.600 g (Yield: 37%) of a colorless oil. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta$  = 1.43 (d, *J* = 7.1 Hz, 3H), 4.13 (q, *J* = 7.0 Hz, 1H), 7.13 (dd, *J* = 2.2, 7.2 Hz, 1H), 7.23-7.28 (m, 2H), 7.43 (d, *J* = 1.1, 7.3 Hz, 1H), 9.71 (s, 1H) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 13.71, 49.52, 127.37, 128.73, 129.16, 129.94, 134.30, 136.04, 200.11 ppm. HRMS (ESI-TOF) calcd for C<sub>9</sub>H<sub>8</sub>OCl ([M-H]<sup>+</sup>): 167.0264, found: 167.0258.

#### 2-(4'-Methoxyphenyl)propionaldehyde (2h)<sup>[2]</sup>:

The product was synthesized according to GP 2, employing **9h** (1.96 g, 11.00 mmol). Flash chromatography on silica delivered 0.815 g (Yield: 45%) of a colorless oil. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta$  = 1.41 (d, *J* = 7.0 Hz, 3H), 3.79 (d, *J* = 5.4 Hz, 1H), 6.91(q, *J* = 2.1 Hz, 2H), 7.12 (q, *J* = 1.9 Hz, 2H), 9.64 (d, *J* = 1.5 Hz, 1H) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 14.61, 52.10, 55.24, 114.47, 129.30, 129.54, 158.99, 201.10 ppm.

#### 2-(4'-Methylphenyl)propionaldehyde (2i):

The product was synthesized according to GP 2, employing **9i** (1.70 g, 10.47 mmol). Flash chromatography on silica delivered 1.10 g (Yield: 71%) of a colorless oil. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta = 1.43$  (d, J = 7.0 Hz, 3H), 2.34 (d, J = 7.6 Hz, 3H), 3.60 (m, 1H), 7.11 (d, J = 8.0 Hz,

2H), 7.19 (d, J = 7.9 Hz, 2H), 9.67 (d, J = 1.4 Hz, 1H) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta = 14.59$ , 21.00, 52.59, 128.17, 129.75, 134.64, 137.22, 201.14 ppm. HRMS (ESI-TOF) calcd for C<sub>10</sub>H<sub>12</sub>ONa ([M+Na]<sup>+</sup>): 171.0786, found: 171.0781.

#### 2-(2'-Methylphenyl)propionaldehyde (2j):

The product was synthesized according to GP 2, employing **9j** (1.70 g, 10.47 mmol). Flash chromatography on silica delivered 0.90 g (Yield: 58%) of a colorless oil. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta = 1.65$  (d, J = 7.0 Hz, 3H), 2.37 (s, 3H), 3.85 (q, J = 7.0 Hz, 1H), 7.05-7.09 (m, 1H), 7.18-7.26 (m, 3H), 9.66 (d, J = 1.1 Hz, 1H) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta = 14.29$ , 19.60, 49.27, 126.04, 127.43, 127.53, 130.91, 136.35, 136.60, 201.04 ppm. HRMS (ESI-TOF) calcd for C<sub>10</sub>H<sub>12</sub>ONa ([M+Na]<sup>+</sup>): 171.0786, found: 171.0786.

#### 2-(2-naphthyl) propionaldehyde (2k)<sup>[2]</sup>:

The product was synthesized according to GP 2, employing **9k** (2.02 g, 10.18 mmol). Flash chromatography on silica delivered 1.62 g (Yield: 87%) of a white solid. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta = 1.54$  (d, J = 7.0 Hz, 3H), 3.81 (d, J = 7.0 Hz, 1H ), 7.30-7.85 (m, 7H), 9.76 (d, J = 1.3 Hz, 1H) ppm. HRMS (ESI-TOF) calcd for C<sub>13</sub>H<sub>13</sub>O ([M+H]<sup>+</sup>): 185.0966, found: 185.0959.

## 5.0 General procedure for asymmetric $\alpha$ -Amination of branched aldehydes with azodicarboxylates.

**Representative experimental procedure for the \alpha-Amination:** Typical experimental procedure for the amination of brached aldehydes with azodicarboxylates: to a stirred solution of catalyst **1a** (0.02 mmol), 2-OH-PhCOOH (0.04 mmol) and aldehydes **2** (0.3 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) cooled to 0 °C, azodicarboxylates **3** (0.2 mmol) was added at the same temperature. The reaction mixture was stirred at 0 °C for the time indicated in Table 2. After the azodicarboxylate was consumed as indicated (monitored by TLC) (the decolorization of azodicarboxylate was also observed), the reaction solution was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent PE:EtOAc =8:1) to afford pure  $\alpha$ -aminated products **4**. All products are known compounds and were identified by spectroscopic data (MS, <sup>1</sup>H and <sup>13</sup>C NMR) which are in good agreement with those reported.<sup>[2]</sup>

#### Spectroscopic data of final products 4.<sup>[2]</sup>

(-)-2-[*N*,*N*'-Bis(ethoxycarbonyl)hydrazino]-2-phenyl-propionaldehyde (4a-Et) <sup>[2]</sup>: The ee was determined by chiral HPLC analysis (AS-H, *i*-PrOH/ hexane = 20/80,  $t_r$  (major) = 15.670 min,  $t_r$  (minor) = 21.083 min). [ $\alpha$ ]<sub>D</sub><sup>20</sup> = -19.3 (*c* 0.522, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.19-1.35 (m, 6H), 1.78-1.84 (m, 3 H), 4.08-4.29 (m, 4H), 6.54, 6.68 (2s, 1H), 7.23-7.42 (m, 5H), 10.09, 10.13 (2s, 1H) ppm.

(+)-2-[*N*,*N*'-Bis(isopropanoxycarbonyl)hydrazino]-2-phenyl-propionaldehyde (4a-*i*-Pr): The ee was determined by chiral HPLC analysis (AS-H, *i*-PrOH/ hexane = 10/90,  $t_r$  (major) = 17.585 min,  $t_r$  (minor) = 20.842 min). [ $\alpha$ ]<sub>D</sub><sup>20</sup> = +49.0 (*c* 0.252, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.21-1.31 (m, 12H), 1.71-1.81 (m, 3H), 4.93-4.97 (m, 2H), 6.49 (br, s, 1H), 7.28-7.47 (m, 5H), 9.61, 9.76 (2*s*, 1H) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 18.07, 21.68, 71.38, 73,00, 127.34, 128.05,128.86, 137.08, 155.63, 156.03, 192.84, 194.18 ppm. IR (Infrared film): v = 3303, 3060, 2982, 2937, 2878, 2850, 1731, 1600, 1583, 1494, 1467, 1450, 1376, 1320, 1246, 1181, 1145, 1108, 1054, 1029, 938, 913, 873, 834, 764, 702 cm<sup>-1</sup>. HRMS (ESI-TOF) calcd for C<sub>17</sub>H<sub>25</sub>N<sub>2</sub>O<sub>5</sub> ([M+H]<sup>+</sup>): 337.1763, found: 337.1762.

(+)-2-[*N*,*N*'-Bis(ethoxycarbonyl)hydrazino]-2-(*n*-propyl)-propionaldehyde (4b-Et)<sup>[2]</sup>:

The ee could not be determined by chiral HPLC analysis or GC. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta = 0.84-0.91$  (m, 3H), 1.19-1.28 (m, 11H), 1.63-1.84 (m, 2H), 4.13-4.21 (m, 4H), 6.66 (br, s, 1H), 9.47, 9.50 (br, s, 1H) ppm.

(+)-2-[*N*,*N*'-Bis(isopropanoxycarbonyl)hydrazino]-2-(*n*-propyl)-propionaldehyde (4b-*i*-Pr): The ee could not be determined by chiral HPLC analysis or GC. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.84-0.92 (m, 3H), 1.20-1.28 (m, 17H), 1.57-1.77 (m, 2H), 4.90-4.99 (m, 2H), 6.43 (br, 1H), 9.51(br, *s*, 1H) ppm.

(+)-2-[*N*,*N*'-Bis(ethoxycarbonyl)hydrazino]-2-(4'-nitrophenyl)-propionaldehyde (4c-Et) <sup>[2]</sup>: The ee was determined by chiral HPLC analysis (AS-H, *i*-PrOH/ hexane = 20/80,  $t_r$  (major) = 19.732 min,  $t_r$  (minor) = 26.365 min).  $[\alpha]_D^{20} = +28.3$  (*c* 0.430, CHCl<sub>3</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta = 1.21$ -1.37 (m, 6H), 1.75 (s, 3H), 4.16-4.17 (m, 4H), 6.58 (s, 1H), 7.60-8.24 (m, 4H), 9.66, 9.78 (2s, 1H) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta = 14.18$ , 14.36, 19.41, 20.48, 62.79, 63.68, 72.48, 123.76, 127.65, 147.49, 155.71, 156,72, 193.02, 194.28. ppm.

(+)-2-[*N*,*N*'-Bis(isopropanoxycarbonyl)hydrazino]-2-(4'-nitrophenyl)-propionaldehyde

(4c-*i*-Pr): The ee was determined by chiral HPLC analysis (AD-H, *i*-PrOH/ hexane = 10/90,  $t_r$  (major) = 16.567 min,  $t_r$  (minor) = 15.128 min).  $[\alpha]_D^{20} = +29.0$  (*c* 0.566, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta = 1.25$ -1.27 (m, 12H), 2.51 (s, 3H), 4.89-5.03 (m, 2H), 5.41, 6.43 (2s, 1H), 7.56-7.62 (m, 2H), 8.18-8.24 (m, 2H). 9.66, 9.77 (2s, 1H) ppm. IR (Infrared film): v = 3310, 3081, 2983, 2935, 2852, 2715, 1734, 1606, 1522, 1494, 1467, 1456, 1376, 1349, 1247, 1181, 1145, 1106, 1059, 1015, 931, 907, 857, 767 cm<sup>-1</sup>. C<sub>17</sub>H<sub>24</sub>N<sub>3</sub>O<sub>7</sub> ([M+H]<sup>+</sup>): 382.1614, found: 382.1616.

(+)-2-[N,N-Bis(ethoxycarbonyl)hydrazino]-2-(4-bromophenyl)-propionaldehyde (4d-Et)<sup>[2]</sup>: The ee was determined by chiral HPLC analysis (AD-H, *i*-PrOH/ hexane = 5/95,  $t_r$  (major) = 27.393 min,  $t_r$  (minor) = 25.737 min).  $[\alpha]_D^{20}$  = +46.5 (*c* 0.550, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.34-0.905 (m, 6H), 1.67-1.73 (m, 3H), 4.23-4.13 (m, 4H), 6.38, 6.52 (2s, 1H), 7.25-7.29 (m, 1H), 7.37-7.52 (m, 3H), 10.71, 10.75 (2s, 1H) ppm. HRMS (ESI-TOF) calcd for C<sub>15</sub>H<sub>20</sub>N<sub>2</sub>O<sub>5</sub>Br ([M+H]<sup>+</sup>): 387.0556, found: 387.0545 .

### (+)-2-[N,N-Bis(isopropanoxycarbonyl)hydrazino]-2-(4-bromophenyl)-propionaldehyde (4d-*i*-Pr):

The ee was determined by chiral HPLC analysis (Whelk-01, *i*-PrOH/ hexane = 3/97,  $t_r$  (major) = 29.847 min,  $t_r$  (minor) = 27.418 min).  $[\alpha]_D^{20} = +15.0$  (*c* 0.610, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta = 1.34$ -1.19 (m, 12H), 1.73-1.33 (m, 3H), 5.02-4.90 (m, 2H), 6.34, 6.15 (2s, 1H), 7.23-7.29 (m, 2H), 7.43-7.59 (m, 2H) 9.70, 9.57 (2s, 1H) ppm. IR (Infrared smear): v = 3303, 2982, 2936, 2877, 1715, 1588, 1488, 1455, 1375, 1320, 1244, 1181, 1107, 1033, 1009, 913, 824, 766 cm<sup>-1</sup>. HRMS (ESI-TOF) calcd for C<sub>17</sub>H<sub>24</sub>N<sub>2</sub>O<sub>5</sub>Br ([M+H]<sup>+</sup>): 415.0869, found: 415.0880.

(+)-2-[N,N-Bis(ethoxycarbonyl)hydrazino]-2-(4-fluorophenyl)-propionaldehyde (4e-Et) <sup>[2]</sup>: The ee was determined by chiral HPLC analysis (AS-H, *i*-PrOH/ hexane = 20/80,  $t_r$  (major) = 12.798 min,  $t_r$  (minor) =15.532 min).  $[\alpha]_D^{20}$  = +47.4 (*c* 0.540, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.29-1.20 (m, 6H), 1.76-1.69 (m, 3H), 4.25-4.13 (m, 4H), 6.45 (br, s, 1H), 7.04-7.16 (m, 2H), 7.34-7.54 (m, 2H), 9.72, 966 (2s, 1H) ppm.

(+)-2-[N,N-Bis(isopropanoxycarbonyl)hydrazino]-2-(4-fluorophenyl)-propionaldehyde

(4e-*i*-Pr): The ee was determined by chiral HPLC analysis (Whelk-01, *i*-PrOH/ hexane = 3/97,  $t_r$  (major) = 25.988 min,  $t_r$  (minor) =24.338 min.  $[\alpha]_D^{20}$  = +35.7 (*c* 0.400, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.24-1.18 (m, 12H), 1.75-1.63 (m, 3H), 4.94-4.90 (m, 2H), 6.33 (br, s, 1H), 7.04-7.09 (m, 2H), 7.37-7.55 (m, 2H), 9.71, 9.58 (2s, 1H) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  =

18.11, 18.55, 21.80, 21.92, 70.38, 71.59, 72.39, 115.46, 128.67, 133.21, 155.51, 156.12, 160.81, 164.10, 192.84, 193.74. IR (Infrared smear): v = 3308, 3072, 2983, 2938, 2880, 1727, 1599, 1509, 1467, 1456, 1376, 1321, 1265, 1236, 1181, 1056, 931, 912, 839, 766 cm<sup>-1</sup>. HRMS (ESI-TOF) calcd for C<sub>17</sub>H<sub>24</sub>FN<sub>2</sub>O<sub>5</sub> ([M+H]<sup>+</sup>): 355.1669, found: 355.1677.

(+)-2-[N,N-Bis(enthoxycarbonyl)hydrazino]-2-(3-chlorophenyl)-propionaldehyde (4f-Et): The ee was determined by chiral HPLC analysis (AS, *i*-PrOH/ hexane = 20/80,  $t_r$  (major) = 12.898 min,  $t_r$  (minor) = 19.432 min). [ $\alpha$ ]<sub>D</sub><sup>20</sup> = +34.0 (*c* 0.270, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.35-1.20 (m, 6H), 1.74-1.69 (m, 3H), 4.25-4.17 (m, 4H), 6.53 (br, 1H), 7.39-7.22 (m, 4H), 9.72, 9.66 (br, 2s, 1H) ppm. IR (Infrared smear): v = 3245, 3040, 2989, 2917, 2852, 2768, 1751, 1697, 1532, 1481, 1448, 1367, 1248, 1112, 1068, 1020 (w), 900, 795, 783, 760 cm.<sup>-1</sup>. HRMS (ESI-TOF) calcd for C<sub>15</sub>H<sub>20</sub>N<sub>2</sub>O<sub>5</sub>Cl ([M+H]<sup>+</sup>): 343.1061, found: 343.1067.

(+)-2-[N,N-Bis(isopropanoxycarbonyl)hydrazino]-2-(3-chlorophenyl)-propionaldehyde

(4f-*i*-Pr): The ee was determined by chiral HPLC analysis (Whelk-01, *i*-PrOH/ hexane = 3/97,  $t_r$  (major) = 25.855 min,  $t_r$  (minor) = 23.823 min). [ $\alpha$ ]<sub>D</sub><sup>20</sup> = +40.8 (*c* 0.660, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.24-1.90 (m, 12H), 1.73-1.61 (m, 3H), 4.95-4.93 (m, 2H), 6.37 (br, s, 1H), 7.35-7.30 (m, 4H), 9.72, 9.55 (2s, 1H) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 18.42, 21.07, 21.71, 21.80, 21.92, 70.89, 71.70, 72.51, 125.03, 126.96, 128.24, 129.30, 134.85, 139.70, 155.47, 156.31, 192.76, 193,89. IR (Infrared smear): v = 3307, 3068, 2983, 2937, 2879, 1732, 1595, 1572, 1498, 1468, 1376, 1321, 1250, 1181, 1145, 1056, 999, 932, 834, 788 cm<sup>-1</sup>. HRMS (ESI-TOF) calcd for C<sub>17</sub>H<sub>24</sub>N<sub>2</sub>O<sub>5</sub>Cl ([M+H]<sup>+</sup>): 371.1374, found: 371.1369.

(-)-2-[N,N-Bis(isopropanoxycarbonyl)hydrazino]-2-(2-chlorophenyl)-propionaldehyde

(4g-*i*-Pr): The ee was determined by chiral HPLC analysis (AD-H, *i*-PrOH/ hexane = 5/95,  $t_r$  (major) = 16.989 min,  $t_r$  (minor) = 15.482 min).  $[\alpha]_D^{20}$  = -13.0 (c 0.306, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.17-1.35 (m, 12H), 1.77-1.83 (m, 3H), 4.88-4.97 (m, 2H), 6.57, 6.40 (2s, 1H), 7.22-7.43 (m, 4H), 10.12, 10.08 (2s, 1H) ppm. HRMS (ESI-TOF) calcd for C<sub>17</sub>H<sub>24</sub>N<sub>2</sub>O<sub>5</sub>Cl ([M+H]<sup>+</sup>): 371.1374, found: 371.1379.

### (+)-2-[N,N-Bis(enthoxycarbonyl)hydrazino]-2-(4-methoxyphenyl)-propionaldehyde (4h-Et)

The ee was determined by chiral HPLC analysis (AD-H, *i*-PrOH/ hexane = 5/95,  $t_r$  (major) = 16.898 min,  $t_r$  (minor) = 15.482 min).  $[\alpha]_D^{20} = +61.8$  (*c* 0.390, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta = 1.28-1.21$  (m, 6H), 1.77-1.71 (m, 3H), 3.79 (s, 3H), 4.20-4.12 (m, 4H), 6.45 (br, s, 1H), 6.91 (d, J = 8.5 Hz, 2H), 7.28-7.46 (m, 2H), 9.69, 9.54 (2s, 1H).

**2-[N,N-Bis(isopropanoxycarbonyl)hydrazino]-2-(4-methylphenyl)-propionaldehyde (4i-***i***-pr): The ee was determined by chiral HPLC analysis (AD-H,** *i***-PrOH/ hexane = 5/95, t\_r (major) = 19.565 min, t\_r (minor) = 21.498 min). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): \delta = 1.23-1.19 (m, 12H), 1.76-1.66 (m, 3H), 2.32 (s, 3H), 4.95-4.91 (m, 2H), 6.41 (br, 1H), 7.40-7.18 (m, 4H), 9.69, 9.55 (2s, 1H) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): \delta = 20.92, 21.53, 21.70, 21.77, 21.86, 70.07, 70.69, 70.55, 72.91, 127.36, 128.86, 133.89, 137.92, 155.67, 156.02, 192.71, 193.86 ppm. HRMS (ESI-TOF) calcd for C<sub>18</sub>H<sub>27</sub>N<sub>2</sub>O<sub>6</sub> ([M+H]<sup>+</sup>): 367.1869, found: 367.1877.** 

#### (+)-2-[N,N-Bis(enthoxycarbonyl)hydrazino]-2-(2-naphthyl)-propionaldehyde (4k-Et)<sup>[2]</sup>:

The ee was determined by chiral HPLC analysis (OD-H, *i*-PrOH/ hexane = 10/90,  $t_r$  (major) = 11.440 min,  $t_r$  (minor) = 14.332 min).  $[\alpha]_D^{20} = +28.9$  (*c* 0.470, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta = 1.39-1.21$  (m, 6H), 1.92-1.85 (m, 3H), 4.20-4.13 (m, 4H), 6.51 (br, s, 1H), 7.50-7.44

(m, 3H), 7.95-7.82(m, 4H), 9.87, 9.70 (2s, 1H) ppm. IR (Infrared smear): v = 3300, 3057, 2983, 2933, 2852, 2768, 1731, 1627, 1598, 1508, 1444, 1377, 1240, 1130, 1064, 1017, 925, 861, 821, 751. HRMS (ESI-TOF) calcd for C<sub>19</sub>H<sub>23</sub>N<sub>2</sub>O<sub>5</sub> ([M+H]<sup>+</sup>): 359.1607, found: 369.1599.

(+)-2-[N,N-Bis(isopropanoxycarbonyl)hydrazino]-2-(2-naphthyl)-propionaldehyde (4k-*i*-pr): The ee was determined by chiral HPLC analysis (AD-H, *i*-PrOH/ hexane = 10/90,  $t_r$  (major) = 12.782 min,  $t_r$  (minor) = 16.782 min). [ $\alpha$ ]<sub>D</sub><sup>20</sup> = +38.0 (*c* 0.24, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.40-1.25 (m, 12H), 2.23 (s, 3H), 4.97-4.93 (m, 2H), 6.27 (br, s, 1H), 7.55-7.50 (m, 3H), 7.98-7.82(m, 4H), 9.86, 9.70 (2s, 1H) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 17.63, 21.74, 21.92, 47.15, 70.25, 71.56, 73.27, 124.33, 126.30, 126.49, 126.64, 127.52, 128.24, 128.71, 132.80, 133.30, 155.47, 156.31, 192.73. IR (Infrared smear): v = 3303, 3057, 2982, 2934, 2875, 2853, 1731, 1628, 1600, 1506, 1467, 1375, 1320, 1243, 1181, 1145, 1106, 1078, 1030, 940, 911, 819, 750 cm<sup>-1</sup>. HRMS (ESI-TOF) calcd for C<sub>21</sub>H<sub>27</sub>N<sub>2</sub>O<sub>5</sub> ([M+H]<sup>+</sup>): 387.1920, found: 387.1923.

#### 6.0 Selected <sup>1</sup>H NMR and <sup>13</sup>C NMR of the the catalysts and amination adducts



Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2010

















Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2010





4i-*i*-Pr





| Peak | Ret Time [min] | Height   | Area       | Aear    |
|------|----------------|----------|------------|---------|
|      |                | [mV*sec] | [mV]       | [%]     |
| 1    | 19.690         | 5993.741 | 465066.438 | 51.1464 |
| 2    | 23.248         | 5764.809 | 444217.906 | 48.8536 |



| Peak | Ret Time [min] | Height     | Area         | Aear    |
|------|----------------|------------|--------------|---------|
|      |                | [mV*sec]   | [mV]         | [%]     |
| 1    | 17.585         | 210575.953 | 12881603.000 | 98.2505 |
| 2    | 20.842         | 4020.373   | 231330.031   | 1.7495  |



| l ime (min) |                       |           |             |         |  |  |  |
|-------------|-----------------------|-----------|-------------|---------|--|--|--|
| Peak        | Peak Ret Time [min] H |           | Area        | Aear    |  |  |  |
|             |                       | [mV*sec]  | [mV]        | [%]     |  |  |  |
| 1           | 19.565                | 91461.797 | 5834918.000 | 50.4062 |  |  |  |
| 2           | 25.898                | 71058.102 | 5740871.500 | 49.5938 |  |  |  |



| I Cak |        | rieigin    | Alca         | Acai    |  |
|-------|--------|------------|--------------|---------|--|
|       |        | [mV*sec]   | [mV]         | [%]     |  |
| 1     | 19.732 | 245664.156 | 17194096.000 | 90.5585 |  |
| 2     | 26.365 | 20696.715  | 1792633.500  | 9.4415  |  |





| Peak | Ret Time | Height     | Area        | Aear    |
|------|----------|------------|-------------|---------|
| _    | [min]    | [mV*sec]   | [mV]        | [%]     |
| 1    | 15.138   | 22618.656  | 646693.000  | 9.9716  |
| 2    | 16.567   | 186866.031 | 5838664.000 | 90.0284 |



| 16 | 18  | 20   | 22 | 24 | 26 | 28 |
|----|-----|------|----|----|----|----|
| Т  | ïme | (min | )  |    |    |    |

30 32 34 36 38

40

| Peak | Ret Time | Height     | Area         | Aear    |
|------|----------|------------|--------------|---------|
|      | [min]    | [mV*sec]   | [mV]         | [%]     |
| 1    | 25.737   | 44878.973  | 1718290.875  | 3.4939  |
| 2    | 27.363   | 994909.375 | 47461632.000 | 96.5061 |

õ

2 4

6 8 10 12 14







| Peak | Ret Time | Height     | Area         | Aear    |
|------|----------|------------|--------------|---------|
| _    | [min]    | [mV*sec]   | [mV]         | [%]     |
| 1    | 12.798   | 599564.688 | 23999914.000 | 97.0500 |
| 2    | 15.532   | 16281.000  | 729505.313   | 2.9499  |





| Peak | Ret Time | Height    | Area        | Aear    |
|------|----------|-----------|-------------|---------|
|      | [min]    | [mV*sec]  | [mV]        | [%]     |
| 1    | 24.338   | 3556.925  | 122013.000  | 2.0650  |
| 2    | 25.988   | 92150.953 | 5786511.500 | 97.9350 |





| Peak | Ret Time | Height     | Area         | Aear    |
|------|----------|------------|--------------|---------|
|      | [min]    | [mV*sec]   | [mV]         | [%]     |
| 1    | 12.898   | 626101.813 | 24819724.000 | 96.7187 |
| 2    | 19.432   | 14787.179  | 842047.625   | 3.2813  |

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2010



| Peak | Ret Time | Height     | Area         | Aear    |
|------|----------|------------|--------------|---------|
|      | [min]    | [mV*sec]   | [mV]         | [%]     |
| 1    | 33.040   | 123767.141 | 10390154.000 | 50.2115 |
| 2    | 38.415   | 96217.289  | 10302613.000 | 49.7885 |



| Time ( | (min) |
|--------|-------|
|--------|-------|

| Peak | Ret Time | Height    | Area        | Aear    |   |
|------|----------|-----------|-------------|---------|---|
|      | [min]    | [mV*sec]  | [mV]        | [%]     |   |
| 1    | 34.823   | 4702.979  | 376982.875  | 3.6689  |   |
| 2    | 38.840   | 87777.141 | 9898182.000 | 96.3311 |   |
|      |          |           |             |         | _ |



| Peak | Ret Time | Height    | Area        | Aear    |
|------|----------|-----------|-------------|---------|
|      | [min]    | [mV*sec]  | [mV]        | [%]     |
| 1    | 19.698   | 28959.748 | 1137386.375 | 51.7902 |
| 2    | 21.530   | 27395.191 | 1058753.500 | 48.2097 |





| Peak | Ret Time | Height     | Area         | Aear    |
|------|----------|------------|--------------|---------|
|      | [min]    | [mV*sec]   | [mV]         | [%]     |
| 1    | 11.440   | 661414.188 | 19433784.000 | 95.1613 |
| 2    | 14.332   | 25453.750  | 988151.000   | 4.8387  |
|      |          |            |              |         |



#### **Reference:**

[1] (a) Q.-W., Wang, L. Peng, J.-Y. Fu, Q.-C. Huang, L.-X. Wang and X.-Y. Xu, *ARKIVOC*(*ii*), 2010, 340-351; (b) J.-F. Bai, X.-Y. Xu, Q.-C. Huang, L. Peng and L.-X. Wang, *Tetrahedron Lett.* 2010, **51**, 2803-2805.

[2] T. Baumann, H. Vogt and S. Bräse, Eur. J. Org. Chem. 2007, 266-282.