Electronic Supplementary Information (ESI)

Synthesis of the core ring system of the stemona alkaloids by cascade condensation, cyclization, intramolecular cycloaddition

Adam. J. M. Burrell,^{*a*} Luke Watson,^{*a*} Nathaniel G. Martin,^{*b*} Niall Oram^{*c*} and Iain Coldham*^{*a*} i.coldham@sheffield.ac.uk

Contents

		U
1.	General experimental	S-2
2.	Procedures and spectroscopic data for the cyclization-	S-3
	cycloaddition cascade using aldehydes 7, 11 and 16	
3.	ORTEP diagram and CIF data for the <i>p</i> -bromobenzoate	S-7
	obtained from 9	
4.	ORTEP diagram and CIF data for the sulfone 12	S-17

Page

1. General experimental

All reagents were obtained from commercial suppliers and were used without further purification unless otherwise specified. Solvents were purified using a Grubbs dry solvent system (model SPS-200-6). Thin layer chromatography was performed on silica plates and visualised by UV irradiation at 254 nm or by staining with an alkaline KMnO₄ dip. Column chromatography was performed using silica gel (40–63 micron mesh). Infrared spectra were recorded on Perkin Elmer Spectrum RX Fourier Transform IR System. Only selected peaks are reported and absorption maxima are given in cm⁻¹. ¹H NMR spectra were recorded on a Bruker AC400 (400 MHz) instrument. Chemical shifts are reported in ppm with respect to the residual solvent peaks, with multiplicities given as s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constants, *J*, are quoted to the nearest 0.5 Hz. ¹³C NMR were recorded on the above instrument at 100 MHz; ¹H–¹H and ¹H–¹³C correlation spectra were run to confirm the assignment of peaks. Low and high resolution (accurate mass) mass spectra were recorded on a Walters LCT instrument for Electro–Spray (ES).

2. Procedures and spectroscopic data for the cyclization-cycloaddition cascade using aldehydes 7, 11 and 16

Using aldehyde 7 (to give cycloadducts 9 and 10):

The aldehyde 7 (515 mg, 1.6 mmol) (prepared as shown in Scheme 2), glycine ethyl ester hydrochloride (338 mg, 2.4 mmol) and *N*,*N*-diisopropylethylamine (0.84 mL, 4.8 mmol) in PhMe (15 mL) were heated under reflux. After 36 h, the mixture was allowed to cool to room temperature and the solvent was evaporated. Purification by column chromatography, eluting with petrol–EtOAc (97:3 to 4:1), gave the cycloadduct **9** (124 mg, 28%) as an oil and the cycloadduct **10** (103 mg, 23%) as an oil.

Data for **9**; $R_f 0.36$ [petrol–EtOAc (19:1)]; v_{max}/cm^{-1} 2930, 2860, 1730, 1450; ¹H NMR (500 MHz, CDCl₃) $\delta = 4.12$ (2H, q, *J* 7 Hz, 2 × CH^N), 3.90 (1H, dd, *J* 8, 6 Hz, CH^D), 2.76–2.66 (3H, m, CH^A and 2 × CH^E), 2.34–2.27 (1H, m, CH^B), 1.87 (1H, ddd, *J* 12.5, 7, 6 Hz, CH^C), 1.72 (1H, ddd, *J* 12.5, 8, 3.5 Hz, CH^C), 1.66–1.27 (12H, m, 2 × CH^F, 2 × CH^G, 2 × CH^H, 2 × CH^J, CH^K, 2 × CH^L and CH^M), 1.25 (3H, t, *J* 7 Hz, OCH₂CH₃), 1.23–1.15 (1H, m, CH^M), 1.13–1.07 (1H, m, CH^K), 0.77 (3H, t, *J* 7.5 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) $\delta = 175.2$ (C=O), 70.9 (CH^A), 66.1 (CH^D), 60.0 (CH₂^N), 50.0 (CH₂^E), 38.0 (C), 36.1 (CH^B), 35.0 (CH₂^C), 34.5 (CH₂), 30.4 (CH₂^M), 28.9 (CH₂^F), 27.7 (CH₂^L), 27.2 (CH₂^K), 20.8 (CH₂), 19.7 (CH₂), 14.4 (CH₃), 7.5 (CH₃); HRMS (ES) Found: MH⁺, 280.2273. C₁₇H₃₀NO₂ requires MH⁺, 280.2277; LRMS *m/z* (ES) 280 (100%, MH⁺).

Data for **10**; $R_f 0.36$ [petrol–EtOAc (5:1)]; v_{max}/cm^{-1} 2930, 2860, 1735, 1445; ¹H NMR (500 MHz, CDCl₃) $\delta = 4.13$ (2H, q, *J* 7 Hz, 2 x CH^G), 3.54 (1H, dd, *J* 10, 7 Hz,

CH^D), 3.06 (1H, dd, *J* 15, 10 Hz, CH^E), 2.89 (1H, dd, *J* 15, 6 Hz, CH^E), 2.60 (1H, d, *J* 11 Hz, CH^A), 2.19–2.13 (1H, m, CH^C), 1.94–1.73 (4H, m, CH^B, CH^H and 2 × CH), 1.65–1.59 (1H, m, CH), 1.55–1.30 (9H, m, CH^C, 2 × CH^F, CH^H and 5 × CH), 1.23 (3H, t, *J* 7 Hz, OCH₂CH₃), 1.15–1.08 (1H, m, CH), 0.95 (1H, qd, *J* 12.0, 4.5 Hz, CH), 0.84 (3H, t, *J* 7.5 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ = 175.7 (C=O), 73.9 (CH^A), 65.5 (CH^D), 60.3 (CH₂^G), 52.9 (CH₂^E), 40.6 (C), 40.1 (CH^B), 38.3 (CH₂), 35.7 (CH₂^C), 31.7 (CH₂), 31.3 (CH₂), 30.5 (CH₂), 27.8 (CH₂), 25.1 (CH₂), 21.4 (CH₂), 14.2 (CH₃), 7.0 (CH₃); HRMS (ES) Found: MH⁺, 280.2280. C₁₇H₃₀NO₂ requires MH⁺, 280.2277; LRMS *m/z* (ES) 280 (100%, MH⁺).

Using aldehyde 11 (to give cycloadducts 12 and 13):

The aldehyde **11** (400 mg, 0.87 mmol) (prepared as shown in Scheme 4) and glycine (260 mg, 3.46 mmol) in xylenes (9 mL) were heated under reflux. After 5 h, further glycine (260 mg, 3.46 mmol) was added and the mixture heated under reflux. After 18 h, the mixture was allowed to cool to room temperature, filtered. washed with CH_2Cl_2 (20 mL) and evaporated. Purification by column chromatography, eluting with CH_2Cl_2 –MeOH–NH₃ (99:1:0.1 to 95:5:0.1), gave the amine **12** (145 mg, 48%) as a solid, which recrystallised from CH_2Cl_2 –petrol as needles, and the amine **13** (54 mg, 18%) as an oil, which solidified on standing to give a gum.

Data for **12**; m.p. 144–146 °C; R_f 0.34 [CH₂Cl₂–MeOH–NH₃ (97:3:0.1)]; v_{max}/cm^{-1} 2930, 2860, 2815, 1465, 1445, 1300, 1140; ¹H NMR (500 MHz, CDCl₃) $\delta = 7.90-7.87$ (2H, m, ArH), 7.64 (1H, tt, *J* 7.5, 1.5 Hz, ArH), 7.58–7.53 (2H, m, ArH), 3.48 (1H, dd, *J* 12, 8 Hz, CH^D), 3.08 (1H, ddd, *J* 8, 5, 1 Hz, CH^C), 2.90 (1H, dd, *J* 12, 5 Hz, CH^D), 2.89–2.84 (1H, m, CH^E), 2.71–2.65 (1H, m, CH^B), 2.58–2.51 (1H, m,

CH^E), 2.38 (1H, d, *J* 5.5 Hz, CH^A), 1.62–1.49 (4H, 2 × CH^F and 2 × CH), 1.48–1.31 (5H, m, CH^G, CH^H and 3 × CH), 1.30–1.13 (5H, m, CH^G, CH^H and 3 × CH), 0.75 (3H, t, *J* 7.5 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ = 138.5 (ArC), 133.6 (ArCH), 129.3 (ArCH), 128.5 (ArCH), 74.0 (CH^A), 68.4 (CH^C), 57.2 (CH₂^E), 56.1 (CH₂^D), 39.4 (CH^B), 37.4 (C), 35.6 (CH₂), 30.2 (CH₂), 29.6, 29.4, 29.2 (3 × CH₂), 20.3 (CH₂), 20.0 (CH₂), 7.3 (CH₃); HRMS (ES) Found: MH⁺, 348.1982. C₂₀H₃₀NO₂S requires MH⁺, 348.1997; LRMS *m*/*z* (ES) 348 (100%, MH⁺); Anal. Calcd. for C₂₀H₂₉NO₂S: C, 69.12; H, 8.41; N, 4.03; S, 9.23. Found: C, 69.06; H, 8.47; N, 3.76; S, 9.25 %.

Data for **13**; R_f0.34 [CH₂Cl₂–MeOH–NH₃ (95:5:0.1)]; v_{max} /cm⁻¹ 2930, 2860, 1445, 1305, 1145; ¹H NMR (500 MHz, CDCl₃) δ = 7.84–7.81 (2H, m, ArH), 7.64–7.60 (1H, m, ArH), 7.57–7.52 (2H, m, ArH), 3.25 (1H, dd, *J* 13, 9.5 Hz, CH^D), 3.18–3.10 (2H, m, CH^C and CH^D), 2.86 (1H, ddd, *J* 13.5, 9, 1 Hz, CH^E), 2.53 (1H, ddd, *J* 13.5, 7.5, 1 Hz, CH^E), 2.43–2.34 (1H, m, CH^B), 2.22 (1H, d, *J* 11.5 Hz, CH^A), 1.93–1.77 (2H, m, CH^G and CH), 1.77–1.61 (2H, m, 2 × CH^F), 1.60–1.20 (8H, m, CH^G and 7 × CH), 1.00 (1H, td, *J* 13, 4 Hz, CH), 0.88 (1H, t, *J* 7 Hz, CH), 0.81 (3H, t, *J* 7.5 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ = 139.2 (ArC), 133.6 (ArCH), 129.3 (ArCH), 128.2 (ArCH), 76.8 (CH^A), 68.4 (CH^C), 55.8 (CH₂^D), 52.7 (CH₂^E), 39.6 (C), 37.9 (CH^B), 37.4 (CH₂), 31.5 (CH₂^G), 30.2 (CH₂), 28.4 (CH₂), 27.3 (CH₂^F), 22.3 (CH₂), 20.7 (CH₂), 7.4 (CH₃); HRMS (ES) Found: MH⁺, 348.2002. C₂₀H₃₀NO₂S requires MH⁺, 348.1997; LRMS *m/z* (ES) 348 (100%, MH⁺).

Using aldehyde 16 (to give cycloadduct 17):

The aldehyde **16** (300 mg, 0.79 mmol) (prepared as shown in Scheme 5), glycine ethyl ester hydrochloride (160 mg, 1.18 mmol), N,N-diisopropylethylamine (0.41 mL, 2.37 mmol) and camphor sulfonic acid (1 mg, 0.04 mmol) in xylenes (10 mL) were

heated under reflux. After 16 h, the mixture was allowed to cool to room temperature and the solvent was evaporated. Purification by column chromatography, eluting with petrol–EtOAc (19:1–9:1), gave the cycloadduct **17** (116 mg, 49%) as an oil; v_{max}/cm^{-1} 2930, 1725, 1460; ¹H NMR (500 MHz, CDCl₃) δ = 4.11 (2H, q, *J* 7 Hz, OCH₂), 3.99–3.91 (4H, m, 2 × CH₂), 3.90–3.86 (1H, m, CH), 2.92 (1H, d, *J* 6 Hz, CH), 2.84–2.78 (1H, m, CH), 2.67–2.60 (2H, m, 2 × CH), 2.10–2.03 (1H, m, CH), 1.83–1.74 (1H, m, CH), 1.73–1.32 (11H, m, 5 × CH₂, CH), 1.24 (3H, t, *J* 7 Hz, CH₃), 1.16 (1H, m, CH), 0.77 (3H, t, *J* 7.5 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ = 175.2, 109.7, 72.1, 66.9, 65.1, 63.6, 60.0, 50.8, 44.3, 37.8, 33.8, 29.7, 29.5, 29.5, 28.5, 25.8, 20.4, 14.3, 7.5; HRMS (ES) Found: MH⁺, 338.2331. C₁₉H₃₂NO₄ requires MH⁺, 338.2341. LRMS *m/z* (ES) 338 (MH⁺, 100%).

3. ORTEP diagram and CIF data for the *p*-bromobenzoate obtained from 9

Compound **9** was converted to 4-bromobenzoic acid (2SR,7aSR,10aRS,10bSR)-7aethyldodecahydroazepino[3,2,1-*hi*]indol-2-ylmethyl ester hydrochloride salt using LiAlH₄ (2 equiv.) in THF; the crude alcohol was treated with 4-bromobenzoyl chloride (2 equiv.) and Et₃N (3 equiv.) in CH₂Cl₂ and the ester, after purification by column chromatography, was treated with HCl (1 M solution in Et₂O).

This HCl salt was recrystallised from CH₂Cl₂–Et₂O–petrol as cubes; m.p. 243 °C (dec); v_{max}/cm^{-1} 2925, 2865, 2475, 1725, 1265; ¹H NMR (250 MHz, CDCl₃, 9:1 mixture of diastereomeric ammonium salts) δ = 12.27 (0.1H, br s, NH), 11.80 (0.9H, br s, NH), 7.99 (2H, d, *J* 8.5 Hz, ArH), 7.59 (2H, d, *J* 8.5 Hz, ArH), 5.30–5.19 (0.1H, m, CH), 4.89–4.70 (0.9H, m, CH), 4.69–4.51 (1H, m, CH), 4.11–4.03 (0.1H, m, CH), 3.80–3.63 (0.9H, m, CH), 3.59–3.41 (0.1H, m, CH), 3.09–2.97 (0.9H, m, CH), 2.87–2.20 (3H, m, 3 × CH), 2.09–1.10 (16H, m, 16 × CH), 0.78 (3H, t, *J* 7.0 Hz, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃, only peaks of major diastereomeric HCl observed) δ = 165.2 (C=O), 132.2 (ArCH), 131.6 (ArCH), 129.0 (ArC), 127.8 (ArC), 80.1 (CH), 64.1 (CH), 61.8 (CH₂), 55.3 (CH₂), 37.3 (CH₂), 34.9 (CH₂), 34.8 (CH), 34.3 (C), 33.2 (CH₂), 29.9 (CH₂), 27.5 (CH₂), 27.1 (CH₂), 20.2 (CH₂), 19.1 (CH₂), 7.2 (CH₃); HRMS (ES) Found: M⁺–Cl (⁸¹Br)), 420 (100, M⁺–Cl (⁷⁹Br)); Anal. Calcd for C₂₂H₃₁BrClNO₂: C, 57.84; H, 6.84; N, 3.07; Br, 17.49; Cl, 7.76. Found: C, 57.66; H, 6.86; N, 2.94; Br, 17.70; Cl, 7.90.

Results are deposited at the Cambridge Crystallographic Data Centre.

Structure Number CCDC-782368.

Table 1. Crystal data and subcture termen	ment for this field sait (reference hut			
entification code oic66_0m				
Empirical formula	C22 H31 Br Cl N O2	C22 H31 Br Cl N O2		
Formula weight	456.84			
Temperature	296(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	$P2_1/n$			
Unit cell dimensions	a = 7.8562(4) Å	α= 90°.		
	b = 11.9575(6) Å	β= 95.316(3)°.		
	c = 23.0397(11) Å	$\gamma = 90^{\circ}$.		
Volume 2155.05(19) Å ³				
Z	4			
Density (calculated)	$1.408 Mg/m^3$			
Absorption coefficient	2.048 mm ⁻¹			
F(000)	952			
Crystal size	0.32 x 0.21 x 0.21 mm ³	i		
Theta range for data collection	nge for data collection 1.78 to 29.85°.			
Index ranges	-10<=h<=10, -16<=k<=	-10<=h<=10, -16<=k<=16, -32<=l<=32		
Reflections collected 63019				

Table 1. Crystal data and structure refinement for this HCl salt (reference number oic66_0m).

Independent reflections	6158 [R(int) = 0.0281]
Completeness to theta = 29.85°	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6730 and 0.5602
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6158 / 0 / 245
Goodness-of-fit on F ²	1.030
Final R indices [I>2sigma(I)]	R1 = 0.0433, wR2 = 0.1096
R indices (all data)	R1 = 0.0754, wR2 = 0.1262
Largest diff. peak and hole	0.827 and -0.806 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for oic66_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
Br(1)	2331(1)	2930(1)	10482(1)	86(1)
Cl(1)	4896(1)	5899(1)	2266(1)	56(1)
O(1)	3640(2)	6696(1)	8393(1)	47(1)
O(2)	2775(4)	7940(2)	9025(1)	84(1)
N(1)	5958(2)	6488(1)	7389(1)	32(1)
C(1)	4178(3)	7021(2)	7411(1)	38(1)
C(2)	4010(3)	7820(2)	6897(1)	49(1)
C(3)	4896(3)	7206(2)	6435(1)	47(1)
C(4)	3789(3)	6282(3)	6138(1)	62(1)
C(5)	4813(4)	5478(3)	5797(1)	69(1)
C(6)	6240(3)	4980(2)	6206(1)	57(1)
C(7)	7499(3)	5853(2)	6490(1)	41(1)
C(8)	8804(3)	5246(2)	6918(1)	50(1)
C(9)	9785(3)	5935(2)	7394(1)	50(1)
C(10)	8830(3)	6088(2)	7932(1)	53(1)
C(11)	7261(3)	6836(2)	7874(1)	43(1)
C(12)	6528(3)	6777(2)	6786(1)	36(1)
C(13)	3799(3)	7569(2)	7971(1)	47(1)
C(14)	3093(3)	6995(2)	8905(1)	50(1)
C(15)	2939(3)	6005(2)	9285(1)	48(1)
C(16)	3447(4)	4953(2)	9123(1)	56(1)

C(17)	3285(4)	4046(2)	9485(1)	61(1)
C(18)	2609(4)	4196(2)	10006(1)	59(1)
C(19)	2120(4)	5241(3)	10182(1)	74(1)
C(20)	2288(4)	6146(3)	9821(1)	65(1)
C(21)	8471(3)	6478(2)	6029(1)	53(1)
C(22)	9226(4)	5753(3)	5572(1)	72(1)

Table 3. Bond lengths [Å] and angles $[\circ]$ for oic66_0m.

Br(1)-C(18)	1.894(3)
O(1)-C(14)	1.340(3)
O(1)-C(13)	1.440(3)
O(2)-C(14)	1.196(3)
N(1)-C(11)	1.503(3)
N(1)-C(12)	1.537(3)
N(1)-C(1)	1.542(2)
N(1)-H(1A)	0.9100
C(1)-C(13)	1.501(3)
C(1)-C(2)	1.519(3)
C(1)-H(1)	0.9800
C(2)-C(3)	1.515(3)
C(2)-H(2A)	0.9700
C(2)-H(2B)	0.9700
C(3)-C(4)	1.528(4)
C(3)-C(12)	1.540(3)
C(3)-H(3)	0.9800
C(4)-C(5)	1.518(4)
C(4)-H(4A)	0.9700
C(4)-H(4B)	0.9700
C(5)-C(6)	1.517(4)
C(5)-H(5A)	0.9700
C(5)-H(5B)	0.9700
C(6)-C(7)	1.541(3)
C(6)-H(6A)	0.9700
C(6)-H(6B)	0.9700
C(7)-C(8)	1.538(3)
C(7)-C(12)	1.538(3)

C(7)-C(21)	1.555(3)
C(8)-C(9)	1.523(4)
C(8)-H(8A)	0.9700
C(8)-H(8B)	0.9700
C(9)-C(10)	1.518(4)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(10)-C(11)	1.519(3)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700
C(12)-H(12)	0.9800
C(13)-H(13A)	0.9700
C(13)-H(13B)	0.9700
C(14)-C(15)	1.484(4)
C(15)-C(16)	1.382(3)
C(15)-C(20)	1.390(4)
C(16)-C(17)	1.381(4)
C(16)-H(16)	0.9300
C(17)-C(18)	1.370(4)
C(17)-H(17)	0.9300
C(18)-C(19)	1.380(4)
C(19)-C(20)	1.379(4)
C(19)-H(19)	0.9300
C(20)-H(20)	0.9300
C(21)-C(22)	1.527(3)
C(21)-H(21A)	0.9700
C(21)-H(21B)	0.9700
C(22)-H(22A)	0.9600
C(22)-H(22B)	0.9600
С(22)-Н(22С)	0.9600
C(14)-O(1)-C(13)	117.10(18)
C(11)-N(1)-C(12)	111.98(15)
C(11)-N(1)-C(1)	114.70(16)
C(12)-N(1)-C(1)	106.19(15)
C(11)-N(1)-H(1A)	107.9

107.9
107.9
112.71(18)
117.53(18)
104.30(16)
107.3
107.3
107.3
103.38(17)
111.1
111.1
111.1
111.1
109.1
112.7(2)
101.89(18)
113.97(19)
109.4
109.4
109.4
112.5(2)
109.1
109.1
109.1
109.1
107.8
108.9(2)
109.9
109.9
109.9
109.9
108.3
113.9(2)
108.8
108.8
108.8
108.8
107.7

C(8)-C(7)-C(12)	112.49(18)
C(8)-C(7)-C(6)	108.45(19)
C(12)-C(7)-C(6)	110.48(18)
C(8)-C(7)-C(21)	108.93(19)
C(12)-C(7)-C(21)	104.61(17)
C(6)-C(7)-C(21)	111.9(2)
C(9)-C(8)-C(7)	118.00(18)
C(9)-C(8)-H(8A)	107.8
C(7)-C(8)-H(8A)	107.8
C(9)-C(8)-H(8B)	107.8
C(7)-C(8)-H(8B)	107.8
H(8A)-C(8)-H(8B)	107.1
C(10)-C(9)-C(8)	113.45(19)
C(10)-C(9)-H(9A)	108.9
C(8)-C(9)-H(9A)	108.9
C(10)-C(9)-H(9B)	108.9
C(8)-C(9)-H(9B)	108.9
H(9A)-C(9)-H(9B)	107.7
C(9)-C(10)-C(11)	117.2(2)
C(9)-C(10)-H(10A)	108.0
С(11)-С(10)-Н(10А)	108.0
C(9)-C(10)-H(10B)	108.0
С(11)-С(10)-Н(10В)	108.0
H(10A)-C(10)-H(10B)	107.2
N(1)-C(11)-C(10)	113.18(18)
N(1)-C(11)-H(11A)	108.9
C(10)-C(11)-H(11A)	108.9
N(1)-C(11)-H(11B)	108.9
C(10)-C(11)-H(11B)	108.9
H(11A)-C(11)-H(11B)	107.8
N(1)-C(12)-C(7)	115.98(16)
N(1)-C(12)-C(3)	104.60(16)
C(7)-C(12)-C(3)	115.39(18)
N(1)-C(12)-H(12)	106.8
C(7)-C(12)-H(12)	106.8
C(3)-C(12)-H(12)	106.8
O(1)-C(13)-C(1)	107.44(17)
O(1)-C(13)-H(13A)	110.2

C(1)-C(13)-H(13A)	110.2
O(1)-C(13)-H(13B)	110.2
C(1)-C(13)-H(13B)	110.2
H(13A)-C(13)-H(13B)	108.5
O(2)-C(14)-O(1)	123.1(2)
O(2)-C(14)-C(15)	125.9(2)
O(1)-C(14)-C(15)	110.9(2)
C(16)-C(15)-C(20)	119.4(2)
C(16)-C(15)-C(14)	121.6(2)
C(20)-C(15)-C(14)	119.0(2)
C(17)-C(16)-C(15)	120.4(2)
С(17)-С(16)-Н(16)	119.8
С(15)-С(16)-Н(16)	119.8
C(18)-C(17)-C(16)	119.5(3)
С(18)-С(17)-Н(17)	120.3
С(16)-С(17)-Н(17)	120.3
C(17)-C(18)-C(19)	121.2(3)
C(17)-C(18)-Br(1)	118.6(2)
C(19)-C(18)-Br(1)	120.2(2)
C(20)-C(19)-C(18)	119.2(2)
С(20)-С(19)-Н(19)	120.4
С(18)-С(19)-Н(19)	120.4
C(19)-C(20)-C(15)	120.3(3)
С(19)-С(20)-Н(20)	119.8
С(15)-С(20)-Н(20)	119.8
C(22)-C(21)-C(7)	116.3(2)
C(22)-C(21)-H(21A)	108.2
C(7)-C(21)-H(21A)	108.2
C(22)-C(21)-H(21B)	108.2
C(7)-C(21)-H(21B)	108.2
H(21A)-C(21)-H(21B)	107.4
C(21)-C(22)-H(22A)	109.5
C(21)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(21)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	113(1)	92(1)	55(1)	20(1)	7(1)	-16(1)
Cl(1)	64(1)	32(1)	77(1)	-1(1)	30(1)	-7(1)
O(1)	57(1)	40(1)	48(1)	-4(1)	20(1)	0(1)
O(2)	133(2)	54(1)	70(1)	-11(1)	38(1)	20(1)
N(1)	33(1)	25(1)	39(1)	0(1)	7(1)	-1(1)
C(1)	31(1)	37(1)	48(1)	-1(1)	8(1)	3(1)
C(2)	48(1)	45(1)	56(1)	7(1)	10(1)	13(1)
C(3)	50(1)	47(1)	43(1)	6(1)	6(1)	8(1)
C(4)	54(1)	77(2)	53(2)	-7(1)	-8(1)	3(1)
C(5)	75(2)	78(2)	52(2)	-19(1)	1(1)	-13(2)
C(6)	67(2)	44(1)	60(2)	-17(1)	18(1)	-5(1)
C(7)	45(1)	33(1)	47(1)	-4(1)	14(1)	1(1)
C(8)	50(1)	36(1)	66(2)	5(1)	21(1)	8(1)
C(9)	33(1)	47(1)	72(2)	13(1)	9(1)	2(1)
C(10)	38(1)	63(2)	56(1)	6(1)	-4(1)	-3(1)
C(11)	39(1)	47(1)	42(1)	-4(1)	3(1)	-6(1)
C(12)	39(1)	30(1)	39(1)	2(1)	10(1)	-1(1)
C(13)	50(1)	35(1)	57(1)	-2(1)	19(1)	1(1)
C(14)	50(1)	53(1)	47(1)	-13(1)	11(1)	0(1)
C(15)	48(1)	55(1)	41(1)	-10(1)	8(1)	-5(1)
C(16)	72(2)	54(1)	46(1)	-7(1)	19(1)	-4(1)
C(17)	78(2)	54(2)	53(2)	-5(1)	13(1)	-7(1)
C(18)	67(2)	69(2)	40(1)	2(1)	1(1)	-13(1)
C(19)	92(2)	90(2)	41(1)	-6(1)	21(1)	-2(2)
C(20)	80(2)	68(2)	49(1)	-12(1)	18(1)	3(1)
C(21)	59(1)	54(1)	50(1)	1(1)	22(1)	3(1)
C(22)	76(2)	85(2)	61(2)	-13(2)	33(2)	0(2)

Table 4. Anisotropic displacement parameters (Å²x 10³) for oic66_0m. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	х	У	Z	U(eq)
H(1A)	5834	5733	7408	39
H(1)	3329	6427	7329	46
H(2A)	2819	7959	6767	59
H(2B)	4570	8527	6996	59
H(3)	5210	7741	6140	56
H(4A)	3243	5868	6432	74
H(4B)	2897	6619	5875	74
H(5A)	4075	4887	5630	82
H(5B)	5290	5872	5482	82
H(6A)	6872	4450	5989	68
H(6B)	5739	4570	6511	68
H(8A)	8205	4658	7106	59
H(8B)	9632	4886	6692	59
H(9A)	10869	5572	7507	60
H(9B)	10027	6666	7238	60
H(10A)	9625	6388	8240	63
H(10B)	8482	5355	8057	63
H(11A)	6735	6826	8239	51
H(11B)	7616	7598	7805	51
H(12)	7307	7416	6841	43
H(13A)	4717	8076	8105	56
H(13B)	2744	7994	7913	56
H(16)	3901	4855	8767	68
H(17)	3631	3339	9375	74
H(19)	1681	5334	10541	88
H(20)	1965	6854	9937	78
H(21A)	7691	7010	5829	64
H(21B)	9392	6903	6234	64
H(22A)	9975	5204	5763	108
H(22B)	9858	6215	5328	108
H(22C)	8319	5383	5339	108

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for oic66_0m.

4. ORTEP diagram and CIF data for the sulfone 12

Compound 12 was prepared as described above.

Ortep diagram for **12**:

Results are deposited at the Cambridge Crystallographic Data Centre.

Structure Number CCDC-782369.

Table 1. Crystal data and structure refinement for 12	2 (reference number oic70_0m)
Identification code	oic70_0m
Empirical formula	C20 H29 N O2 S
Formula weight	347.50
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	$P2_1/c$

Unit cell dimensions	a = 13.1393(7) Å	α= 90°.	
	b = 7.7782(4) Å	β=102.927(3)°.	
	c = 17.9896(9) Å	$\gamma = 90^{\circ}$.	
Volume	1791.94(16) Å ³		
Z	4		
Density (calculated)	1.288 Mg/m ³		
Absorption coefficient	0.193 mm ⁻¹		
F(000)	752		
Crystal size	0.38 x 0.11 x 0.04 mm ³		
Theta range for data collection	1.59 to 27.65°.		
Index ranges	-17<=h<=17, -10<=k<=10, -23<=l<=23		
Reflections collected	40116		
Independent reflections	4150 [R(int) = 0.0738]		
Completeness to theta = 25.00°	100.0 %		
Absorption correction	Semi-empirical from equivalent	ts	
Max. and min. transmission	0.9923 and 0.9303		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4150 / 0 / 218		
Goodness-of-fit on F ² 1.067			
Final R indices [I>2sigma(I)] $R1 = 0.0421$, wR2 = 0.0981			
R indices (all data)	R indices (all data) $R1 = 0.0615$, $wR2 = 0.1058$		
Largest diff. peak and hole	0.302 and -0.352 e.Å ⁻³		

Table 2.	Ator	nic coordinates (x 10	$({\rm A}^{2}{\rm x}\ 10^{3})$ and equivalent isotropic displacement parameters (${\rm A}^{2}{\rm x}\ 10^{3})$
for oic70_	0m.	U(eq) is defined as o	ne third of the trace of the orthogonalized U ^{ij} tensor.

	Х	У	Z	U(eq)
S(1)	1085(1)	9188(1)	1737(1)	24(1)
N(1)	2406(1)	5119(2)	2680(1)	22(1)
O(1)	2016(1)	9391(2)	1454(1)	31(1)
O(2)	680(1)	10674(2)	2056(1)	31(1)
C(1)	1504(1)	5796(2)	2126(1)	25(1)
C(2)	1274(1)	7541(2)	2443(1)	22(1)
C(3)	2238(1)	7923(2)	3090(1)	22(1)
C(4)	1985(1)	7600(2)	3870(1)	27(1)
C(5)	2962(1)	7438(2)	4508(1)	30(1)

C(6)	3683(1)	6054(2)	4315(1)	26(1)
C(7)	4027(1)	6429(2)	3571(1)	22(1)
C(8)	4764(1)	5026(2)	3384(1)	28(1)
C(9)	4490(2)	3144(2)	3455(1)	35(1)
C(10)	3492(1)	2472(2)	2921(1)	29(1)
C(11)	2891(1)	3723(2)	2337(1)	26(1)
C(12)	3056(1)	6658(2)	2914(1)	21(1)
C(13)	96(1)	8323(2)	997(1)	23(1)
C(14)	329(1)	7924(2)	303(1)	32(1)
C(15)	-439(2)	7220(3)	-270(1)	36(1)
C(16)	-1418(2)	6909(3)	-147(1)	34(1)
C(17)	-1645(1)	7310(2)	547(1)	32(1)
C(18)	-891(1)	8026(2)	1124(1)	29(1)
C(19)	4636(1)	8153(2)	3622(1)	26(1)
C(20)	5554(1)	8373(2)	4304(1)	33(1)

Table 3. Bond lengths [Å] and angles [°] for oic70_0m.

S(1)-O(1)	1.4357(12)
S(1)-O(2)	1.4430(12)
S(1)-C(13)	1.7720(17)
S(1)-C(2)	1.7811(16)
N(1)-C(11)	1.464(2)
N(1)-C(1)	1.465(2)
N(1)-C(12)	1.476(2)
C(1)-C(2)	1.529(2)
C(1)-H(1A)	0.9700
C(1)-H(1B)	0.9700
C(2)-C(3)	1.546(2)
C(2)-H(2)	0.9800
C(3)-C(4)	1.533(2)
C(3)-C(12)	1.541(2)
C(3)-H(3)	0.9800
C(4)-C(5)	1.525(2)
C(4)-H(4A)	0.9700
C(4)-H(4B)	0.9700

C(5)-C(6)	1.524(2)
C(5)-H(5A)	0.9700
C(5)-H(5B)	0.9700
C(6)-C(7)	1.534(2)
C(6)-H(6A)	0.9700
C(6)-H(6B)	0.9700
C(7)-C(12)	1.543(2)
C(7)-C(8)	1.544(2)
C(7)-C(19)	1.554(2)
C(8)-C(9)	1.520(3)
C(8)-H(8A)	0.9700
C(8)-H(8B)	0.9700
C(9)-C(10)	1.534(2)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(10)-C(11)	1.517(2)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700
С(12)-Н(12)	0.9800
C(13)-C(18)	1.386(2)
C(13)-C(14)	1.386(2)
C(14)-C(15)	1.384(3)
C(14)-H(14)	0.9300
C(15)-C(16)	1.374(3)
C(15)-H(15)	0.9300
C(16)-C(17)	1.384(2)
C(16)-H(16)	0.9300
C(17)-C(18)	1.382(2)
C(17)-H(17)	0.9300
C(18)-H(18)	0.9300
C(19)-C(20)	1.526(2)
C(19)-H(19A)	0.9700
C(19)-H(19B)	0.9700
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
С(20)-Н(20С)	0.9600

118.09(7)
108.37(8)
109.23(7)
109.76(8)
107.35(7)
103.00(8)
109.96(12)
116.32(13)
103.37(12)
105.21(12)
110.7
110.7
110.7
110.7
108.8
104.70(13)
112.33(11)
111.04(11)
109.6
109.6
109.6
112.83(13)
110.35(13)
102.39(12)
110.3
110.3
110.3
112.56(14)
109.1
109.1
109.1
109.1
107.8
110.39(13)
109.6
109.6
109.6

C(4)-C(5)-H(5B)	109.6
H(5A)-C(5)-H(5B)	108.1
C(5)-C(6)-C(7)	112.61(14)
C(5)-C(6)-H(6A)	109.1
C(7)-C(6)-H(6A)	109.1
C(5)-C(6)-H(6B)	109.1
C(7)-C(6)-H(6B)	109.1
H(6A)-C(6)-H(6B)	107.8
C(6)-C(7)-C(12)	109.60(13)
C(6)-C(7)-C(8)	112.17(14)
C(12)-C(7)-C(8)	111.47(13)
C(6)-C(7)-C(19)	111.18(13)
C(12)-C(7)-C(19)	105.79(13)
C(8)-C(7)-C(19)	106.42(13)
C(9)-C(8)-C(7)	119.39(15)
C(9)-C(8)-H(8A)	107.5
C(7)-C(8)-H(8A)	107.5
C(9)-C(8)-H(8B)	107.5
C(7)-C(8)-H(8B)	107.5
H(8A)-C(8)-H(8B)	107.0
C(8)-C(9)-C(10)	117.47(14)
C(8)-C(9)-H(9A)	107.9
C(10)-C(9)-H(9A)	107.9
C(8)-C(9)-H(9B)	107.9
C(10)-C(9)-H(9B)	107.9
H(9A)-C(9)-H(9B)	107.2
C(11)-C(10)-C(9)	117.04(15)
С(11)-С(10)-Н(10А)	108.0
С(9)-С(10)-Н(10А)	108.0
С(11)-С(10)-Н(10В)	108.0
C(9)-C(10)-H(10B)	108.0
H(10A)-C(10)-H(10B)	107.3
N(1)-C(11)-C(10)	113.09(13)
N(1)-C(11)-H(11A)	109.0
C(10)-C(11)-H(11A)	109.0
N(1)-C(11)-H(11B)	109.0
С(10)-С(11)-Н(11В)	109.0
H(11A)-C(11)-H(11B)	107.8

N(1)-C(12)-C(3)	101.00(12)
N(1)-C(12)-C(7)	116.83(13)
C(3)-C(12)-C(7)	114.29(13)
N(1)-C(12)-H(12)	108.1
C(3)-C(12)-H(12)	108.1
С(7)-С(12)-Н(12)	108.1
C(18)-C(13)-C(14)	121.02(16)
C(18)-C(13)-S(1)	119.66(12)
C(14)-C(13)-S(1)	119.31(13)
C(15)-C(14)-C(13)	119.22(17)
C(15)-C(14)-H(14)	120.4
C(13)-C(14)-H(14)	120.4
C(16)-C(15)-C(14)	120.19(16)
C(16)-C(15)-H(15)	119.9
C(14)-C(15)-H(15)	119.9
C(15)-C(16)-C(17)	120.28(17)
C(15)-C(16)-H(16)	119.9
C(17)-C(16)-H(16)	119.9
C(18)-C(17)-C(16)	120.39(17)
С(18)-С(17)-Н(17)	119.8
С(16)-С(17)-Н(17)	119.8
C(17)-C(18)-C(13)	118.90(16)
C(17)-C(18)-H(18)	120.5
C(13)-C(18)-H(18)	120.5
C(20)-C(19)-C(7)	116.60(14)
C(20)-C(19)-H(19A)	108.1
C(7)-C(19)-H(19A)	108.1
C(20)-C(19)-H(19B)	108.1
C(7)-C(19)-H(19B)	108.1
H(19A)-C(19)-H(19B)	107.3
C(19)-C(20)-H(20A)	109.5
C(19)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
С(19)-С(20)-Н(20С)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	22(1)	23(1)	25(1)	2(1)	2(1)	1(1)
N(1)	21(1)	19(1)	23(1)	0(1)	1(1)	-1(1)
O(1)	24(1)	36(1)	32(1)	5(1)	6(1)	-2(1)
O(2)	32(1)	25(1)	34(1)	-2(1)	3(1)	5(1)
C(1)	26(1)	22(1)	25(1)	0(1)	0(1)	-1(1)
C(2)	20(1)	24(1)	22(1)	2(1)	3(1)	-2(1)
C(3)	21(1)	21(1)	23(1)	0(1)	2(1)	-1(1)
C(4)	25(1)	32(1)	24(1)	-5(1)	5(1)	-1(1)
C(5)	29(1)	40(1)	20(1)	-3(1)	6(1)	-3(1)
C(6)	25(1)	32(1)	21(1)	5(1)	2(1)	-2(1)
C(7)	20(1)	24(1)	22(1)	2(1)	3(1)	-1(1)
C(8)	22(1)	30(1)	31(1)	0(1)	0(1)	2(1)
C(9)	41(1)	27(1)	32(1)	2(1)	-1(1)	9(1)
C(10)	34(1)	22(1)	33(1)	2(1)	9(1)	4(1)
C(11)	29(1)	25(1)	24(1)	-3(1)	6(1)	1(1)
C(12)	22(1)	20(1)	21(1)	0(1)	5(1)	-2(1)
C(13)	24(1)	22(1)	23(1)	3(1)	2(1)	4(1)
C(14)	27(1)	41(1)	28(1)	1(1)	7(1)	2(1)
C(15)	36(1)	49(1)	23(1)	-4(1)	6(1)	2(1)
C(16)	31(1)	41(1)	27(1)	-4(1)	-4(1)	2(1)
C(17)	21(1)	40(1)	34(1)	-2(1)	4(1)	0(1)
C(18)	26(1)	36(1)	24(1)	-3(1)	5(1)	3(1)
C(19)	22(1)	27(1)	26(1)	1(1)	3(1)	-5(1)
C(20)	29(1)	34(1)	32(1)	0(1)	-1(1)	-7(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for oic70_0m. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

	x	у	Z	U(eq)
	222		0.070	20
H(1A)	909	5032	2078	30
H(1B)	1667	5927	1629	30
H(2)	651	7451	2656	27
H(3)	2471	9111	3055	26
H(4A)	1561	8540	3986	32
H(4B)	1578	6552	3845	32
H(5A)	3327	8531	4579	36
H(5B)	2765	7145	4981	36
H(6A)	3325	4955	4270	32
H(6B)	4297	5967	4729	32
H(8A)	4832	5214	2864	34
H(8B)	5448	5216	3713	34
H(9A)	4432	2942	3975	42
H(9B)	5071	2458	3371	42
H(10A)	3677	1484	2649	35
H(10B)	3026	2069	3233	35
H(11A)	3363	4211	2049	31
H(11B)	2351	3100	1983	31
H(12)	3289	7088	2468	25
H(14)	994	8126	223	38
H(15)	-293	6957	-740	43
H(16)	-1930	6427	-533	41
H(17)	-2310	7098	626	38
H(18)	-1043	8303	1591	34
H(19A)	4896	8278	3160	31
H(19B)	4148	9084	3629	31
H(20A)	5300	8411	4765	49
H(20B)	5914	9424	4251	49
H(20C)	6025	7421	4326	49

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for oic70_0m.