Highly Sensitive and Selective Turn-on Fluorescent and Chromogenic Probe for Cu²⁺ and ClO⁻ Based on a *N*-Picolinyl Rhodamine B-Hydrazide Derivative

Yunlong Liu,^a Yue Sun,^a Jun Du,^b Xin Lv,^a Yun Zhao,^a Maliang Chen,^a Pi Wang^a and Wei Guo*^a

 ^a School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China. Email: guow@sxu.edu.cn
^b Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University

Electronic Supplementary Information (ESI[†])

Contents

- The fluorescent and the color changes of 1 to various metal ions and anions (Fig. S1).
- 2. The spectra responses of 1 in the absence and presence of Cu^{2+} in different pH values (Fig. S2).
- **3.** Time-dependent change in absorption intensity of **1** after Cu^{2+} addition (**Fig. S3**).
- **4.** Job's plots between **1** and Cu^{2+} (**Fig. S4**).
- **5.** The ESI-MS for **1**-Cu²⁺ (**Fig. S5**).
- 6. IR spectra of 1 and 1–Cu²⁺ complex in KBr disks (Fig. S6).
- 7. ¹H NMR-titration experiments (**Fig. S7**).
- **8.** Time-dependent change in fluorescence intensity of **1** after Cu^{2+} addition (**Fig. S8**).
- **9.** Selectivity investigation for Cu^{2+} by absorption spectra (**Fig. S9**).
- 10. Spectra changes of 1 for Cu^{2+} in the presence of various anions (Fig. S10).
- The spectra responses of 1 in the absence and presence of ClO⁻ in different pH values (Fig. S11).
- Time course of the absorption and fluorescence response of 1 upon addition of ClO⁻ (Fig. S12).
- 13. Selectivity investigation for ClO⁻ by absorption spectra (Fig. S13).
- **14.** ¹H NMR chart of **1** (**Fig. S14**).
- **15.** ¹³C NMR chart of **1** (**Fig. S15**).
- **16.** EI-MS chart of **1** (**Fig. S16**).

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Figure S1. Color (a) and fluorescence (b) changes of **1** in 9:1 (v/v) MeCN/water solution (10 mM Tris-HCl, pH 7.0) in the presence of different metal cations (From left to right: **1** only, Cu^{2+} , Na^+ , K^+ , Mg^{2+} , Mn^{2+} , Fe^{2+} , Ca^{2+} , Zn^{2+} , Co^{2+} , Pb^{2+} , Hg^{2+} , Cd^{2+} , Ni^{2+} and Ag^+). Color (c) and fluorescence (d) changes of **1** in 7:3 (v/v) MeOH-Na₂B₄O₇/NaOH buffer (30 mM, pH 12.0) in the presence of different anions (From left to right: **1** only, ClO⁻, Cl⁻, NO₃⁻, SiO₃²⁻, H₂O₂, SO₄²⁻, AcO⁻, H₂PO₄⁻; ClO₃⁻; MnO₄⁻).

Figure S2. Changes in absorption (565 nm) of **1** (20 μ M) in 9:1 (v/v) MeCN/water solution measured with and without Cu²⁺ (3 equiv.) as a function of pH. **1**+ Cu²⁺ (red), **1** (black).

Figure S3. Time course of the absorption response of 1 (20 μ M) in 9:1 (v/v) MeCN/water solution (10 mM Tris-HCl, pH 7.0) upon addition of 3 equiv. of Cu(NO₃)₂.

Figure S4. Job's plots between **1** and Cu^{2+} in 9:1 (v/v) MeCN/water solution (10 mM Tris-HCl, pH 7.0). Total concentration of **1** + Cu^{2+} was kept constant at 100 μ M.

Figure S5. The ESI-MS for 1-Cu²⁺.

Figure S6. IR spectra of 1 (a) and $1-Cu^{2+}$ (b) were taken in KBr disks.

Figure S7. ¹H NMR spectral changes of **1** upon addition of 1 equiv of $Cu(NO_3)_2$ (CD₃CN at 25 °C).

Figure S8. Time course of the fluorescence response of **1** (20 μ M) in 9:1 (v/v) MeCN/water solution (10 mM Tris-HCl, pH 7.0) upon addition of 10 equiv. of Cu(NO₃)₂.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Figure S9. (a) The UV-vis spectra of **1** (20 μ M) upon addition of 3 equiv of Cu²⁺ and various other metal ions (3 equiv) in 9:1 (v/v) MeCN/water solution (10 mM Tris-HCl, pH 7.0). (b) Optical density of **1** (20 μ M) to 3 equiv of Cu²⁺ in 9:1 (v/v) MeCN/water solution (10 mM Tris-HCl, pH 7.0) containing 3 equiv of various metal ions.

Figure S10. The UV-vis spectra of **1** (20 μ M) in 9:1 (v/v) MeCN/water solution (10 mM Tris-HCl, pH 7.0) in the present of Cu²⁺ and various anions [Cu²⁺: 3 equiv; I⁻ and CN⁻: 10 equiv; other anions (F, Cl⁻, Br⁻, NO₃⁻, SiO₃²⁻, SO₄²⁻, AcO⁻, H₂PO₄⁻, ClO₃⁻,

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

MnO₄⁻): 5 equiv].

Figure S11. Effect of pH on the reaction of 1 (20 μ M) with ClO⁻ (15 equiv) in 7:3 (v/v) MeOH/water solution; 1+ ClO⁻ (red), 1 (black). Absorption intensity was measured at 558 nm.

Figure S12. Time course of the absorption (a) and fluorescence response (b) of **1** [20 μ M in (a) and 10 μ M in (b)] in 7:3 (v/v) MeOH-Na₂B₄O₇/NaOH buffer (30 mM, pH

12.0) upon addition of 10 equiv of ClO⁻.

Figure S13. (a) The UV-vis spectra of 1 (20 μM) in 7:3 (v/v) MeOH-Na₂B₄O₇/NaOH buffer (30 mM, pH 12.0) upon addition of 20 equiv of ClO⁻ and various species. (b) The UV-vis spectra of 1 (20 μM) to 20 equiv of ClO⁻ in 7:3 (v/v) MeOH-Na₂B₄O₇/NaOH buffer (30 mM, pH 12.0) containing various species. Species: Cl⁻, NO₃⁻, SiO₃²⁻, H₂O₂, SO₄²⁻, AcO⁻, H₂PO₄⁻ (1 mM); ClO₃⁻ (0.1 mM); MnO₄⁻ (20 μM); ·OH (100 μM Fe²⁺ + 1 mM H₂O₂); ·O₂⁻ (1 mM KO₂); ¹O₂ (1 mM Na₂MoO₄ + 2 mM H₂O₂); Na⁺, K⁺ (1 mM); Mg²⁺, Ca²⁺, Ni²⁺, Zn²⁺ (0.1 mM); Cu²⁺, Fe²⁺, Mn²⁺, Hg²⁺, Pb²⁺, Ag⁺ (20 μM).

Figure S14. The ¹H NMR spectra of **1**.

Figure S15. The ¹³C NMR spectra of **1**.

Figure S16. The ESI-MS for 1.