Supporting Information

Strategies for the asymmetric synthesis of *H*-phosphinate esters

Karla Bravo-Altamirano,^a Laëtitia Coudray,^a Eric L. Deal,^a and Jean-Luc Montchamp*^a

^aDepartment of Chemistry, TCU Box 298860, Texas Christian University, Fort Worth, TX 76129, USA. Fax: 1 817 257 5851; Tel: 1 817 257 6201;

*Address correspondence to: Jean-Luc Montchamp, Department of Chemistry, Texas Christian University, Fort Worth, TX 76129 *e-mail: j.montchamp@tcu.edu*

PAGE

LIST OF CONTENTS

General Chemistry	S2
Preparation of chiral auxiliaries (Tables 1, 2 and 3)	S2
Validation of the ³¹ P NMR assay (Scheme 3)	S 3
Pd-Catalyzed asymmetric hydrophosphinylation (Table 4)	S4
P-Chiral-H-phosphinate esters: kinetic resolution (Scheme 4)	S4
C-Chiral H-phosphinic acids: asymmetric benzylation (Equations 3 & 4)	S 5
References	S6
Tabular summary of ³¹ P-NMR data for R [*] OP(O)H ₂	S7
Representative NMR Spectra	S9

General Chemistry

All reactions were conducted in oven-dried glassware, under nitrogen. Reactions carried out at a temperature below 0 °C employed a CO₂/acetone bath. All reagents and solvents were used as received unless otherwise specified. Concentrated H₃PO₂ was obtained by rotary evaporation (0.5 mmHg) of the 50 wt. % aqueous solution at rt for 20-30 min before reaction. Caution: overdrying H_3PO_2 may result in the formation of a yellow solid of high phosphorus content that could be pyrophoric. Anilinum hypophosphite and stock solutions of ethyl hypophosphite were prepared as previously described.^{1,2} Unless otherwise specified, HPLC or reagent grade solvents were purchased from Aldrich and used as received. Acetonitrile was distilled under N₂ from CaH₂, and used immediately. *i*Pr₂NEt was distilled from CaH₂ and stored over 4Å molecular sieves. Catalysts and ligands were commonly purchased from Aldrich or Strem Chemicals. Analytical thin layer chromatography (TLC) was performed on SiO₂ 60 F-254 plates. Visualization was accomplished by UV irradiation at 254 nm and/or by staining with para-anisaldehyde or KMnO₄ solution. Flash column chromatography was performed using SiO₂ 60 (particle size 0.040-0.055 mm, 230-400 mesh). Radial chromatography was carried out using 2 or 4 mm layers of silica gel 60 PF₂₅₄ containing gypsum. Proton, carbon and phosphorus NMR spectra were recorded at 300 MHz/150 MHz/121 MHz (¹H NMR/¹³C NMR/³¹P NMR). Chemical shifts are reported as δ values in parts per million (ppm) as referenced to: (a) internal standard (¹H NMR, Me₄Si, $\delta = 0.00$ ppm), (b) residual solvent (¹³C NMR, CDCl₃, $\delta = 77.0$ ppm), and (c) external standard (³¹P NMR, 85% H₃PO₄, $\delta = 0.00$ ppm). ¹H NMR spectra are reported as follows: chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, dd = doublet of doublets, ddd = doublet of doublets, t = triplet, q = quartet, quint. = quintuplet, sext. = sextuplet, m = multiplet), number of protons, and coupling constant(s). NMR yields are determined by integration of all the resonances in the ³¹P NMR spectra, an approach that is valid if no phosphorus-containing gas evolves, or if the precipitate in a heterogeneous mixture does not contain phosphorus. The yields determined by NMR are generally accurate within ~10% of the value indicated, and are reproducible. The validity of the method has been carefully verified.^{1,3} Isolated yields are sometimes significantly lower because Hphosphinate esters are highly polar compounds and hydrolytically labile. Chiral HPLC resolutions were performed with a (S,S)-Whelk-01 Column (250x4.6 mm, 5 µm) from Regis® Technologies, which was accompanied with a guard column (Agilent Zorbax® ODS, 4.6 x 12.5 mm, 5µm), using hexanes/isopropanol mixtures as the mobile phase. Low resolution mass spectrometry was performed on a Bruker Esquire 6000, Bruker Daltonics, Inc., ± ESI. High resolution mass spectrometry was provided by the Mass Spectrometry Facility of the University of South Carolina.

Preparation of chiral auxiliaries (Tables 1, 2 and 3)

The chiral auxiliaries were either commercially available or synthesized according to known protocols described in the following references:

(a) Commercially available: fenchyl alcohol (Table 1, entry 1), (+)-isopinocampheol (Table 1, entry 2), (1R,2S)-trans-2-phenyl-1-cyclohexanol (Table 1, entry 6), 2-methoxy-2-phenylethanol (Table 1, entry 8), 2-tert-butylcyclohexanol, mixture of isomers (Table 1, entry 9), (+)-N,N-Dicyclohexyl-(1R)-isoborneol-10-sulfonamide (Table 1, entry 10), (-)-menthol (Table 1, entry 11).

(b) Synthesized through known protocols:

-Isoborneol (Table 1, entry 3): W. Oppolzer, C. Chapuis, Tetrahedron Lett., 1984, 25, 5383-5386.

-2,2-Diphenylcyclopentanol (Table 1, entry 4): E. Bacqué, J.-M. Paris, Synth. Commun., 1992, 22, 2259-2272.

-Spiro[4.5]decan-6-ol (Table 1, entry 5): R. D. Sands, J. Org. Chem., 1994, 59, 468-471.

-(1S,2S)-N-(1-hydroxy-1-phenylpropan-2-yl)ethanamide (Table 1, entry 7): H. Tlahuext, R. Contreras, *Tetrahedron: Asymmetry*, 1992, **3**, 727-730.

-(-)-8-Phenylmenthol (Table 1, entry 12 & Table 3, entry 1): O. Ort, Org. Synth., Coll., 1993, 8, 522; 1987, 65, 203.

-(-)- and (+)- 8-(2-Naphthyl)menthol (Table 1, entries 13-14): T. Takahashi, N. Kurose, T. Koizumi, *Heterocycles*, 1993, **36**, 1601-1616.

-2-(2-Phenylpropan-2-yl)cyclohexanol (Table 2, entry 1 & Table 3, entry 2), 2-(2-(3,5-diisopropylphenyl)propan-2-yl)cyclohexanol (Table 2, entry 2), 2-(9*H*-xanthen-9-yl)cyclohexanol (Table 2, entry 3), 2-(9,10-dihydroanthracen-9-yl)cyclohexanol (Table 2, entry 4): D. L. Comins, J. M. Salvador, *J. Org. Chem.*, 1993, **58**, 4656-4661.

-2-(9*H*-Fluoren-9-yl)cyclopentanol (Table 2, entry 5), 2-(9*H*-fluoren-9-yl)cyclohexanol (Table 2, entry 6): T. Ohwada, J. Am. Chem. Soc., 1992, **114**, 8818-8827.

Validation of the ³¹P NMR assay (Scheme 3)

(a) Synthesis of ethyl (1-naphthyl) phosphinate. To a suspension of anilinum hypophosphite (0.382 g, 2.40 mmol, 1.20 equiv) and 3-aminopropyltriethoxysilane (0.531 g. 2.40 mmol, 1.20 equiv) in CH₃CN (12.0 ml) was added 1bromonaphthalene (0.28 mL, 0.414 g, 2.0 mmol), Pd(OAc)₂ (9.0 mg, 0.040 mmol, 2 mol% Pd) and either, racemic BINAP or (*R*)-BINAP (28.8 mg, 0.044 mmol). The reaction mixture was heated at reflux for 8 h under N₂. After cooling to rt, ³¹P NMR analysis showed the product at ~28 ppm (100%, doublet). The mixture was diluted with EtOAc and washed with aq. HCl (2 M). The aqueous phase was extracted with EtOAc (3 x) and the combined organic phase was washed with saturated aq. NaHCO₃ (1 x) and brine (1 x), dried (MgSO₄) and concentrated to afford the pure title product (0.431 g, 98% yield). ¹H NMR (CDCl₃, 300 MHz) δ 8.43 (d, *J* = 8 Hz, 1 H), 8.09 (dd, *J* = 7, 1 Hz, 1 H), 8.07 (d, *J* = 7 Hz, 1 H), 7.94 (d, *J*_{HP} = 563 Hz, 1 H), 7.93 (d, *J* = 8 Hz, 1 H), 7.75 – 7.89 (m, 1 H), 7.48 – 7.69 (m, 2 H), 4.05 – 4.29 (m, 2 H), 1.37 (t, *J* = 7 Hz, 3 H); ³¹P NMR (CDCl₃, 121.47 MHz) δ 26.76 (dm, *J*_{PH} = 563 Hz).

(b) NMR assay: Derivatization with (S)-(-)- (α) -methylbenzylamine/CCl₄. To an NMR tube charged with a solution of ethyl (1-naphthyl) phosphinate (20 mg) in CCl₄ (1 mL) was added an excess of (S)-(-)- (α) -methylbenzylamine at rt. The solution was kept for 2-4 h at rt and then analyzed by ³¹P NMR to determine the corresponding de (de = ee) by the difference in heights and integrals.

From (R)-BINAP: ³¹P NMR (CDCl₃, 121.47 MHz) δ 20.94 (s, 60.9%, height: 155.7); 20.53 (s, 39.1%, height: 114.8); ee_(heights) = 15%. HPLC analysis: ee = 16%; Product1, t_R 37.919 min; Product2, t_R 46.663 min; conditions: (*S*,*S*)-Whelk-01 column (Regis® Technologies, 250 x 4.6 mm, 5 µm) with guard column (Agilent Zorbax® ODS, 4.6 x 12.5 mm, 5µm), 1 mL/min (isocratic), rt, hexanes/*i*PrOH (7/3, v/v).

From racemic BINAP: ³¹P NMR (CDCl₃, 121.47 MHz) δ 21.507 (s, height: 104.5); 21.413 (s, height: 110.0); ee_(heights) = 2.3%. HPLC analysis: ee = 1.9%; Product1, t_R 29.482 min; Product2, t_R 35.995 min; conditions: (*S*,*S*)-Whelk-01 Column (Regis® Technologies, 250 × 4.6 mm, 5 µm) with guard column (Agilent Zorbax® ODS, 4.6 x 12.5 mm, 5µm), 1 mL/min (isocratic), rt, hexanes/*i*PrOH (7/3, v/v).

MS (ESI⁺) for C₁₂H₁₃O₂P, $[M+H]^+ m/z$ 221.1; $[NpP(O)(OH)(H)+H]^+ m/z$ 193; $[NpP(O)+H]^+ m/z$ 175; $[Np+H]^+ m/z$ 129.1 (Np = 1-naphthyl).

Pd-Catalyzed asymmetric hydrophosphinylation (Table 4)

(a) **Preparation of a stock solution of EtOP(O)H₂.** This was conducted as described in references 1 and 2. In a typical procedure, a mixture of concentrated H_3PO_2 (100 mmol), (EtO)₂SiMe₂ (200 mmol) in the appropriate volume of reagent grade solvent (CH₃CN or toluene) to create a 0.50 M solution, is refluxed for 2 h under N₂. After cooling to rt, the stock solution was stored under N₂ at rt. Less than 10% decomposition was detected after 2 months.

(b) Preparation of Palladium(II) [*N*,*N*'-Bis(3,5-di-tert-butylsalicylidene)-(*R*,*R*)-1,2-cyclohexanediamine], [Pd'(R,R)-Jacobsen] (Table 4, entries 1b-c).⁴ Prepared from $PdCl_2/Et_3N$ according to the procedure described in reference 4. ¹H NMR (CDCl₃, 300 MHz) δ 7.71 (s, 2 H), 7.43 (s, 2 H), 6.98 (d, *J* = 2 Hz, 2 H), 3.41 (bs, 2 H), 2.59 (bs, 2 H), 1.89 (bs, 2 H), 1.10 – 1.75 (m, 40 H).

(c) General Procedure for the Pd-catalyzed asymmetric hydrophosphinylation. (Table 4). To a 0.50 M solution of EtOP(O)H₂ in CH₃CN or toluene (2.0 equiv) was added 1-octene (1.0 equiv) followed by the appropriate Pd-catalyst (2-3 mol%). In those cases where the Pd-complex was formed *in situ*, a 1/1 ratio of PdCl₂/ligand was used. The solution was heated at reflux for 8-12 h under N₂. After cooling to rt, the mixture was diluted with EtOAc and washed with 2 M aq. HCl (1 x), followed by extraction of the aqueous phase with EtOAc (2 x). The combined organic phase was washed with saturated aq. NaHCO₃ (1 x) and brine (1 x), dried (MgSO₄) and concentrated to yield the crude ethyl octyl-*H*-phosphinate product,^{5,6} which was used without further purification in the ³¹P NMR assay for enantiopurity determination. Note: the title product was isolated by column chromatography (hexanes/EtOAc, 3/1, v/v to EtOAc, 100%) as a colorless oil for identity confirmation. ^{5,6} ¹H NMR (CDCl₃, 300 MHz) δ 7.08 (d, *J* = 526 Hz, 1 H), 4.03 – 4.23 (m, 2 H), 1.21 – 1.82 (m, 14 H), 1.37 (t, *J* = 7 Hz, 3 H), 0.88 (t, *J* = 7 Hz, 3 H); ³¹P NMR (CDCl₃, 121.47 MHz) δ 40.3 (d, *J*_{PH} = 526 Hz).

(d) ³¹P NMR assay: Derivatization with (S)-(-)- (α) -methylbenzylamine/CCl₄ (Table 4). To an NMR tube charged with a solution of the appropriate crude mixture of ethyl octyl-*H*-phosphinate (20 mg) in CCl₄ (1 mL) was added an excess of (S)-(-)- (α) -methylbenzylamine at rt. The solution was kept for 2-4 h at rt and then analyzed by ³¹P NMR to determine the corresponding de (de = ee) by the difference in heights and integrals.

Ethyl octyl-*H*-phosphinate (4, Table 4).

¹H NMR (CDCl₃, 300 MHz): δ 7.09 (d, J = 527 Hz, 1 H), 4.03 - 4.23 (m, 2 H), 1.27 - 1.80 (m, 14 H), 1.34 - 1.39 (t, J = 7 Hz, 3 H), 0.86 - 0.90 (t, J = 7 Hz, 3 H); ¹³C NMR (CDCl₃, 75.45 MHz) δ 62.5 (d, J_{POC} = 7 Hz), 31.8, 30.4 (d, J_{PCCC} = 15 Hz), 29.1, 29.0, 28.6 (d, J_{PC} = 93 Hz), 22.6, 20.7, 16.2 (d, J_{POCC} = 6 Hz), 14.0; ³¹P NMR (CDCl₃, 121.47 MHz) δ 40.7 (dm, J = 530 Hz).

P-Chiral-H-phosphinate esters: kinetic resolution (Scheme 4)

Preparation of (1,1-Diethoxy-ethyl)-cinnamyl-phosphinic acid ethyl ester (Scheme 4, molecule 5).⁷ To cinnamyl *H*-phosphinic acid⁸ (5.0 mmol, 1.0 equiv) was added triethyl orthoacetate (5.5 mL, 30.0 mmol, 6.0 equiv) and boron trifluoride etherate (0.13 mL, 1.0 mmol, 0.20 equiv) at rt. The reaction mixture was vigorously stirred for 16-24 h at rt under N₂. The reaction mixture was diluted with EtOAc and washed with 0.50 M aq. NaHCO₃ (1 x) and brine (2 x). The organic layer was dried (MgSO₄), concentrated and purified by chromatography on SiO₂ (hexanes/EtOAc, 6/4, v/v) to afford the title product (1.30 g, 80% yield) as a light yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.20 – 7.38 (m, 5 H, *aro* CH), 6.53 (dd, ³J_{H,H} = 16.0 Hz, ⁴J_{HCCCP} = 4.0 Hz, 1 H, -CH=), 6.19 – 6.31 (m, 1 H, -CH=), 4.15 – 4.28 (m, 2 H, -CH₂-O), 3.60 – 3.83 (m, 4 H, -CH₂-O), 2.71 – 2.92 (m, 2 H, -CH₂-P), 1.54 (d, ³J_{HCCP} = 11.0 Hz, 3 H, CH₃-C-P), 1.31 (t, *J* = 7.0 Hz, 3 H, CH₃-), 1.22 (t, *J* = 7.0 Hz, 3 H, CH₃-), 1.21 (t, ³J_{H,H} = 7.0 Hz, 3 H, CH₃-); ¹³C NMR (75.45 MHz, CDCl₃) δ 137.3, 134.8 (d, *J*_{PCCC} = 12.0 Hz), 128.8 (2 C), 127.7, 126.4 (d, *J*_{PCCCCC} = 1.5 Hz, 2 C), 119.1 (d, *J*_{PCC} = 10.5 Hz), 101.5 (d, *J*_{PCC} = 12.0 Hz), 17.0 (d, *J*_{PCCC} = 5.0 Hz), 57.0 (d, *J*_{PCCC} = 7.0 Hz), 31.7 (d, *J*_{PCC} = 82.5 Hz), 20.8 (d, *J*_{PCCC} = 12.0 Hz), 17.0 (d, *J*_{PCCCC} = 5.0 Hz), 15.7, 15.5; ³¹P NMR (121.47 MHz, CDCl₃) δ 45.96 (s); HRMS (EI⁺) *m/z* calcd. for C₁₇H₂₇O₄P ([M-OEt]⁺), 281.1307, found 281.1302.

(1,1-Diethoxy-ethyl)-(2,3-dihydroxy-3-phenyl-propyl)-phosphinic acid ethyl ester (Scheme 4, molecule 6): 2 diastereoisomers 50/50.⁷

Enantioselective dihydroxylation.⁹ To a mixture of *t*-BuOH/H₂O (10.0 mL, 1/1, v/v) were added ADmix- α (1.40 g, 0.4 mol-% OsO₄) and methanesulfonamide (95.0 mg, 1.0 equiv) at rt. After a few minutes of stirring at rt, the mixture became homogeneous. The reaction mixture was cooled down to 0 °C and a solution of ester **5** (0.326 g, 1.0 mmol) in *t*-BuOH/H₂O (0.50 mL) was added. After 16 h at rt, the reaction mixture was cooled down to 0 °C and Na₂SO₃ (1.5 g) was added. After 1 h at rt, the reaction mixture was extracted with EtOAc (3 x). The combined organic phase was washed with 2.0 N aq. KOH (1 x) and with brine (1 x), dried (MgSO₄), concentrated and purified by chromatography on SiO₂

(hexanes/EtOAc, 1/9, v/v to EtOAc/MeOH, 98/2, v/v) to afford the enantioenriched dihydroxylated compound **6** (0.326 g, 91% yield) as a colorless oil. $[\alpha]_D = +0.675^\circ$ (c 1.85, absolute EtOH, 24.9 °C).

Racemic dihydroxylation. To a solution of ester **5** (0.652 g, 2.0 mmol) in acetone (4.0 mL) was added *N*-methylmorpholine *N*-oxide (0.70 g, 6.0 mmol, 3.0 equiv) followed by a 0.050 M aq. solution of osmium tetroxide (0.40 mL, 0.020 mmol, 1 mol-%) at rt. After 17 h at rt, the reaction mixture was cooled down to 0 °C and Na₂SO₃ (3.0 g) was added. After 1 h at rt, the reaction mixture was diluted with brine and extracted with EtOAc (3 x). The combined organic phase was dried (MgSO₄), concentrated and purified by chromatography on SiO₂ (hexanes/EtOAc, 1/9, v/v to EtOAc/MeOH, 98/2, v/v) to afford the racemic dihydroxylated compound **6** (0.555 g, 77% yield) as a colorless oil. [α]_D = + 0.248° (c 1.85, absolute EtOH, 24.9 °C).

¹H NMR (300 MHz, CDCl₃) δ 7.28 – 7.41 (m, 5 H, *aro* CH), 4.55 (m, 1 H + 0.5 H, -CH-O), 4.08 – 4.28 (m, 2 H + 0.5 H, -CH₂-O) & -CH-O), 3.46 – 3.73 (m, 4 H, -CH₂-O), 1.68 – 2.14 (m, 2 H, -CH₂-P), 1.45 & 1.39 (2 d, J_{HCCP} = 11.5 Hz, 3 H, CH₃-), 1.32 & 1.29 (2 t, *J* = 7.0 Hz, 3 H, CH₃-), 1.12 – 1.23 (m, 6 H, CH₃-); ¹³C NMR (75.45 MHz, CDCl₃) δ 140.3 & 140.2, 128.4 (2 C), 128.1 & 128.0, 127.1 & 127.0 (2 C), 101.1 (d, J_{PC} = 144.0 Hz) & 100.9 (d, J_{PC} = 142.0 Hz), 78.0 & 77.8 (2 d, J_{PCCC} = 12.0 Hz), 71.3 (d, J_{PCC} = 5.0 Hz) & 70.5 (d, J_{PCC} = 5.5 Hz), 62.2 & 61.9 (2 d, J_{POC} = 7.0 Hz), 58.4 (d, J_{PCCC} = 5.5 Hz), 57.9 & 57.8 (2 d, J_{PCCC} = 7.0 Hz), 29.4 (d, J_{PC} = 83.0 Hz) & 29.3 (d, J_{PC} = 84.5 Hz), 20.0 & 19.8 (2 d, J_{PCC} = 12.5 Hz), 16.6 (d, J_{POCC} = 5.5 Hz), 15.4, 15.2; ³¹P NMR (121.47 MHz, CDCl₃) δ 50.81 (s, 50%), 49.87 (s, 50%); HRMS (Ammonium Chem Ion) *m*/*z* calcd. for C₁₇H₂₉O₆P, ([M-OEt]⁺), 315.1361, found 315.1369.

(2,3-Dihydroxy-3-phenyl-propyl)-*H*-phosphinic acid (Scheme 4, molecule 7). To a solution of the ester 6 (0.150 g, 0.420 mmol) in EtOH (5.0 mL, 0.10 M) was added Amberlite IR120+ (1.25 g, 3.0 g/mmol). After 16 h at reflux, the reaction mixture was cooled down to rt and filtered through cotton. The filtrate was concentrated in vacuo to afford the deprotected product 7 (0.930 g, 100% yield) as a colorless wax. ¹H NMR (300 MHz, D₂O) δ 7.18 – 7.30 (m, 5 H, *aro* CH), 6.82 (ddd, J_{HP} = 563.0 Hz, J = 3.5, 1.0 Hz, 1 H, H-P), 4.43 (d, J = 6.0 Hz, 1 H, -CH-O), 4.03 (tdd, J_{HCCP} = 10.5 Hz, J = 6.0, 3.5 Hz, 1 H, -CH-O), 1.56 – 1.86 (m, 2 H, -CH₂-P); ¹³C NMR (75.45 MHz, D₂O) δ 139.8, 128.8 (2 C), 128.5, 127.2 (2 C), 77.4 (d, J_{PCCC} = 14.0 Hz), 70.3 (d, J_{PCC} = 4.0 Hz), 33.4 (d, J_{PC} = 93.5 Hz); ³¹P NMR (121.47 MHz, D₂O) δ 29.77 (ddd, J_{PH} = 550.0 Hz, J_{PCH} = 18.5 Hz, J_{PCCH} = 12.0 Hz); HRMS (ESI⁺) *m*/*z* calcd. for C₉H₁₃O₄P, ([M+H]⁺), 217.0629, found 217.0633.

C-Chiral H-phosphinic acids: asymmetric benzylation (Equations 3 & 4)

Benzylation of H₃PO₂ with (*R***)-1-(2-naphthyl)ethanol (Equation 3).¹⁰ To a solution of (***R***)-(+)-1-(2-naphthyl)ethanol (0.344 g, 2.0 mmol, 1.0 equiv)¹¹ and concentrated H₃PO₂ (0.264 g, 4.0 mmol, 2.0 equiv) in** *t***-AmylOH (0.20 M, 10.0 mL) were added Pd₂dba₃ (18.3 mg, 0.020 mmol, 1 mol%) and xantphos (25.5 mg, 0.0440 mmol, 2.2 mol%) at rt. The flask was equipped with a Dean-Stark trap (prefilled with** *t***-AmylOH) and the reaction mixture was heated at reflux for 16 h under N₂. After cooling down to rt, the reaction was filtered and concentrated in vacuo. The residue was dissolved in EtOAc and extracted with 0.50 M aq. NaHCO₃ (3 x). The aqueous layer was acidified to pH 1 with 10% aq. HCl and extracted with EtOAc (3 x). The combined organic phase was washed with brine (1 x), dried (MgSO₄) and concentrated to afford a white solid [0.440 g, 100% yield, 89 : 11 (8 : 9, branched : linear)].**

Hydrophosphinylation of 2-vinylnaphthalene with H_3PO_2 (Equation 4).¹⁰ To a solution of 2-vinylnaphthalene (0.318 g, 2.0 mmol, 1.0 equiv) and concentrated H_3PO_2 (0.264 g, 4.0 mmol, 2.0 equiv) in *t*-AmylOH (0.20 M, 10.0 mL) were added Pd_2dba_3 (0.0183 g, 0.020 mmol, 1 mol%) and xantphos (25.5 mg, 0.0440 mmol, 2.2 mol%) at rt. The flask was equipped with a Dean-Stark trap (prefilled with *t*-AmylOH) and the reaction mixture was heated at reflux for 16 h under N₂. After cooling down to rt, the reaction was filtered and concentrated in vacuo. The residue was dissolved in EtOAc and extracted with 0.50 M aq. NaHCO₃ (3 x). The aqueous layer was acidified to pH 1 with 10% aq. HCl and extracted with EtOAc (3 x). The combined organic phase was washed with brine (1 x), dried (MgSO₄) and concentrated to afford a white solid [0.315 g, 72% yield, 78 : 22 (8 : 9, branched : linear)].

1-(2-Naphtyl)ethyl-*H***-phosphinic acid (Branched isomer, molecule 8).** ¹H NMR (CDCl₃, 300 MHz) δ 7.25 – 7.81 (m, 7 H), 6.88 (d, J_{HP} = 548.0 Hz, 1 H), 3.21 (dq, J_{HCP} = 24.5 Hz, J = 7.5 Hz, 1 H), 1.59 (d, J_{HCCP} = 19.0 Hz, J = 7.5 Hz, 3 H); ¹³C NMR (CDCl₃, 75.45 MHz) δ 133.4 (d, J_{PCCCC} = 5.5 Hz), 133.3 (d, J_{PCC} = 7.5 Hz), 132.6 (d, J_{PCCCC} = 2.5 Hz), 128.3 (d, J_{PCCCC} = 2.5 Hz), 127.8, 127.6, 127.4 (d, J_{PCCC} = 8.0 Hz), 126.7 (d, J_{PCCCC} = 5.0 Hz), 126.2, 126.0, 40.6 (d, J_{PC} = 89.5 Hz), 12.4; ³¹P NMR (CDCl₃, 121.47 MHz) δ 41.10 (d, J_{PH} = 548.0 Hz); HRMS (EI⁺) *m*/*z* calcd. for C₁₂H₁₃O₂P, (M⁺) 220.0653, found 220.0657.

2-(2-Naphtyl)ethyl-*H***-phosphinic acid (Linear isomer, molecule 9).** ¹H NMR (CDCl₃, 300 MHz) δ 7.25 – 7.81 (m, 7 H), 7.00 (d, J_{HP} = 548.0 Hz, 1 H), 2.94 – 3.04 (m, 2 H), 2.00 – 2.11 (m, 2 H); ³¹P NMR (CDCl₃, 121.47 MHz) δ 37.39 (d, J_{PH} = 548.0 Hz); HRMS (EI⁺) *m*/*z* calcd. for C₁₂H₁₃O₂P, (M⁺) 220.0653, found 220.0657.

Determination of the enantioselectivity of the benzylation reaction.¹⁰ 1-(2-Naphthyl)ethyl-*H*-phosphinic acid (5.0 mg) was dissolved in CDCl₃ (0.50 mL) and (*R*)-(+)-(α)-methylbenzylamine (2 drops) were added. The solution was kept for a few minutes rt and then analyzed by ³¹P NMR. The enantiomeric excess was determinated by height and by integration.

Starting material	Linear isomer, %	Branched isomer Integration percent, height, shift	ee, %
Racemic 1-(2-Naphthyl)ethanol	10	43%, 124.4, 30.53 ppm 46%, 124.6, 30.33 ppm	3
R-(+)-1-(2-Naphthyl)ethanol ¹¹	11	10%, 15.7, 30.48 ppm 79%, 125.7, 30.25 ppm	77
2-Vinylnaphthalene	22	38%, 65.6, 28.84 ppm 41%, 71.4, 29.67 ppm	3

³¹P NMR data (CDCl₃ + (R)-(+)-(α)-methylbenzylamine, 300 MHz):¹⁰

Determination of the absolute configuration: Preparation of 1-(2-naphthyl)ethylphosphonic acid.^{10,12} To the chiral 1-(2-naphthyl)ethyl-*H*-phosphinic acid (**8**) (0.227 g, 1.030 mmol, 1.0 equiv) in DMF (0.15 M, 7.0 mL) were added Pd₂dba₃ (9.40 mg, 0.01030 mmol, 1 mol%) and xantphos (12.40 mg, 0.0216 mmol, 2.2 mol%) at rt. The resulting solution was heated at 110 °C, opened to air for 23 h. After cooling down to rt, the reaction was filtered and concentrated in vacuo. The residue was dissolved in EtOAc and extracted with 0.50 M aq. NaHCO₃ (3 x). The aqueous layer was acidified to pH 1 with 10% aq. HCl and extracted with EtOAc (3 x). The combined organic phase was washed with brine (1 x), dried (MgSO₄) and concentrated to afford a white solid (0.147 g, 61%, 89 : 11, branched : linear). ¹H NMR (CDCl₃, 300 MHz) δ 7.75 – 7.84 (m, 4 H), 7.43 – 7.48 (m, 3 H), 3.15 (dq, *J_{HCP}* = 21.5 Hz, *J* = 7.5 Hz, 1 H), 1.49 (dd, *J_{HCCP}* = 17.5 Hz, *J* = 7.5 Hz, 3 H); ¹³C NMR (DMSO-*d*6, 75.45 MHz) δ 138.8 (d, *J_{PCC}* = 8.0 Hz), 133.6, 132.5, 128.2 (d, *J_{PCCC}* = 5.0 Hz), 128.1, 128.0, 127.8, 127.2 (d, *J_{PCCC}* = 8.0 Hz), 126.6, 126.0, 39.6 (d, *J_{PC}* = 124.0 Hz), 16.8 (d, *J_{PCC}* = 4.5 Hz); ³¹P NMR (DMSO-*d*6, 121.47 MHz) δ 25.99 (s, 11%), 25.65 (s, 89%); HRMS (EI⁺) *m/z* calcd. for C₁₂H₁₃O₃P, (M⁺) 236.0602, found 236.0598. [α]_D = -11.106° (c 0.9, MeOH). Comparing the specific rotation of the 1-(2-naphthyl)ethylphosphonic acid and the literature data ([α]_D = -3.7 (c 1.2, 10.2)

Comparing the specific rotation of the 1-(2-naphthyl)ethylphosphonic acid and the literature data ($[\alpha]_D = -3.7$ (c 1.2, MeOH) for the (*R*)-1-phenylethylphosphonic acid, ¹³ the absolute configuration (*S*) was assigned to 1-(2-naphthyl)ethyl-*H*-phosphinic acid. Therefore the reaction proceeds with overall inversion of configuration.

References

- ¹ P. Ribière, K. Bravo-Altamirano, M. Antczak, J. D. Hawkins, J.-L. Montchamp, J. Org. Chem., 2005, **70**, 4064-4072.
- ² S. Deprèle, J.-L. Montchamp, J. Organomet. Chem., 2002, 643-644, 154-163.
- ³ J.-L. Montchamp, J. Organomet. Chem., 2005, **690**, 2388-2406.
- ⁴ (a) E. F. DiMauro, M. C. Kozlowski, *Organometallics*, 2002, **21**, 1454-1461. (b) W.-H. Leung, E. Y. Y. Chan, E. K. F. Chow, I. D. Williams, S.-M. Peng, *J. Chem. Soc.*, *Dalton Trans.*, 1996, 1229-1236.
- ⁵ S. Deprèle, J.-L. Montchamp, *J. Am. Chem. Soc.*, 2002, **124**, 9386-9387.
- ⁶ M. I. Antczak, J.-L. Montchamp, *Synthesis*, 2006, 3080-3084.
- ⁷ L.Coudray, J.-L. Montchamp, *Eur. J. Org. Chem.*, 2009, 4646-4654.
- ⁸ (a) K. Bravo-Altamirano, J.-L. Montchamp, *Org. Synth.*, 2008, **85**, 96. (b) K. Bravo-Altamirano, J.-L. Montchamp, *Org. Lett.*, 2006, **8**, 4169-4171.
- ⁹ H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, *Chem. Rev.*, 1994, **94**, 2483-2547.
- ¹⁰L. Coudray, J.-L. Montchamp, *Eur. J. Org. Chem.*, 2008, 4101-4103.
- ¹¹Purchased from Aldrich, $R/S \ge 98.5/1.5$.
- ¹²N. S. Gulyukina, T. M. Dolgina, G. N. Bondarenko, I. P. Beletskaya, N. A. Bondarenko, J.-C. Henry, D. Lavergne, V. Ratovelomanana-Vidal, J.-P. Genet, *Russ. J. Org. Chem.*, 2002, **38**, 573-587.
- ¹³Y. L. Bennani, S. Hanessian, *Tetrahedron*, **1996**, *52*, 13837-13866.

Alcohol ROH	Hypophosphite ROP(O)H ₂ 31 P-NMR	solvent
ОН	16.4 (td, <i>J</i> = 566, 12 Hz)	CH ₃ CN
ОН	19.5 (td, <i>J</i> = 566, 12 Hz)	CH ₃ CN
ОН	14.2 (td, <i>J</i> = 570, 21 Hz)	CH ₃ CN
OH Ph Ph	13.7 (td, <i>J</i> = 567, 10 Hz)	CH ₃ CN
ОН	13.2 (td, <i>J</i> = 563, 11 Hz)	CH ₃ CN
OMe OH	17.4 (tt, $J = 570, 12 \text{ Hz}$)	CH ₃ CN
OH	<i>Trans</i> : 11.7 (ddd, <i>J</i> = 572, 568, 10 Hz) <i>Cis</i> : 10.5 (ddd)	CH ₃ CN
ОН	10.4 (td, <i>J</i> = 570, 10 Hz) 11.3 (td, <i>J</i> = 563, 11 Hz)	CH ₃ CN cyclohexane
	13.1 (td, <i>J</i> = 569, 10 Hz) 17.0 (td, <i>J</i> = 569, 10 Hz)	CH₃CN cyclohexane
У ОН	19.9 (td, <i>J</i> = 570, 8 Hz)	CH ₃ CN

SI Table.^a Hypophosphite esters ROP(O)H₂ 1: 31 P-NMR data.

^a Hypophosphite esters (alkyl phosphinates) $ROP(O)H_2$ cannot be isolated as pure compounds. Instead, they are prepared in solution (Scheme 2) and used *in situ*.

SD III-157 AFTER 2H AT OC DECOUPLED

EXP2 PULSE SEQUENCE: STD13C " DATE 08-26-02 SOLVENT CDCL3 FILE P25

-1

HO^

PROCESSING 2.00 DISPLAY SPECIAL not used not used 10010.0 2437.3 171.5 -288.8 250 52 17 $\begin{array}{c} 20\\ 0.008\\ 18.300\\ 20.000\end{array}$ Ē PL 0T FLAGS Чd 6 temp gain spin hst pv90 alfa rfj rfp lpp a i horo a thoro a thoro i dp dp 1b fn SAMPLE date Sep 3 2004 solvent CDC13 t
sw
26738.0

at
1.598

fb
1.598

fb
1.598

fb
14800

fb
14800

fb
1.000

ff
1.000

ff
1.000

ff
1.000

ff
1.000

ff
1.100

ff
1.117

ff
1.217

ff
55

ff
55

ff
55

ff
57

ff
57

ff
57

ff
57

ff
57

ff
57

ff</ ACQUISTION ACQUISTION 1.598 1.598 85475 855755 85575 855755 855755 85575 85575 85575 85575 85575 85575 exp1 s2pul 404A

2 mol% Pd/xantphos

Table 1, entry 1

1

INDEX FREQUENCY PPM HEIGHT 1 -2437.337 -20.067 0.0 SD III-160 AFTER 2H AT RT DECOUPLED

EXP2 PULSE SEQUENCE: STD13C DATE 08-26-02 SOLVENT CDCL3 FILE P25

Table 1, entry 2

SD III-160 AFTER 2H AT RT COUPLED

EXP2 PULSE SEQUENCE: STD13C DATE 08-26-02 SOLVENT CDCL3 FILE P25

ŝ

L

.

н, Н, Н, Н, С, () ()

É

18.6 30.5 62.5 62.5 33.6 23.6 87.8 HEIGHT PPM 43.092 37.607 15.874 8.428 6.987 5.794 4.172 FREQUENCY 5234.080 4567.834 1928.145 1023.634 848.606 703.770 506.712 INDEX ч **1 6 1 4 3 5**

ł.

H

HEIGHT	-16.6	-17.2	-16.7	21.2	-16.3	16.1	27.1	54.6	39.8	-18.4	16.3	45.5	-17.8	-16.7	16.7	-19.9	-17.2	-16.4	15.9	-16.4	-17.0	22.8	-18.0	146.5	-19.2	129.9	132.9	124.2	22.5
РРМ	51.463	48.597	47.664	45.887	43.650	41.544	39.854	39.747	39.632	39.014	38.403	35.326	32.007	30.341	29.801	26.962	24.772	20.799	17.930	17.735	15.935	14.010	12.062	10.631	9.741	8.619	5.085	3.144	1.491
FREQUENCY	6250.789	5902.774	5789.353	5573.527	5301.806	5045.997	4840.779	4827.723	4813.852	4738.782	4664.528	4290.810	3887.717	3685.354	3619.668	3274.917	3008.908	2526.257	2177.835	2154.171	1935.489	1701.711	1465.078	1291.274	1183.157	1046.889	617.685	381.867	181.136
NDEX	F	2	ო	4	ŝ	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29

Į

6.633 2.904 2.004 2.032 2.043																																<u>K: DATE: 0//21/00 (1/:48) </u> (8)	
¢28.8								Table 1 entry 0	H I auto 1, utu y J										<u>}</u> "	H, O, H		= = 0	\rangle										LB: 0.0
5385 5285 542 543 543 543 543 543 543 543 543 543 543							\rightarrow	, Ω		=0 	>										`												NA: 16
212	MPP PPM	31.342	31.231	31.197	31 060	31.01	30.95	30.67	30.61	30.48	30.39	30.27	30.137	30.049	30.014 20.810	29.731	29.689	29.636	29.467	29.413	29.524	29.324	29.244	29.070	28.996	28.942	28.928 28.791				15): 2.0 sec
869	61 -	1142.13	1138.08	1136.84	1131.63	1130.03	1128.09 1128 63	1117.82	1115.49	1110.97	1107.73	1103.04	1098.19	1095.00	1093.74	1083.41	1081.87	1079.93	1073.78	1071.82	1075.87	1068.59	1065.66	1059.34	1056.64	1054.66	1054.14 1049.16		_				uou t usec PI
	REL. HT	5.06	-9.47	0.55	0.07	-1.37	-68 53	6.00	-7.33	-14.U1 -14.42	-8.24	13.25	-2.23 7.93	4.65	-11.56	06.6	-7.46	15.97	- 1.59	-1.10	-96.33	-6.66	-5.77	-9.50 12.74	-9.40	7.72	-4.26		_				DW: 12.4
k Alistang	S SHEIGHT	58451 /7750	//	6351	93103 11655	-15774	-790977	69226	-84555	-161/06 -166488	-95141	152968	91542	53680	-133373	114260	-86059	184314	-18349 -18349	-12649	-1111866	-76820	-66559	-10/363 147005	-108542	89149	-49187 -50493) - - -			52		- D
)1a8888988	S CINNIS S	23540	28547//	235590	23332 23770	23561	23564 23564	23580	23584	23591	23597	23604	23617	23617	23620	23636	23639	23642	23645 23651	23654	23658	23662	23665	23609 23676	23680	23683	23685 23665						41 1 1\global\zg.pp;
Inte%pc	PE99.K	-1 c 	- M	4	ע ע	0	ω σ	10	11,	12	14	15	91	18	19	2 6	22	23	24 7	26	27	28	29	0 r 0 r	32	33	97 94 97)	_		DE E		<u>FI: 30.4</u> EX: c:\ef

ŧ

trans/cis = 3:1

0 -=0 0

Table 1, entry 9

J.

.

INDEX e 2 4 3 5 1

80

T

l

шdd

÷.

	SPECIAL temp not used pain not used	spin 20 hst 0.008	pw90 18.500 alfa 20.000	FLAGS il FLAGS n		hs hn	PROCESSING 1b 1.00	fn not used DISPLAY	sp -1134.4 wn 18867.6	rfl 1134.7	rp 87.5	1p -401.4 PLOT	wc 250	sc 151 vs 151	th ainoph 18
exp1 s2pu1	SAMPLE date Sep 24 2004 solvent CDC13	file exp ACOUISITION	sw 18867.9 at 1.815	np 68492 Fh 10400	bs 64	d1 1.000	nt 256 ct 256	TRANSMITTER tn C13	Sfrq 75.456	tpwr 58	DECOUPLER	dn H1 dof 0	dm yyy	dpwr 35	dmf 6700

hq 6

0.008 0.008 18.300 1.18.300 FLAGS 2.00 not used DISPLAY SPECIAL SPECIAL n not used n not used γĽ 10010.0 2437.3 250 -288.8 27 PROCESSING 490 - Elburghahm a - 1.5 h. exp1 s2pu1 PLOT hq on temp gain spin hst pw90 alfa ai hsc ai Li dp dp AMPLE SAMPLE date Jan 13 2005 t solvent CDC13 f file CDC13 f file sp sw ACQUISITION sw 26738.0 L TRANSMITTER 2 n 121.474 frq 121.474 of 10608.2 th revealed to the second seco 1.598 85476 14800 64 1.000 œ ss cttrss cttrss

HEIGHT 48.1 19.6 19.922 17.305 FREQUENCY PPM 2419.772 19.92 2101.949 17.30

INDEX 1 2

		SPECIAL temp not used	gain notused	spin 20 hst 0.008	pw90 18.300	alfa 20.000	il rLAUS n	in n	dp y	hs nn	PROCESSING	1b 2.00	fn notused	DISPLAY	sp 0	wp 10010.0	rfl 2437.3	rfp <u>2</u>	c. 62 - 23 - 5	1p – 266.3 PLOT	MC 150 250	sc	vs 51	th 13	ai no ph
ß	exp1 s2pu]	SAMPLE date Jan 13 2005	solvent CDC13	file exp ACQUISITION	sw 26738.0	at 1.598	fb 14800	bs 64	ss 4	d1 1.000	nt 8	ct 8	TRANSMITTER	tn P31	sfrq 121.474	tof 10608.2 v	tpwr 55	pw 7.117	DECOUPLER	dn H1 dof			dowr 35	dmf 6700	

____ 0=à Table 1, entry 13 ò Å

	ŝ	9.	°.	2	ŝ	9	9	
HE IGHT	21	22	22	36	41	20	18	
μЫ	24.635	24.574	21.981	19.945	17.312	15.213	12.636	
FREQUENCY	2992.181	2984.837	2669.869	2422.628	2102.765	1847.772	1534.844	
INDEX	-	2	ε	4	S	9	7	

шdd

117.011 CU107/KM	PTSId	LB: 0.0	OF1: 5510.0 c NA: 16	PD: 2.0 see	0000 .4 usec	<u>SW1: 2</u> PW: 12	2	441 eft\global\zg.p;
	-0	۔ ک	10	15	L	20-	25	-
terdeneter filtstøberen. Andrikt fölligetøre romønerte oper rike søjer for søre se se forsører pår en påre oper	مانيا بوريانيا بوريانيا بالمانيانيانيانيا والمانيانيانيانيانيانيانيانيانيانيانيانيانيا	فالمحمل والمعالية المحمد ومحمل المحمل والمحمل والمحمد والمحمد والمحمد والمحمد والمحمل و	Assisted and have add the static despectively and the support and the content of	יריי, איזיאי, אייראין, אייראין, אייראין, אייראין, אייראין, אייראין	به مارید وایل فردید این مالی می ماهد این مالی مالی مالی مالی مالی مالی مالی مالی	(Biry and an and a start of the	مروحه ماله معالی اور می می می اور این اور این می اور این می اور این می می اور این می می اور این می می	ومحافظها الامارا لأفويانه
			ole 2, entry 1	Tat				
			: 	Ъ				
			H,H,O					
			РРМ 779	2 25.1	н 939.3	REL. HT 96.32	ak Listing HEIGHT 105280	Lated Bea POINT 23872

-t

mdd

triisoprbenz-cyclohex

.

	SPECIAL	temp not used	gain notused	spin 20	nst 0.008	0W90 18.300	alfa 20.000	FLAGS		in n	dp y	IS nn	PROCESSING	1b 2.00	n not used	DISPLAY	0 ds	vp 10010.0	-fl 2437.3	fp 0	-148.1	ip -83.4	PLOT	/c 250	0	's 35	h 7	ui no ph
exp1 s2pu]	SAMPLE	date Nov 7 2005	solvent CDC13	file exp ;	ACQUISITION	SW 26738.0	at 1.598 6	np 85476	fb 14800	bs 64	ss 4 (d1 1.000 l	nt 8	ct 8.	TRANSMITTER	tn P31	sfrq 121.474 s	tof 10608.2 v	tpwr 55 I	pw 7.117 I	DECOUPLER	dn H1	dof 0	dm ynn v	dimm w	dpwr 35 v	dmf 6700 t	10

ł

.

G

.

ΞŢ	ощ Ч		
Table 2, entry 5			16
		H ^{CC} O	100
HEIGHT 12.2 12.8 17.8 17.8 22.5 98.9 98.9 30.5 111.7 119.5 111.7 119.5 111.7 119.5 123.5 36.2 36.2 30.6 30.6			22
PPM 26.505 25.078 24.970 24.970 20.943 20.943 20.295 16.291 16.291 16.291 16.291 11.481 11.572 11.481 11.572 11.481 11.572 0.947 0.544 0.544			24
FREQUENCY 3219.431 32046.035 3046.035 3046.035 3032.980 2543.801 2543.801 2543.801 2543.801 2543.801 2543.801 2543.801 1978.735 1978.735 1967.71 1978.735 1997.496 11965.511 1194.615 590.349 115.042 115.042 115.042			2 e
I NDE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			28

ł.

FREQUENCY PPM 5164.314 42.518 4863.218 40.039 INDEX 1 2

FREQUENCY PPM 1953.441 16.083 937.548 7.719

ł

	Second Se
Table 2, entry 5	
INDEX FREQUENCY PPM HEIGHT 2 2534.009 20.862 75.3 2 2522.993 20.772 71.5 3 1970.168 16.220 90.4 4 1959.968 16.136 126.7 5 1950.1718.847 14.151 -12.0 7 1485.069 12.227 74.0 1395.720 11.491 63.1 11 942.852 7.762 12.91.8 11 942.852 7.762 12.9.2 12 401.042 3.302 62.7 401.042 3.302 62.7	

Table 2, entry 5

्ष ठ⊒्र Table 2, entry 5 ii rLAUS n in v hs PROCESSING nn 1b 2.00 fn DISPLAY SPECIAL not used not used 0.008 18.300 18.300 10010.0 2437.3 2437.3 -142.4 -288.8 250 0 38 10 FLAGS PLOT hq 2 temp gain spin hst pv90 alfa a t s c c a t s c c
 SAMPLE
 CDC13

 date
 Jul 21
 2006

 solvent
 CDC13
 6

 file
 CDC13
 6

 file
 CDC13
 6

 file
 Solvent
 CDC13

 file
 CDC13
 6
nt 16 ct TRANSMITTER 16 tn P31 sfrq 121.474 tof 10608.2 pw DECOUPLER 7.117 ууу 87 35 6700 1.000 H1 exp1 s2pu1 dag daf daf daf daf ct dis s b f a t s c

L

mdd

10

20

30

40

20

0.9

7 0

80

ł

28a WOWKLD.

HEIGHT	15.1	14.9	98.3	109.9	111.1	107.1	108.3	109.4	14.2	
Mdd	51.019	49.948	46.035	45.930	43.515	41.581	41.476	38.981	36.606	
FREQUENCY	6196.934	6066.786	5591.479	5578.831	5285.487	5050.485	5037.838	4734.702	4446.254	
INDEX		2	ო	4	S	9	2	ß	6	

ł

ł

.

Т

ł

.

Table 3, entry 1a

.

. .

	·		and Andrea (1971), solid of a transformer of the Andrea (1971) and a solid of the Andrea (1971) and a solid of	mudd 0
				20
				- 0
$\langle - \rangle$		1		4
2 10 10 10 10 10 10 10 10 10 10 10 10 10				
, ent		analos nen a como esperante estadem		-0-8
Table 3				
				120
				140
				160
SPECIAL used not used not used 0.008 18.500 18.500 18.500 18.500 00 18.500 n n n n n n n n n n n n n n n n n n				1.80
attor algorith attor of algorith attor of algorith attor of algorith attor of algorith				
403C exp1 s2pul exp1 s2pul date Sep 15 2004 solvent Sep 15 2004 file CDC13 file 1885.9 at 1.815 1867.9 1885.9 dat fb 1.815 1000 fb 1.815 fb 1.815 f		:		particular and for physical and a second
	· · · · · ·			

ł

.

Scheme 4

Judy Wilne

шdd

HE LGH I	92.8	1.1.	89.8	74.5
Wdd	42.887	42.790	38.527	38.430
F REQUENCY	5209.193	5197.361	4679.623	4667.792
INDEX	1	2	e	4

Scheme 4

HEIGHT	112.3	115.8	111.5	20.4	103.6	43.5	44.6	23.4	91.7	108.9	25.3	94.1	40.4	45.1	33.1	32.8	89.7	32.7	
РРМ	77.482	77.058	76.635	62.485	31.771	30.535	30.329	29.264	29.066	28.997	28.024	22.621	20.724	20.686	16.317	16.237	14.077	-0.00.	
FREQUENCY	5845.844	5813.887	5781.929	4714.390	2397.069	2303.789	2288.243	2207.918	2192.947	2187.765	2114.350	1706.681	1563.594	1560.715	1231.068	1225.022	1062.069	-0.000	
LNDEX	1	2	e	4	ഹ	9	2	8	6 0	10	11	12	13	14	15	16	17	18	

Scheme

n. F.

mdd 4. 1 177 10 ្រុងក្រ 20 ်က 30 40 ler Ku Ċ, 50 2 20 20 0.9 nin Mirita Kirita 7.0 00 50 80

Į

ľ

INDEX FREQUENCY PPM HEIGHT 1 3913.451 32.219 48.5

HEIGHT	53.3	94.6	70.6	70.2	94.2	54.3	50.7	91.2	67.5	91.5	52.7	
МДД	34.715	34.621	34.554	34.527	34.463	34.366	30.083	29.989	29.895	29.831	29.734	
FREQUENCY	4216.587	4205.163	4197.003	4193.739	4185.987	4174.156	3653.970	3642.546	3631.122	3623.371	3611.539	
INDEX	1	2	e	4	ഹ	9	2	80	67	10	11	

7 (Scheme 4)

wine and a second and a second and a second and a second second second second second second and a second second as a second a second second as a second Γ

udd 0

ഗ

