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General methods.  

Reactions were carried out 1n oven-dried glassware. Reactions solvents were distilled from 

appropriate drying agent before use. Unless stated otherwise, all reactions were carried out at 

room temperature under a positive pressure of argon and were monitored by TLC on Silica Gel 

60 F254 (0.25 mm, E. Merck). Spots were detected under UV light or by charring with acidified 

p-anisaldehyde solution in EtOH. All column chromatography experiments were performed on 

silica gel (40–60 µM) or Iatrobeads, which refers to a beaded Silica Gel 6RS-8060 manufactured 

by Iatron Laboratories (Tokyo). The ratio between silica gel and crude product ranged from 100 

to 50:1 (w:w). Optical rotations were measured at 22 ± 2 °C. 1H NMR spectra were recorded at 

400, 500, or 600 MHz, and chemical shifts are referenced to either TMS (0.0 ppm, CDCl3) or 

CD3OD (3.30 ppm, CD3OD). 1H data are reported as though they were first order. 13C NMR 

APT spectra were recorded at 125 MHz, and 13C chemical shifts are referenced to internal CDCl3 

(77.23 ppm, CDCl3) or CD3OD (48.9 ppm, CD3OD). Assignments of resonance in NMR spectra 

were made on the basis of 2D NMR (1H–1H COSY, TOCSY, HMQC, HSQC, and HMBC) 

experiments. In the processing of reaction mixtures, solutions of organic solvent were washed 

with equal amounts of aqueous solutions. Organic solutions of crude products were dried over 

anhydrous MgSO4. Solvents were concentrated under vacuum at <40 °C. Electrospray mass 

spectra were recorded on samples suspended in mixtures of THF with CH3OH and added NaCl. 

 

General methods for NMR spectra used in conformational analysis.   

Individual 1D-ge-CSSF-TOCSY1,2 spectra of 4–8 were recorded at 300 K on a 600 MHz 

spectrometer, following the pulse sequence described by Duncan, et al.2  The solvent was either 

CD3OD or 1:1 CD3OD–CDCl3, depending on the solubility of the compound.  For the 1D 1H 
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NMR spectra, presaturation was used to eliminate any residual H2O signals; presaturation was 

not used for the 1D-ge-CSSF-TOCSY spectra.  Figure 4 in the main text and Figures S1–S5 

below show the TOCSY spectra for 4–8.  The captions indicate the following parameters used to 

acquire each spectrum:  the mixing times (mix) and the frequency differences (∆) between the 

irradiated peak and its nearest neighbor. 

 

During the data analysis, no window functions or line broadening were applied.  Chemical shifts 

and coupling constants were determined by a combination of first-order spectral analysis and 

simulation in WinDNMR3 until a good correlation (i.e. Pearson’s r ≥ 0.95) was obtained between 

the simulated and real spectra.  The resultant simulated TOCSY spectra were then summed and 

compared with the 1D 1H NMR spectrum for each compound.  See Figure S6 for a representative 

simulation of a 1D-ge-CSSF-TOCSY spectrum, and Figure S7 for a representative simulation of 

a 1D 1H NMR spectrum.  The chemical shifts for the compounds 4–8 can be found in Table S1. 

 

Individual 1D-ge-CSSF-DPFGSE-NOESY1,2 spectra of 4 and 5 were recorded at 300 K on a 600 

MHz spectrometer, following the pulse sequence described by Duncan, et al.2  The solvent was 

either CD3OD or 1:1 CD3OD–CDCl3, depending on the solubility of the compound.  A cosine-

squared window function of 1.5 (one-half the acquisition time) was applied to each NOESY 

spectrum when the data were Fourier transformed, but no line broadening was applied.  Figure 

S8 shows the NOESY spectra for 4 and Figure S10 shows the NOESY spectra for 5.  The 

captions for both figures indicate the following parameters used to acquire each spectrum:  the 

mixing times (mix) and the frequency differences (∆) between the irradiated peak and its nearest 

neighbor. 
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Determining the rotamer populations about the C-4–C-5 bond. 

Using methods described previously,4-6 rotamer populations about the C-4–C-5 bond were 

calculated for the terminal rings in compounds 4–8.  Equations 1 and 2, Karplus relationships7 

derived specifically for arabinofuranose,8 were used for the parent saccharide 4. 

 

The angle  is the dihedral angle between the coupled protons.  These equations were solved to 

give the limiting coupling constants for the three staggered conformations about the C-4–C-5 

bond, where  = 60º, 180º, and –60º.  The coupling constant measured in solution represents a 

weighted average of these staggered conformations; the population of each conformation was 

determined for each ring using equations 3–5 below, which were solved for compound 4, and the 

results can be found in Table 2 in the paper. 

 

For the acylated saccharides 4–8, we developed new Karplus-type relationships for 3JH-4,H-5R
  and 

3JH-4,H-5S using DFT calculations.9  The newly derived equations 6 and 7 describe the 3JH-4,H-5R
  

and 3JH-4,H-5S relationships for both anomers of methyl 5-O-acetyl-D-arabinofuranoside. 

 

Again, the angle  is the dihedral angle between the coupled protons.  These equations were 

solved to give the coupling constants for the staggered conformations about the C-4–C-5 bond, 

as described above, to give equations 8–10 below.  These equations were solved for compounds 

5–8, and the results can also be found in Table 2 in the paper. 
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4    R = H
5    R = C(O)C3H7
6    R = C(O)C9H19
7    R = C(O)C15H31
8    R = C(O)C21H43
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Chart S1.  Target pentasaccharides 4–8 with the rings labeled for clarity. 
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Figure S1.  Chemical shift selective filtering TOCSY spectra for 4 in CD3OD.  Spectrum a is an expansion of the 
1D 1H spectrum; spectra b through f show 1D-ge-CSSF-TOCSY of each ring with an arrow indicating the irradiation 
frequency, as follows: b) ring D, selectively irradiated at 5.15 ppm, mix = 0.2 s, ∆ = 23 Hz; c) ring C, selectively 
irradiated at 5.07 ppm, mix = 0.2 s, ∆ = 17 Hz; d) ring E, selectively irradiated at 5.03 ppm, mix = 0.12 s, ∆ = 3.9 
Hz; e) ring F, selectively irradiated at 5.00 ppm, mix = 0.12 s, ∆ = 12 Hz; f) ring B, selectively irradiated at 3.91 
ppm, mix = 0.12 s, ∆ = 1.0 Hz. 
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Figure S2.  Chemical shift selective filtering TOCSY spectra for 5 in CD3OD.  Spectrum a is an expansion of the 
1D 1H spectrum; spectra b through f show 1D-ge-CSSF-TOCSY of each ring with an arrow indicating the irradiation 
frequency, as follows: b) ring D, selectively irradiated at 5.17 ppm, mix = 0.2 s, ∆ = 45 Hz; c) ring C, selectively 
irradiated at 5.09 ppm, mix = 0.2 s, ∆ = 22 Hz; d) ring E, selectively irradiated at 5.05 ppm, mix = 0.16 s, ∆ = 1.2 
Hz; e) ring F, selectively irradiated at 5.03 ppm, mix = 0.16 s, ∆ = 1.2 Hz; f) ring B, selectively irradiated at 4.76 
ppm, mix = 0.2 s, ∆ = 29 Hz.   
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Figure S3.  Chemical shift selective filtering TOCSY spectra for 6 in 1:1 CDCl3–CD3OD.  Spectrum a is an 
expansion of the 1D 1H spectrum; spectra b through f show 1D-ge-CSSF-TOCSY of each ring with an arrow 
indicating the irradiation frequency, as follows: b) ring D, selectively irradiated at 5.12 ppm, mix = 0.2 s, ∆ = 1.8 
Hz; c) ring C, selectively irradiated at 5.08 ppm, mix = 0.2 s, ∆ = 17 Hz; d) ring E, selectively irradiated at 5.03 
ppm, mix = 0.16 s, ∆ = 1.8 Hz; e) ring F, selectively irradiated at 5.00 ppm, mix = 0.16 s, ∆ = 1.8 Hz; f) ring B, 
selectively irradiated at 3.69 ppm, mix = 0.2 s, ∆ = 1.8 Hz. 
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Figure S4.  Chemical shift selective filtering TOCSY spectra for 7 in 1:1 CDCl3–CD3OD.  Spectrum a is an 
expansion of the 1D 1H spectrum; spectra b through f show 1D-ge-CSSF-TOCSY of each ring with an arrow 
indicating the irradiation frequency, as follows: b) ring D, selectively irradiated at 5.12 ppm, mix = 0.2 s, ∆ = 2.4 
Hz; c) ring C, selectively irradiated at 5.08 ppm, mix = 0.2 s, ∆ = 5.0 Hz; d) ring E, selectively irradiated at 5.03 
ppm, mix = 0.16 s, ∆ = 5.0 Hz; e) ring F, selectively irradiated at 5.00 ppm, mix = 0.16 s, ∆ = 5.0 Hz; f) ring B, 
selectively irradiated at 3.69 ppm, mix = 0.2 s, ∆ = 4.0 Hz. 
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Figure S5.  Chemical shift selective filtering TOCSY spectra for 8 in 1:1 CDCl3–CD3OD.  The portions of the 
spectra from 4.65–4.35 ppm contains the residual OH/H2O signal and was removed for clarity.  Spectrum a is an 
expansion of the 1D 1H spectrum; spectra b through f show 1D-ge-CSSF-TOCSY of each ring with an arrow 
indicating the irradiation frequency, as follows: b) ring D, selectively irradiated at 5.12 ppm, mix = 0.2 s, ∆ = 4.0 
Hz; c) ring C, selectively irradiated at 5.08 ppm, mix = 0.2 s, ∆ = 4.0 Hz; d) ring E, selectively irradiated at 5.03 
ppm, mix = 0.16 s, ∆ = 2.0 Hz; e) ring F, selectively irradiated at 5.00 ppm, mix = 0.16 s, ∆ = 2.0 Hz; f) ring B, 
selectively irradiated at 3.69 ppm, mix = 0.16 s, ∆ = 60 Hz. 
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Table S1.  1H chemical shifts (ppm) of the pentasaccharides, 4–8. 
 

Ring Proton 4a 5a 5b 6b 7b 8b 
H1 4.76 4.76 4.76 4.76 4.76 4.76 
H2 4.08 4.08 4.05 4.05 4.05 4.05 
H3 4.03 4.02 3.98 3.98 3.99 3.99 
H4 4.10 4.08 4.08 4.08 4.08 4.08 
H5R 3.91 3.90 3.90 3.91 3.91 3.91 

B 

H5S 3.74 3.71 3.69 3.69 3.70 3.70 
        

H1 5.07 5.09 5.08 5.08 5.08 5.08 
H2 4.14 4.11 4.08 4.07 4.07 4.06 
H3 4.02 4.01 3.97 3.96 3.97 3.97 
H4 3.96 4.11 4.12 4.12 4.12 4.12 
H5R 3.78 4.31 4.28 4.27 4.27 4.27 

C 

H5S 3.63 4.16 4.15 4.15 4.15 4.15 
        

H1 5.15 5.16 5.12 5.12 5.12 5.12 
H2 4.10 4.08 4.05 4.04 4.04 4.03 
H3 4.03 4.02 3.96 3.95 3.95 3.95 
H4 3.89 4.04 4.04 4.05 4.05 4.05 
H5R 3.78 4.33 4.30 4.29 4.29 4.29 

D 

H5S 3.62 4.15 4.12 4.12 4.13 4.13 
        

H1 5.03 5.05 5.03 5.03 5.02 5.03 
H2 3.97 3.98 3.98 3.98 3.98 3.98 
H3 4.00 3.98 3.95 3.95 3.95 3.95 
H4 3.77 3.91 3.92 3.92 3.93 3.93 
H5R 3.72 4.25 4.23 4.23 4.23 4.23 

E 

H5S 3.64 4.21 4.20 4.19 4.20 4.20 
        

H1 5.01 5.03 5.01 5.00 5.00 5.00 
H2 3.98 3.99 4.00 4.00 4.00 4.00 
H3 4.00 3.99 3.96 3.95 3.95 3.95 
H4 3.77 3.91 3.93 3.94 3.94 3.94 
H5R 3.72 4.26 4.23 4.23 4.23 4.23 

F 

H5S 3.63 4.21 4.21 4.20 4.21 4.21 
aCD3OD as solvent.  b1:1 CD3OD–CDCl3 as solvent. 
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Figure S6.  A comparison of the acquired 1D-ge-CSSF-TOCSY spectrum (bottom, green) to the simulation in 
WinDNMR3 (top, blue) for ring F of 4.  (See also Figure S1.)  The correlation coefficient (i.e. Pearson correlation) 
between the real and simulated data is r = 0.824 due to the intensities falling off as the protons are further from the 
irradiated signal (i.e. H2 is of a higher intensity than H5R or H5S). 
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Figure S7.  Simulated and acquired spectra for 4.  The spectra in a are the simulated spectra for each ring (an 
example for ring F is shown in Figure S6).  These spectra can be summed to give a simulation of the 1D 1H 
spectrum of 4 (spectrum b).  Spectrum c is the acquired 1D 1H spectrum for the same region (also shown in Figure 
S1).  The correlation coefficient (i.e. Pearson correlation) between the b and c is r = 0.950.   
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Figure S8.  Chemical shift selective filtering NOESY spectra for 4 in CD3OD.  Spectrum a is an expansion of the 
1D 1H spectrum; spectra b through e show 1D-ge-CSSF-DPFGSE-NOESY for rings C–F with an arrow indicating 
the irradiation frequency, as follows: b) ring D, selectively irradiated at 5.15 ppm, ∆ = 15 Hz; c) ring C, selectively 
irradiated at 5.07 ppm, ∆ = 5.0 Hz; d) ring E, selectively irradiated at 5.03 ppm, ∆ = 1.0 Hz; e) ring F, selectively 
irradiated at 5.00 ppm, ∆ = 1.0 Hz.  The mixing time is 0.4 s for spectra b through e.  The NOE are graphically 
summarized below in Figure S9. 
 

 
Figure S9.  A graphical representation of the NOE for 4, with weaker NOE shown as dashed lines.  The green lines 
are NOE from irradiation at 5.03 ppm, the red lines from irradiation at 5.07 ppm, the blue lines from irradiation at 
5.15 ppm, and the orange lines from irradiation at 5.00 ppm. 
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Figure S10.  Chemical shift selective filtering NOESY spectra for 5 in 1:1 CDCl3–CD3OD.  Spectrum a is an 
expansion of the 1D 1H spectrum; spectra b through e show 1D-ge-CSSF-DPFGSE-NOESY for rings C–F with an 
arrow indicating the irradiation frequency, as follows: b) ring D, selectively irradiated at 5.12 ppm, mix = 1.6 s, ∆ = 
1.6 Hz; c) ring C, selectively irradiated at 5.08 ppm, mix = 1.6 s, ∆ = 3.4 Hz; d) ring E, selectively irradiated at 5.03 
ppm, mix =1.6 s, ∆ = 1.0 Hz; e) ring F, selectively irradiated at 5.01 ppm, mix = 0.8 s, ∆ = 1.0 Hz.  The NOE are 
graphically summarized below in Figure S11. 
 

 
Figure S11.  A graphical representation of the NOE for 5, with weaker NOE shown as dashed lines.  The green lines 
are NOE from irradiation at 5.03 ppm, the red lines from irradiation at 5.08 ppm, the blue lines from irradiation at 
5.12 ppm, and the orange lines from irradiation at 5.01 ppm. 
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1H NMR spectrum of 5 
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13C NMR spectrum of 5 
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1H NMR spectrum of 6 
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13C NMR spectrum of 6 
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1H NMR spectrum of 7 
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13C NMR spectrum of 7 
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1H NMR spectrum of 8 
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13C NMR spectrum of 8 
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1H NMR spectrum of 9 
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13C NMR spectrum of 9 
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1H NMR spectrum of 11 
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13C NMR spectrum of 11 
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1H NMR spectrum of 16 
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13C NMR spectrum of 16 
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1H NMR spectrum of 18 
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13C NMR spectrum of 18 
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1H NMR spectrum of 19 
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13C NMR spectrum of 19 
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1H NMR spectrum of 20 
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13C NMR spectrum of 20 

 



S39 

1H NMR spectrum of 21 
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13C NMR spectrum of 21 
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1H NMR spectrum of 22 
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13C NMR spectrum of 22 
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1H NMR spectrum of 23 
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13C NMR spectrum of 23 
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1H NMR spectrum of 24 
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13C NMR spectrum of 24 

 


