Supporting Information

S_N2 fluorination reactions in ionic liquids: A mechanistic study toward solvent engineering

Young-Ho Oh,^{*a*} Hyeong Bin Jang, ^{*b*} Suk Im, ^{*a*} Myoung Jong Song, ^{*b*} So-Yeon Kim, ^{*a*} Sung-Woo Park, ^{*a*} Dae Yoon Chi,* ^{*c*} Choong Eui Song,* ^{*b*} Sungyul Lee* ^{*a*}

^a Department of Applied Chemistry, Kyunghee University, Yongin, Gyeonggi 446-701 (Korea). E-mail: sylee@khu.ac.kr

^b Department of Chemistry, Department of Energy Science, Sungkyunkwan University 300 Cheoncheon, Jangan, Suwon, Gyeonggi, 440-746 (Korea). E-mail: s1673@skku.edu

^c Department of Chemistry, Sogang University, 1 Shinsudong, Mapogu, Seoul 121-742 (Korea). E-mail: dychi@sogang.ac.kr

1. Calculational Methods

Density functional theory method (MPW1K)^[1,2] is employed with the 6-311++G** basis set and the effective core potential for Cs (Hay-Wadt VDZ(n+1)),^[3] as implemented in GAUSSIAN 03 set of programs.^[4] Stationary structures are confirmed by ascertaining that all the harmonic frequencies are real. Structures of the transition state (TS) are obtained by verifying that one and only one of the harmonic frequencies is imaginary, and also by carrying out the intrinsic reaction coordinate (IRC) analysis along the reaction pathway. Zero point energies (ZPE) are taken into account, and default criteria are used for all optimizations.

- 1 B. J. Lynch, P. I. Fast, M. Harris, D. G. Truhlar, J. Phys. Chem. A 2000, 104, 4811.
- 2 B. J. Lynch, Y. Zhao, D. G. Truhlar, J. Chem. Phys. 1998, 108, 664.
- 3 P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
- 4 M. J. Frisch, et al., Gaussian, Inc., Wallingford CT, 2004.

1. Figures and Tables

Fig. 1 (a) S_N2 Mechanism I in [bmim][OMs]

Pre-reaction complex

Transition state

Fig. 1 (b) S_N2 Mechanism I in [bmim][OMs]

Pre-reaction complex

Transition state

Fig. 2 (a) S_N2 Mechanism I in [*N*-butylthiazolium][OMs]

Pre-reaction complex

Transition state

Fig. 2 (b) S_N2 Mechanism II in [*N*-butylthiazolium][OMs]

Pre-reaction complex

Transition state

Fig. 3 (a) S_N 2 Mechanism I in [mim-^tOH][OMs] Pre-reaction complex

Transition state

Fig. 3 (b) S_N2 Mechanism II in [mim-^tOH][OMs] Pre-reaction complex

Transition state

Fig. 3 (c) E2 mechanism in [mim-^tOH][OMs] Pre-reaction complex

1.704 1.838 2.919 3.289 3.128

Transition state

(1) Fig. 1 (a) : $[Cs^+F^- + C_3H_7OMs \rightarrow C_3H_7F + Cs^+OMs^-]$ in ionic liquid [bmim][OMs] (MPW1K/6-311++G^{**}; ECP for Cs, Hay-Wadt VDZ(n+1)).

	Pre-reaction cplx	Transition state	Post-reaction cplx
E	-1989.24151	-1989.2082	-1989.272195
ZPE	0.438119	0.437122	0.439072
Gibbs(100°C)	0.334269	0.334151	0.33347

Center	Atomic	Atomic	Coordinates	(Angstroms)		
Number	Number	Туре	Х	Y		Ζ
1	6	0	-3.739445	2.956775	0.108872	
2	6	0	-3.978224	2.562691	-1.156231	
3	6	0	-1.924390	1.972572	-0.643175	
4	7	0	-2.458944	2.578150	0.408650	
5	1	0	-4.376613	3.435335	0.824309	
6	1	0	-4.866729	2.620999	-1.750957	
7	1	0	-0.884391	1.553552	-0.734062	
8	7	0	-2.834892	1.963991	-1.604835	
9	55	0	0.115233	-1.871519	-0.441135	
10	9	0	0.512280	0.934588	-0.901859	
11	1	0	5.384532	3.745457	-2.364301	
12	6	0	5.182916	3.047409	-1.554945	
13	1	0	5.297419	3.586734	-0.615603	
14	1	0	5.944551	2.272100	-1.587941	
15	6	0	3.792932	2.454866	-1.678295	
16	1	0	3.039911	3.242387	-1.661983	
17	1	0	3.675820	1.943655	-2.632705	
18	6	0	3.424884	1.505266	-0.574370	
19	1	0	3.566307	1.953289	0.406770	
20	1	0	2.397426	1.151214	-0.684706	
21	8	0	4.355268	0.379447	-0.663478	
22	16	0	4.181051	-0.817478	0.338314	
23	8	0	3.943639	-0.320826	1.665323	
24	8	0	3.249508	-1.781645	-0.197388	
25	6	0	5.803723	-1.487073	0.220873	
26	1	0	5.819128	-2.372739	0.846350	
27	1	0	5.995561	-1.745390	-0.813351	
28	1	0	6.507514	-0.747960	0.582646	
29	6	0	-1.797687	2.770106	1.691430	
30	1	0	-1.175707	3.662336	1.632957	
31	1	0	-2.584940	2.962895	2.415826	
32	6	0	-0.980224	1.564626	2.105322	
33	1	0	-0.190185	1.399427	1.372330	
34	1	0	-1.620616	0.682138	2.089554	
35	6	0	-0.373506	1.752072	3.484254	
36	1	0	0.240880	2.654797	3.496748	
37	1	0	-1.169004	1.912988	4.214604	
38	6	0	0.468519	0.562973	3.906922	
39	1	0	1.303463	0.409348	3.225817	
40	1	0	0.878881	0.703631	4.904609	
41	1	0	-0.127623	-0.347980	3.917839	
42	16	0	-3.525313	-1.391885	0.048357	
43	8	0	-2.919750	-1.601525	-1.281542	
44	8	0	-2.547375	-1.629004	1.121194	
45	8	0	-4.234243	-0.122226	0.163060	
46	6	0	-4.754501	-2.659140	0.224786	
47	1	0	-5.491984	-2.530848	-0.559210	
48	1	0	-4.272806	-3.626350	0.138878	

49	1	0	-5.214888	-2.549539	1.199967
50	6	0	-2.680788	1.246133	-2.852061
51	1	0	-3.051802	0.232650	-2.723534
52	1	0	-3.222892	1.768125	-3.633184
53	1	0	-1.626109	1.215412	-3.099587

Transition state

Center	Atomic	Atomic	Coordinates (A	Angstroms)		
Number	Number	Туре	Х	Y		Z
		J I		_		
1	6	0	-4 419880	2.006897	-0.756665	
2	6	0	-4 344942	1 322565	-1 914660	
	6	0	-2 320909	1 487336	-1 094843	
4	7	0	-3 148320	2 100980	-0.264250	
5	, 1	0	-5 265575	2 401573	-0.231552	
6	1	0	-5.112304	1.002821	-2.589696	
7	1	0	-1.232460	1 400151	-0.996551	
8	7	0	-3.027386	1.018479	-2.109562	
9	55	0	0.836689	-1.688819	0.103169	
10	9	0	0.447150	1.284934	-0.988639	
11	1	0	2,933741	4.816487	-0.694649	
12	6	0	2.809429	3.812560	-0.295517	
13	1	0	1.967208	3.828830	0.393353	
14	1	0	3.704836	3.557005	0.264834	
15	6	0	2.576310	2.813482	-1.408758	
16	1	0	1.673117	3.050370	-1.965875	
17	1	0	3.403179	2.818538	-2.114978	
18	6	0	2.398157	1.420792	-0.927978	
19	1	0	2.234710	1.227551	0.111540	
20	1	0	2.357615	0.622444	-1.639612	
21	8	0	4.274252	1.022703	-0.638394	
22	16	0	4.392916	-0.375888	-0.099678	
23	8	0	3.741096	-0.505739	1.200010	
24	8	0	3.934871	-1.364354	-1.071365	
25	6	0	6.129049	-0.589021	0.128316	
26	1	0	6.285073	-1.588342	0.518590	
27	1	0	6.615719	-0.471475	-0.832275	
28	1	0	6.473586	0.156760	0.834383	
29	6	0	-2.773762	2.705596	1.007687	
30	1	0	-2.455422	3.730937	0.825036	
31	1	0	-3.680613	2.740251	1.605390	
32	6	0	-1.699931	1.917163	1.726132	
33	1	0	-0.790628	1.911304	1.124808	
34	1	0	-2.026189	0.881795	1.821541	
35	6	0	-1.401996	2.503531	3.094438	
36	1	0	-1.097356	3.547185	2.992233	
37	1	0	-2.314007	2.507896	3.694141	
38	6	0	-0.322544	1.727845	3.824918	
39	1	0	0.614342	1.740550	3.270378	
40	1	0	-0.129219	2.149187	4.808815	
41	l	0	-0.615193	0.688092	3.956700	
42	16	0	-2.869146	-1.8/1832	0.364383	
43	8	0	-2.156976	-2.113864	-0.906384	
44	8	0	-1.925458	-1./2521/	1.482351	
45	8	0	-3.848300	-0.792973	0.275427	
40	0	0	-3.791080	-3.350041	0.694292	
47	1	0	-4.495014	-5.505255	-0.11/302	
40 70	1	0	-3.100404	-4.1020/9 -3.216717	1 632042	
49 50	1	0	-4.318011	-5.210/17	1.032042 _3 1/2666	
51	1	0	-2.791200	-0.873256	-2 799623	
52	1	0	-3.060442	0.300727	-4.054112	
53	1	0	-1.456561	0.428035	-3.315884	

Ζ

Center	Atomic	Atomic	Coordinates (- Angstroms)	
Number	Number	Type	Х	Y	
i tullio di	1 (01110)01	1990		-	
1	6		1 697722		0 427222
1	6	0	1.087732	2.725388	-0.437522
2	6	0	2.280930	1.814090	-1.237643
5	6	0	0.124293	1.439377	-1.259733
4	/	0	0.340431	2.4/63/8	-0.4/1405
5	1	0	2.106155	3.518592	0.140140
0	1	0	3.311002	1.643448	-1.481328
/	1	0	-0.833724	0.985246	-1.4/559/
8	1	0	1.281074	1.032103	-1./48849
9	55	0	-2.040928	-2.239439	0.477132
10	9	0	5.130889	0.519180	-2.044099
11	I	0	7.301289	0.732876	1.220340
12	0	0	6.420865	0.618416	0.592368
13	1	0	6.199136	1.58/8/4	0.152802
14	I	0	5.584629	0.340820	1.231231
15	0	0	0.049577	-0.425737	-0.483307
16	1	0	7.497804	-0.14/388	-1.108/79
17	I	0	6.899504	-1.3851/8	-0.028257
18	0	0	5.44/150	-0.655685	-1.354360
19	1	0	4.56/821	-0.931129	-0.///916
20	1	0	5.641328	-1.412850	-2.110278
21	8	0	2.568979	-1.350218	0.117760
22	16	0	1.515116	-1.477486	1.124386
23	8	0	0.492918	-0.418665	1.026222
24	8	0	0.89/451	-2.808309	1.174297
25	6	0	2.310858	-1.245733	2.692518
26	1	0	1.565376	-1.333302	3.474413
27	1	0	3.068516	-2.012/11	2.804962
28	I	0	2.760378	-0.259467	2.705581
29	6	0	-0.685840	3.158499	0.304645
30	1	0	-0.579026	4.226979	0.127259
31	l	0	-1.644626	2.841808	-0.098858
32	0	0	-0.585586	2.829257	1.780730
33	1	0	0.362134	3.194165	2.182240
34	I	0	-0.569762	1.745963	1.892484
35	0	0	-1./39080	3.433390	2.559497
30	1	0	-1./52159	4.515805	2.415989
29	I 6	0	-2.078039	2 120067	2.14/910
30 20	0	0	-1.00/431	3.120907	4.041323
39 40	1	0	-0.751080	3.510640	4.463909
40	1	0	-2.300304	2.046327	4.379432
41	16	0	-1.084525	0.518024	4.213221
42	8	0	2 370200	0.184585	1 908112
43	8	0	-2.379209	-0.184585	-1.908112
44	8	0	-3 293312	1 901/9/	-0.303049
45	6	0	-4 709368	0.591625	-2 774564
40	1	0	-4.237396	1 1/8578	-3 575517
48	1	0	4.033180	0.420030	3 002251
40 /0	1	0	-4.200160	1 00//00	-3.092231
49 50	1	0	-3.009333	-0 1205/1	-2.440032
51	1	0	0.402093	-0.130341	-2.392434
52	1	0	2 076027	0.136061	-3 445258
52	1	0	1 937121	-0.909938	-2.004898
55	-	0	1.757121	0.,0,,00	2.0010/0

(2) Fig. 1 (b) : $[Cs^+F^- + C_3H_7OMs \rightarrow C_3H_7F + Cs^+OMs^-]$ in ionic liquid [bmim][OMs] (MPW1K/6-311++G^{**}; ECP for Cs, Hay-Wadt VDZ(n+1)).

	Pre-reaction cplx	Transition state	Post-reaction cplx
E	-1989.226073	-1989.205291	-1989.274606
ZPE	0.438623	0.437756	0.438995
Gibbs(100°C)	0.332012	0.336881	0.333846

Center	Atomic	Atomic	Coordinates (A	Angstroms)		
Number	Number	Туре	Х	Y		Ζ
1	6	0	-2 374729	-2 132874	-0.466612	
2	1	0	-2 103943	-1 381607	0.266245	
3	1	0	-1.832661	-1 943581	-1 383700	
4	6	0	-2.125063	-3.514253	0.055809	
5	1	0	-2.423264	-4.244884	-0.696459	
6	1	0	-1.042390	-3 550871	0 158470	
7	6	0	-2.808721	-3.798817	1.377823	
8	1	0	-3.891139	-3.726523	1.295332	
9	1	0	-2.569075	-4.799516	1.730971	
10	1	0	-2.483174	-3.091901	2.139356	
11	8	0	-3 812343	-2 022479	-0 764404	
12	16	0	-4 371552	-0.611459	-1 138046	
13	8	0	-4.559344	0.195002	0.041257	
14	8	0	-3 579902	-0.029829	-2 199789	
15	6	0	-5 934972	-1 107071	-1 769564	
16	1	0	-6 455306	-0 200147	-2 056855	
10	1	0	-5 772902	-1 748257	-2 626920	
18	1	0	-6 470739	-1 624047	-0.982829	
19	55	0	2 857047	-1 587000	1 165585	
20	9	0	0.292180	-1 720297	0.028955	
20	6	0	-2 481676	2 947696	0.106286	
21	6	0	-0.996072	1 477268	-1 208369	
23	6	0	0.034874	2 815257	0.175571	
23	6	0	0.967705	2.063842	-0.451165	
25	7	0	0 296784	1 244338	-1 314610	
25	, 7	0	-1 187597	2 435501	-0 313143	
20	6	0	-2.795994	2.611494	1.5492.08	
28	6	0	-4.165862	3.123355	1.954147	
29	1	0	-4.912022	2.683540	1.293183	
30	- 1	0	-4.212024	4.204317	1.807783	
31	1	0	6.653396	1.792275	0.240750	
32	6	0	6.127706	1.965198	-0.691033	
33	16	0	4.675846	0.951128	-0.715561	
34	1	0	6.746453	1.684810	-1.535601	
35	1	0	5.821776	3.001765	-0.771707	
36	8	0	3.867823	1.355872	0.456355	
37	8	0	5.138693	-0.434493	-0.584156	
38	8	0	3.990759	1.237980	-1.973407	
39	1	0	-1.779528	0.967802	-1.742751	
40	1	0	2.039005	2.021845	-0.330929	
41	1	0	0.141667	3.580616	0.917303	
42	1	0	-3.225839	2.504826	-0.547731	
43	1	0	-2.485768	4.023761	-0.057027	
44	1	0	-2.032949	3.036299	2.203078	
45	1	0	-2.760203	1.530279	1.670197	
46	6	0	-4.504702	2.789634	3.393760	
47	1	0	-3.783888	3.227982	4.082525	
48	1	0	-5.489428	3.163581	3.664116	

49	1	0	-4.503823	1.713024	3.552606
50	6	0	0.890073	0.179447	-2.113866
51	1	0	0.356504	0.118437	-3.056585
52	1	0	1.929224	0.436269	-2.293980
53	1	0	0.780934	-0.743451	-1.533430

Ζ

Transition state

Center	Atomic	Atomic	Coordinates (A	Angstroms)	
Number	Number	Туре	Х	Y	
1	6	0	1 275862	2 425150	0.228121
1	0	0	1.373802	1.686124	-0.238121
2	1	0	1.460470	2 122088	1 224025
5	1	0	1.130380	2.125966	-1.254955
4	0	0	1.294352	3.877013	0.122444
5	1	0	1.895689	4.43/350	-0.589455
0	I C	0	0.256926	4.1585/1	-0.030774
/	0	0	1.730845	4.168909	1.542221
8	1	0	2.765006	3.8/1595	1.696251
9	1	0	1.04/514	5.230480	1.764782
10	1	0	1.109402	3.62/819	2.253111
11	8	0	3.215834	2.433210	-0.585258
12	16	0	3.835010	1.203374	-1.184917
13	8	0	4.123833	0.176935	-0.193063
14	8	0	3.056166	0./16144	-2.321422
15	0	0	5.3/3015	1.80/4/4	-1.804361
10	1	0	5.892309	0.972557	-2.261719
17	1	0	5.167082	2.578475	-2.530575
10	1	0	2 151260	2.205050	-0.9/1039
19	55	0	-5.151200	1.403941	1.090093
20	9	0	-0.303399	2.043/17	0.117550
21	6	0	3.130383	-2.8/9480	0.014155
22	6	0	1.424818	-1.543527	-1.118141
23	6	0	0.652402	-2.932460	0.381175
24	0	0	-0.400010	-2.207299	1 08/038
25	7	0	0.112108	-1.411507	-1.084038
20	6	0	2 501714	-2.404010	-0.238180
27	0	0	5.046302	-2.034621	1.443238
28	0	0	5.662551	-3.021939	0.070360
30	1	0	5 192035	-4.066045	1 360296
31	1	0	-6 135074	-2 461192	0.368878
32	6	0	-5 596770	-2 671979	-0 547849
33	16	0	-4 290611	-1 488433	-0.721691
34	10	0	-6 252320	-2 569119	-1 405006
35	1	0	-5.162539	-3.664323	-0.519110
36	8	0	-3 427799	-1 637795	0 473741
37	8	0	-4.940716	-0.172047	-0.733920
38	8	0	-3.586353	-1.825009	-1.953544
39	1	0	2.091467	-0.956518	-1.731962
40	1	0	-1.458772	-2.302437	0.063163
41	1	0	0.687675	-3.693707	1.133975
42	1	0	3.780561	-2.297408	-0.655656
43	1	0	3.245166	-3.931572	-0.251667
44	1	0	2.962277	-3.201276	2.131610
45	1	0	3.460031	-1.577630	1.664949
46	6	0	5.513837	-2.815786	3.072213
47	1	0	4.939075	-3.424155	3.769025
48	1	0	6.561420	-3.085005	3.186304
49	1	0	5.404767	-1.775265	3.371656
50	6	0	-0.650018	-0.448447	-1.867536
51	1	0	-0.098348	-0.241168	-2.777288
52	1	0	-1.615066	-0.885541	-2.105651
53	1	0	-0.759107	0.466272	-1.286103

Ζ

Center	Atomic	Atomic	Coordinates (A	Angstroms)	
Number	Number	Туре	Х	Y	
				-	
1	6	0	3.723649	-2.179926	-0.969905
2	1	0	3.902438	-2.125345	-2.042187
3	1	0	3.490935	-1.194718	-0.577530
4	6	0	4.872760	-2.823956	-0.249430
5	1	0	5.722720	-2.145483	-0.335113
6	1	0	4.631358	-2.880459	0.811833
7	6	0	5.235736	-4.194980	-0.785364
8	1	0	5.524275	-4.141960	-1.834021
9	1	0	6.068518	-4.623977	-0.233581
10	1	0	4.394940	-4.879362	-0.706888
11	8	0	2.242933	0.346921	0.503855
12	16	0	1.820431	1.063855	1.715363
13	8	0	1.790940	2.519950	1.555994
14	8	0	0.551847	0.529932	2.241549
15	6	0	3.049820	0.730822	2.945890
16	1	0	2.759294	1.233862	3.860768
17	1	0	3.102185	-0.340481	3.102145
18	1	0	3.999511	1.112610	2.589273
19	55	0	-0.220881	-1.730039	0.119642
20	9	0	2.569212	-2.955696	-0.805780
21	6	0	0.245686	4.044957	-0.711661
22	6	0	-1.077580	2.779932	0.936421
23	6	0	-1.980922	2.897564	-1.049162
24	6	0	-2.782573	2.131177	-0.278692
25	7	0	-2.194258	2.074367	0.958564
26	1	0	-0.922290	3.294240	-0.2/11/4
27	0	0	1.095450	3.253140	-1.083027
20	1	0	2.333703	4.027789	-2.093408
29	1	0	2.903798	4.279964	-1.201134
31	1	0	-4 511207	-3 688818	-0.571062
32	6	0	-5.027261	-2 748636	-0.727419
33	16	0	-3 853400	-1.429243	-0.592.093
34	1	0	-5.792163	-2.602549	0.026275
35	1	0	-5.459898	-2.712494	-1.720486
36	8	0	-2.827835	-1.680356	-1.611828
37	8	0	-3.280462	-1.524287	0.766152
38	8	0	-4.611846	-0.195620	-0.797226
39	1	0	-0.362127	2.869243	1.731765
40	1	0	-3.669528	1.561009	-0.511559
41	1	0	-2.068484	3.175186	-2.080092
42	1	0	0.823783	4.268068	0.178370
43	1	0	-0.103986	4.977321	-1.150587
44	1	0	0.510270	2.995163	-2.568056
45	1	0	1.392932	2.323101	-1.201397
46	6	0	3.211355	3.243479	-3.051402
47	1	0	2.675531	2.995368	-3.966508
48	1	0	4.096900	3.809976	-3.330307
49	1	0	3.540466	2.311485	-2.596131
50	6	0	-2.692630	1.341915	2.110639
51	1	0	-3.458179	1.926092	2.611733
52	1	0	-3.100814	0.393528	1.772075
53	1	0	-1.855211	1.15/193	2.773511

$\begin{array}{l} \text{(3) Fig. 2 (a) : } [Cs^{^+}F^{^-} + C_3H_7OMs \rightarrow C_3H_7F + Cs^{^+}OMs^{^-}] in ionic liquid [\textit{N-butylthiazolium}][OMs]. \\ \\ \text{(MPW1K/6-311++G^{**}; ECP for Cs, Hay-Wadt VDZ(n+1)).} \end{array}$

	Pre-reaction cplx	Transition state	Post-reaction cplx
E	-2292.773957	-2292.739291	-2292.799273
ZPE	0.392128	0.391759	0.393405
Gibbs(100°C)	0.290543	0.292835	0.289975

Center	Atomic	Atomic	Coordinates (A	Angstroms)		
Number	Number	Туре	Х	Y		Ζ
1	6	0	-3.991835	1.708672	-1.211864	
2	6	0	-3.847899	1.404871	-2.508164	
3	6	0	-1.732781	1.668283	-1.320098	
4	7	0	-2.789268	1.868261	-0.566493	
5	1	0	-4.901614	1.790533	-0.649930	
6	1	0	-4.619453	1.208417	-3.226762	
7	1	0	-0.630992	1.638756	-0.985013	
8	55	0	0.321519	-1.547669	-0.005870	
9	9	0	0.728240	1.286944	-0.629534	
10	1	0	3.263785	4.125909	1.333509	
11	6	0	3.223649	3.089257	1.006177	
12	1	0	2.183503	2.774625	0.962623	
13	1	0	3.733328	2.484184	1.752560	
14	6	0	3.862627	2.924676	-0.358522	
15	1	0	3.354788	3.562901	-1.081458	
16	1	0	4.908678	3.231791	-0.345740	
17	6	0	3.751471	1.524073	-0.891194	
18	1	0	2.714002	1.191067	-0.848139	
19	1	0	4.147007	1.436555	-1.899198	
20	8	0	4.576644	0.677306	-0.032607	
21	16	0	4.580967	-0.871325	-0.298615	
22	8	0	3.419080	-1.482175	0.303956	
23	8	0	4.825374	-1.135122	-1.688682	
24	6	0	5.995507	-1.286800	0.659875	
25	1	0	6.104746	-2.363809	0.596855	
26	1	0	6.857330	-0.787089	0.235759	
27	1	0	5.821237	-0.978313	1.683321	
28	6	0	-2.742000	2.280093	0.843775	
29	1	0	-2.678301	3.367660	0.854869	
30	1	0	-3.690942	1.970691	1.267303	
31	6	0	-1.612310	1.659822	1.630250	
32	1	0	-0.657120	1.826235	1.133803	
33	1	0	-1.784355	0.585772	1.680426	
34	6	0	-1.570763	2.223692	3.040123	
35	1	0	-1.398427	3.301094	3.000262	
36	1	0	-2.541411	2.082704	3.517983	
37	6	0	-0.495133	1.568043	3.884612	
38	1	0	0.489440	1.706849	3.440759	
39	1	0	-0.469324	1.986101	4.888602	
40	1	0	-0.674524	0.498216	3.974548	
41	16	0	-3.387451	-1.511068	0.469930	
42	8	0	-2.747655	-1.387652	-0.851525	
43	8	0	-2.400818	-1.850095	1.506052	
44	8	0	-4.230177	-0.364861	0.812033	
45	6	0	-4.482691	-2.900737	0.362909	

-	. ,	•	•	•		
46	1		0	-5.220384	-2.695313	-0.404190
47	1		0	-3.903441	-3.780448	0.107277
48	1		0	-4.962249	-3.028112	1.326514
49	16		0	-2.183814	1.287494	-2.895285

Transition state

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y		Z
1	6	0	-4.072062	1.475224	-1.203947	
2	6	0	-3.819565	1.284641	-2.506223	
3	6	0	-1.840489	1.766882	-1.190896	
4	7	0	-2.941449	1.763762	-0.481188	
5	1	0	-5.010278	1.385000	-0.692710	
6	1	0	-4.515797	1.027269	-3.280343	
7	1	0	-0.816473	1.917880	-0.803984	
8	55	0	0.644507	-1.483150	0.080042	
9	9	0	0.759327	1.791622	-0.395595	
10	1	0	3.911707	4.612944	0.481876	
11	6	0	3.599580	3.585435	0.652845	
12	1	0	2.800421	3.597556	1.391063	
13	1	0	4.442324	3.039110	1.067794	
14	6	0	3.132591	2.941940	-0.635344	
15	1	0	2.278748	3.472027	-1.050393	
16	1	0	3.919036	2.956864	-1.386180	
17	6	0	2.691721	1.534950	-0.468869	
18	1	0	2.535394	1.134643	0.511268	
19	1	0	2.470687	0.944336	-1.333751	
20	8	0	4.469679	0.734269	-0.435535	
21	16	0	4.333159	-0.747982	-0.237356	
22	8	0	3.770494	-1.067065	1.071423	
23	8	0	3.600412	-1.368932	-1.338297	
24	6	0	5.996654	-1.332459	-0.281586	
25	1	0	5.967852	-2.407331	-0.143604	
26	1	0	6.420549	-1.079882	-1.245893	
27	1	0	6.545263	-0.856978	0.522423	
28	6	0	-3.012449	2.061796	0.957591	
29	1	0	-3.144307	3.138727	1.053066	
30	1	0	-3.902381	1.553000	1.310211	
31	6	0	-1.814086	1.582099	1.740842	
32	1	0	-0.889738	1.993358	1.337088	
33	1	0	-1.765475	0.497459	1.657264	
34	6	0	-1.949872	1.961024	3.205889	
35	1	0	-2.007348	3.047079	3.301377	
36	1	0	-2.888173	1.564763	3.595777	
37	6	0	-0.796832	1.436819	4.039519	
38	1	0	0.155690	1.824513	3.681914	
39	1	0	-0.901151	1.724182	5.083219	
40	1	0	-0.752969	0.350203	3.998176	
41	16	0	-3.096554	-1.699287	0.273845	
42	8	0	-2.387146	-1.359771	-0.973616	
43	8	0	-2.148911	-1.996002	1.356568	
44	8	0	-4.117274	-0.714799	0.637112	
45	6	0	-3.970743	-3.207101	-0.045313	
46	- 1	0	-4.673739	-3.030442	-0.851126	
47	- 1	0	-3.254910	-3.970849	-0.326431	
48	1	0	-4.494194	-3.491865	0.859964	
49	16	0	-2.142052	1.434122	-2.807738	
+7			-2.142032	1.734122	-2.007758	

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х		Y		Ζ
1	6		h	1 457094	2 220423	1 510013	
1	6		<i>)</i>	0.277575	2.220423	2 160008	
2	6		5	0.001814	1 568264	0.138801	
3	0		5	1 222272	1.306204	-0.136691	
4	1		5 ว	2 428106	2 205700	1.017260	
5	1		ן ר	2.438190	2.395700	3 103700	
0	1		5 ว	0.197029	1 106615	1 115047	
/ 8	55		ן ר	0.240053	2 807097	-1.113947	
9	9		<i></i>	-3 610155	1 370198	2 877029	
10	1		5	-6.059549	3 126/98	0.351733	
10	6		<i>)</i>	-5.171638	2 614483	0.716318	
12	1		<i></i>	4 618721	3 313240	1 330785	
12	1		ן ר	-4.018721	2 356128	0.136521	
13	1		ן ר	-4.347330	1 360863	1 /00253	
14	0		<i>)</i>)	-6 174307	1.509805	2 351797	
15	1		<i></i>	6 124104	0.692447	0.871040	
10	1		5 ว	-0.124104	0.092447	1 081181	
17	1		ן ר	3 688808	0.343114	1.55050	
10	1		ן ר	-3.088898	0.343114	2 513618	
20	1		ן ר	2 638220	-0.304000	1.035274	
20	0		5	-2.038229	0.030830	-1.033274	
21	10		5	-2.220002	-0.401183	-1.909081	
22	0		5	-0.797555	-0.2/3/13	-2.332946	
23	0		0 D	-2.344736	-1.737823	-1.319829	
24	0))	-3.143130	-0.134743	-5.439174	
25	1		5	-2.843273	-0.884047	-4.165215	
20	1		5	-4.197340	-0.228822	-5.220407	
27	1		5	-2.920490	1 765670	-3.823130	
20	1		5	2.430180	1.703070	-0.714810	
30	1		ן ר	2 108471	1.175720	1 581622	
30	1		5 ว	2.108471	2 125642	-1.381022	
31	0		5 ว	2.903413	3.133043	-1.113340	
32	1		ן ר	2 1 5 5 4 9 1	3 706837	1 574847	
34	1		<i>)</i>)	4 135034	3.032545	-2.075330	
35	1		<i></i>	4.133034	2 445582	-1.611659	
35	1		ן ר	3 825353	2.445582	2 962904	
30	6		<i>)</i>	4 673286	1 389584	-2.762704	
38	0		<i>)</i>)	5.026831	4.389384	-1.620450	
30	1		<i>)</i>	5 506156	4.290533	-3 176530	
40	1		<i></i>	3 905756	4.290333	-2 973950	
40	16		ן ר	2 654870	1 252825	-2.973930	
41	10		ן ר	2.054870	-1.252825	1.665105	
42	8		ן ר	2 0035/13	2 320835	0.727880	
43	8		5 ว	2.993545	-2.320833	1 521701	
44	0		, 1	3 025221	-0.043947	3 280/20	
43 16	1		, 1	2767840	-1.007133	J.209430 1 022750	
40	1		ງ ງ	2.707049	-1.133783	3 450406	
47	1		, 1	4 085384	-2.700400	3 3 3 9 8 2 1	
40	1		5 1	4.005504	1 750002	1 121224	
49	10	,	J	-0.772730	1.750005	1.121224	

$\begin{array}{l} \mbox{(4) Fig. 2 (b) : [Cs^+F^- + C_3H_7OMs \rightarrow C_3H_7F + Cs^+OMs^-] in ionic liquid [N-butylthiazolium][OMs].} \\ (MPW1K/6-311++G^{**}; ECP \mbox{ for Cs, Hay-Wadt VDZ(n+1)}). \end{array}$

	Pre-reaction cplx	Transition state	Post-reaction cplx
E	-2292.757755	-2292.73292	-2292.802589
ZPE	0.393305	0.392448	0.393691
Gibbs(100°C)	0.294117	0.296076	0.292021

Center	Atomic	Atomic	Coordinates (A	Angstroms)		
Number	Number	Туре	Х	Y		Ζ
1	6	0	-3.741257	-1.210710	-0.328823	
2	1	0	-2.819078	-1.297764	0.266127	
3	1	0	-3.917676	-2.118284	-0.900045	
4	6	0	-4.914514	-0.863924	0.543047	
5	1	0	-5.807274	-0.716906	-0.066329	
6	1	0	-5.099148	-1.740837	1.163978	
7	6	0	-4.654899	0.341438	1.424752	
8	1	0	-4.487219	1.232346	0.822955	
9	1	0	-5.498063	0.535908	2.084318	
10	1	0	-3.769231	0.167692	2.031626	
11	8	0	-3.612713	-0.133300	-1.318984	
12	16	0	-2.206960	0.198691	-1.926394	
13	8	0	-1.564450	1.245776	-1.177298	
14	8	0	-1.469364	-1.016868	-2.169545	
15	6	0	-2.744175	0.862132	-3.466962	
16	1	0	-1.852858	1.177621	-3.998009	
17	1	0	-3.264399	0.086508	-4.014960	
18	1	0	-3.392946	1.706734	-3.269383	
19	55	0	0.682861	-2.420804	-0.286646	
20	9	0	-1.429954	-1.505606	1.350280	
21	6	0	-0.548307	2.170919	2.288034	
22	6	0	1.075951	2.164637	0.421538	
23	6	0	-0.465819	3.796993	0.426140	
24	6	0	0.220185	4.130714	-0.676279	
25	7	0	0.041822	2.679597	1.038933	
26	6	0	-0.076226	0.799586	2.693338	
27	6	0	-0.665128	0.419243	4.042908	
28	1	0	-1.749071	0.539863	4.004786	
29	1	0	-0.301741	1.094233	4.822183	
30	1	0	5.440402	-1.193091	0.651911	
31	6	0	5.303795	-0.237523	0.159280	
32	16	0	3.631249	-0.134437	-0.411175	
33	1	0	5.956777	-0.155823	-0.701915	
34	1	0	5.480787	0.578089	0.850497	
35	8	0	2.776249	-0.249316	0.792375	
36	8	0	3.431409	-1.259948	-1.321848	
37	8	0	3.492092	1.185620	-1.033051	
38	1	0	1.615534	1.276429	0.742670	
39	1	0	0.027000	4.954939	-1.336302	
40	1	0	-1.327375	4.280490	0.847519	
41	1	0	-1.622809	2.158178	2.124730	
42	1	0	-0.326982	2.915088	3.053071	
43	1	0	1.011909	0.766362	2.753793	
44	1	0	-0.422177	0.055060	1.968610	
45	6	0	-0.346935	-1.021754	4.390832	
46	1	0	0.729303	-1.175532	4.467128	
47	1	0	-0.791322	-1.306179	5.342860	

Supplementary Material (ESI) for Organic & Biomolecular Chemistry	
This journal is (c) The Royal Society of Chemistry 2010	

48	1	0	-0.735868	-1.666836	3.605184
49	16	0	1.504535	3.029308	-0.953464

Ζ

Transition state

Center	Atomic	Atomic	Coordinate	s (Angstroms)	
Number	Number	Туре	Х	Y	
1	6	0	-3.158134	4 -1.122842	-0.321636
2	1	0	-2.546832	2 -0.762084	0.477031
3	1	0	-2.693443	3 -1.375234	-1.249838
4	6	0	-4.531265	5 -1.611495	-0.039116
5	1	0	-5.161063	3 -1.385723	-0.897516
6	1	0	-4.430470	-2.691627	0.026753
7	6	0	-5.126698	3 -1.045284	1.232564
8	1	0	-5.185838	8 0.039246	1.183975
9	1	0	-6.130020	5 -1.432153	1.395058
10	1	0	-4.522173	3 -1.322376	2.093792
11	8	0	-3.581512	2 0.562050	-0.912207
12	16	0	-2.423386	5 1.496548	-1.151313
13	8	0	-2.336844	4 2.528875	-0.131405
14	8	0	-1.185485	5 0.753781	-1.375243
15	6	0	-2.85486	7 2.294699	-2.666528
16	1	0	-2.065473	3 2.998273	-2.905633
17	1	0	-2.943525	5 1.540685	-3.439270
18	1	0	-3.796772	2 2.810107	-2.521057
19	55	0	0.43796	4 -2.234122	-0.881366
20	9	0	-2.156959	9 -2.807683	0.250875
21	6	0	-0.330060) 1.997311	2.191794
22	6	0	1.62082	9 2.005086	0.687565
23	6	0	0.26191	9 3.792394	0.582277
24	6	0	1.19285	0 4.149272	-0.316307
25	7	0	0.53243	1 2.572650	1.148829
26	6	0	-0.297908	3 0.487961	2.229816
27	6	0	-1.258090	0 -0.056716	3.274176
28	1	0	-2.26/10	0.29/34/	3.057158
29	1	0	-0.995629	9 0.351583	4.252182
30	I	0	4.98814	2 -2.343959	1.037439
31	6	0	5.17794	9 -1.316434	0.750176
32	16	0	3./34//	9 -0.682886	-0.053253
24	1	0	5 28076	4 -1.202930	1 621047
54 25	1	0	5.38076	4 -0.705645	1.021947
33 26	0	0	2.03490	0 -0.772013	0.939177
27	0	0	3.40203 4.02712	7 -1.347040 5 0.712784	-1.204370
38	0	0	4.02713	1 102/258	-0.387442
30	1	0	1.98029	1 1.024238 5 5.046266	0.985955
40	1	0	0.63765	7 4 308820	-0.903300
40	1	0	-1 331449	7 + .308820	1 958938
42	1	0	-0.013109	8 2.423721	3.142187
43	1	0	0.706/19	6 0 120330	2 435215
44	1	0	-0 57540	0.119920	1.243302
45	6	0	-1 246176	5 -1.573839	3,330003
46	1	0	-0 25003	2 -1.942149	3.572801
40	1	0	-1 92469	1 -1.936409	4 099212
48	1	0	-1 551084	4 -2.020531	2.382816
40	1	0	2,20502	. 2.020001	2.302010

Center	Atomic	Atomic	Coordinates (A	ngstroms)		
Number	Number	Туре	Х	Y		Ζ
1	6	0	-4 499897	-0 429872	0.638819	
2	1	0	-4.675104	-0.429872	1 697283	
23	1	0	-3 830120	0.415031	0.511069	
4	6	0	-5 787970	-0.258969	-0 113231	
5	1	0	-6 241616	0.667795	0.240683	
5	1	0	-5 559167	-0.104520	-1 167499	
7	6	0	-6 750983	-1 417438	0.057868	
, 8	1	0	-7 023228	-1 549820	1 103907	
9	1	0	-7.666670	-1 252921	-0 504732	
10	1	0	-6 307730	-2 347105	-0.289652	
10	8	0	-1 954923	1 450579	-0 134939	
12	16	0	-1.019655	2 299944	-0.891870	
12	8	0	-0.415423	3 363586	-0.090180	
14	8	0	-0.033597	1 483503	-1 616777	
14	6	0	-1 993478	3 118049	-2 126698	
15	1	0	-1 335817	3 742353	-2 720418	
10	1	0	-2 466904	2 367942	-2 749659	
18	1	0	-2 738982	3 724210	-1 625073	
10	55	0	-0.781665	-1 460436	-0.751092	
20	9	0	-3 817941	-1 555821	0.156444	
20	6	0	1 614423	2 387566	1 910018	
21	6	0	2 728479	0.958507	0.246395	
23	6	0	2 501639	3 127439	-0 288309	
23	6	0	3 169417	2 686709	-1 365395	
25	7	0	2 272578	2 128747	0 622487	
26	, 6	0	0.716171	1.262840	2.369678	
27	6	0	0.101355	1.587007	3 720244	
28	1	0	-0.435205	2.534000	3.653276	
29	1	0	0.891386	1.728605	4 460230	
30	1	0	2,736548	-4.484855	1.379889	
31	6	0	3.486356	-3.850135	0.922392	
32	16	0	2.662454	-2.546397	0.055234	
33	1	0	4.073103	-4.410302	0.203618	
34	1	0	4.127800	-3.408703	1.676015	
35	8	0	1.873337	-1.804958	1.067783	
36	8	0	1.793664	-3.187010	-0.932490	
37	8	0	3.711947	-1.701976	-0.518726	
38	1	0	2.601644	0.041602	0.806359	
39	1	0	3.451986	3.254631	-2.230789	
40	1	0	2.106369	4.106366	-0.099861	
41	1	0	1.021629	3.281831	1.755929	
42	1	0	2.399503	2.589842	2.637285	
43	1	0	1.260435	0.321423	2.434601	
44	1	0	-0.079065	1.138125	1.636835	
45	6	0	-0.846260	0.500410	4.190113	
46	1	0	-0.333563	-0.455788	4.279983	
47	1	0	-1.274583	0.741589	5.160342	
48	1	0	-1.666579	0.373950	3.486023	
49	16	0	3.480534	1.006511	-1.248348	

(5) Fig. 3 (a) : $[Cs^{+}F^{-} + C_{3}H_{7}OMs \rightarrow C_{3}H_{7}F + Cs^{+}OMs^{-}]$ in ionic liquid [mim-^tOH][OMs]. (MPW1K/6-311++G^{**}; ECP for Cs, Hay-Wadt VDZ(n+1)).

	Pre-reaction cplx	Transition state	Post-reaction cplx
E	-2064.445001	-2064.419177	-2064.506479
ZPE	0.443118	0.442107	0.444004
Gibbs(100°C)	0.339251	0.340936	0.342121

Center	Atomic	Atomic	Coordinates (A	Angstroms)		
Number	Number	Туре	Х	Y		Ζ
1	6	0	-4.472620	1.278737	1.353327	
2	1	0	-3.434541	1.172757	1.010244	
3	1	0	-4.601707	0.852346	2.343809	
4	6	0	-4.880829	2.722357	1.293613	
5	1	0	-5.932080	2.829686	1.565336	
6	1	0	-4.300835	3.226281	2.066898	
7	6	0	-4.591490	3.353564	-0.053971	
8	1	0	-5.177839	2.882814	-0.840082	
9	1	0	-4.829849	4.415349	-0.049097	
10	1	0	-3.538307	3.228297	-0.294695	
11	8	0	-5.394582	0.542784	0.472547	
12	16	0	-4.984082	-0.865783	-0.063281	
13	8	0	-4.254718	-0.759124	-1.303143	
14	8	0	-4.364900	-1.644673	0.981625	
15	6	0	-6.593416	-1.489213	-0.406514	
16	1	0	-6.460357	-2.476173	-0.835202	
17	1	0	-7.148828	-1.542135	0.521475	
18	1	0	-7.071944	-0.825455	-1.116234	
19	55	0	-1.139299	-1.124827	-0.428486	
20	9	0	-1.691882	1.433062	0.578153	
21	1	0	1.705093	0.091963	-0.446410	
22	8	0	1.500744	0.772263	-1.104105	
23	6	0	1.336589	2.047715	0.947351	
24	6	0	2.820641	2.727474	-0.989301	
25	1	0	2.056327	1.382028	1.423364	
26	1	0	1.461257	3.047958	1.362090	
27	1	0	0.317761	1.723188	1.168493	
28	6	0	4.514817	0.936175	-0.694128	
29	6	0	4.744895	2.665969	0.620738	
30	6	0	5.726979	1.788228	0.911560	
31	7	0	5.569057	0.721142	0.074274	
32	7	0	4.002854	2.120404	-0.390434	
33	6	0	1.505237	2.072520	-0.559641	
34	6	0	0.371400	2.849333	-1.202573	
35	1	0	0.417847	2.758786	-2.286949	
36	1	0	-0.569998	2.447800	-0.822606	
37	1	0	0.422005	3.905062	-0.937780	
38	1	0	2.427700	-3.941982	1.611346	
39	6	0	2.956503	-3.833819	0.671384	
40	16	0	3.202182	-2.106337	0.366311	
41	1	0	2.383374	-4.252934	-0.147517	
42	1	0	3.930466	-4.305758	0.729699	
43	8	0	3.991571	-1.590499	1.479574	
44	8	0	1.843714	-1.524160	0.305783	
45	8	0	3.893033	-2.006678	-0.925949	
46	1	0	4.118372	0.231488	-1.403211	
47	1	0	6.510653	1.828129	1.640840	

48	1	0	4.508494	3.620917	1.044438
49	6	0	6.394583	-0.471868	0.066494
50	1	0	7.413243	-0.198966	-0.191056
51	1	0	6.338261	-0.934936	1.044017
52	1	0	5.977687	-1.166444	-0.651936
53	1	0	2.914978	2.651608	-2.068371
54	1	0	2.839515	3.776987	-0.713607

Transition state

С	enter	Atomic	Atomic	(Coordinates (Angstroms)		
Ν	umber	Number	Туре	Х		Y		Z
	1	6	0		3.654506	1.339777	0.777978	
	2	1	0	-	3.453148	1.279913	-0.270728	
	3	1	0	-	3.318575	0.570220	1.440740	
	4	6	0	-	4.166197	2.607908	1.353844	
	5	1	0	-	4.891228	2.362459	2.126856	
	6	1	0	-	3.306379	3.061886	1.840296	
	7	6	0	-	4.764741	3.542563	0.324143	
	8	1	0	-	5.606431	3.073405	-0.178792	
	9	1	0	-	5.116335	4.460024	0.790759	
	10	1	0	-	4.023862	3.812288	-0.425719	
	11	8	0	-	5.295656	0.456065	0.527047	
	12	16	0	-	5.043841	-0.889103	-0.105578	
	13	8	0	-	4.489004	-0.756705	-1.447675	
	14	8	0	-	4.246932	-1.747105	0.764651	
	15	6	0	-	6.661081	-1.580493	-0.237453	
	16	1	0	-	6.558274	-2.560698	-0.689094	
	17	1	0	-	7.080499	-1.657983	0.758240	
	18	1	0	-	7.259273	-0.929850	-0.863722	
	19	55	0	-	1.251628	-0.960708	-0.436557	
	20	9	0	-	1.690319	1.759505	0.759985	
	21	1	0		1.650554	0.146867	-0.380011	
	22	8	0		1.481870	0.853370	-1.023191	
	23	6	0		1.533483	2.093960	1 051364	
	24	6	0		2 981003	2 680173	-0.941049	
	25	1	0		2.223615	1 369253	1 481343	
	26	1	0		1 745844	3 074303	1 476565	
	20	1	0		0.512694	1 830826	1 324296	
	28	6	0		4 516373	0 733463	-0.805906	
	20	6	0		4 985094	2 388015	0.541893	
	30	6	0		5 901341	1 417868	0.737561	
	31	7	0		5 595417	0 400728	-0 119847	
	32	, 7	0		4 132081	1 945951	-0 432293	
	33	, 6	0		1 632384	2 135411	-0.461483	
	34	6	0		0.550655	3 028240	-1 040441	
	35	1	0		0.553579	2 969208	-2 127715	
	36	1	0	_	0.412262	2 701760	-0.650040	
	37	1	0		0.700687	4 066523	-0 747083	
	38	1	0		2 159605	-3 757020	1 892076	
	30	6	0		2.137003	-3.757020	0.917970	
	40	16	0		2.054556	-2 111214	0.437141	
	40	10	0		1 070010	-4 220560	0.176412	
	42	1	0		3 571512	-4.319723	0.965052	
	43	8	0		3 88/835	1 550146	1 449220	
	43	8	0		1 677507	-1.339140	0.401481	
	44	8	0		3 5088/7	-1.420942	0.401481	
	43	0	0		J.J7004/ 1 010704	-2.1/901/	-0.090/00	
	40	1	0		4.012/04	1 261017	-1.510052	
	47	1	0		U.129199 1961125	1.30191/	1.414338	
	48		0		4.004133	3.344004	1.009000	
	49	0	0		7 20/210	-0.001085	-0.213/28	
	50	1	0		6 207570	-0.084926	-0.3930/9	
	51	1	0		0.321310	-1.312220	0.770843	

•	. ,	•	•	•		
52	1		0	5.739904	-1.518304	-0.864767
53	1		0	3.009209	2.637126	-2.025666
54	1		0	3.112978	3.712853	-0.634540

Center	Atomic	Atomic	Coordinates (A	Angstroms)		
Number	Number	Туре	Х	Y		Z
					0.201002	
1	6	0	-5.124617	-1.214294	-0.201983	
2	1	0	-4.044077	-0.345444	-0.043884	
3	I C	0	-5.910730	-1.580857	-0.853899	
4	0	0	-5.035508	-0.915348	1.177965	
5	1	0	-6.428088	-0.1/4396	1.061411	
6 7	I G	0	-6.103002	-1.808507	1.592637	
/	0	0	-4.563078	-0.384081	2.109947	
8	1	0	-4.008493	0.481330	2.0(7570	
9	1	0	-4.900910	-0.094102	2 205070	
10	1	0	-3.60/181	2 000068	2.303970	
11	0	0	-1.370337	2.990008	-0.116271	
12	10	0	-1.679249	1 398049	-1.134314	
13	8	0	-0.785121	1.598049	-1.800344	
14	8	0	-2.099231	2 125450	-0.089911	
15	0	0	-2.005855	2 495569	-2.302277	
10	1	0	-3.030238	2.493309	-3.102034	
17	1	0	-1 933142	3 829974	-1.878218	
10	55	0	-1.092684	-1 /89227	-0.524870	
20	9	0	-1.092084	-2 221729	-0.146627	
20	9	0	-4.151802	-0.441081	1 415449	
21	8	0	0.615842	-0.441031	1.415449	
22	6	0	2 073215	0.700444	3 461618	
23	6	0	1 192666	2 315505	1 716772	
24	1	0	2 947622	0.411359	2 883254	
25	1	0	2.347622	1 531304	4 116743	
20	1	0	1 801206	-0 149946	4 082107	
28	6	0	1.889612	1 771703	-0 564867	
20	6	0	3 552757	2 114066	0.811696	
30	6	0	4.068830	1.787457	-0.390336	
31	7	0	3.012523	1.588327	-1.235079	
32	7	0	2 189240	2 098391	0.682347	
33	6	0	0.907100	1.057826	2.554874	
34	6	0	-0.341625	1.343855	3.365767	
35	1	0	-1.179707	1.548919	2.704735	
36	1	0	-0.582156	0.480593	3.980623	
37	1	0	-0.198940	2.202756	4.018989	
38	1	0	4.807989	-3.178520	0.724222	
39	6	0	3.853385	-3.469041	0.301525	
40	16	0	3.051294	-2.014447	-0.313474	
41	1	0	3.220333	-3.918325	1.057833	
42	1	0	3.997229	-4.149234	-0.530045	
43	8	0	3.947390	-1.445333	-1.313847	
44	8	0	2.877725	-1.134635	0.863164	
45	8	0	1.758812	-2.456798	-0.849543	
46	1	0	0.891871	1.685616	-0.981567	
47	1	0	5.082846	1.651455	-0.706164	
48	1	0	4.035185	2.340090	1.740332	
49	6	0	3.094471	1.185476	-2.625100	
50	1	0	3.710171	1.894489	-3.169057	
51	1	0	3.512898	0.184921	-2.664320	
52	1	0	2.092075	1.187502	-3.036806	
53	1	0	0.281448	2.624497	1.210301	
54	1	0	1.536490	3.130926	2.347781	

(6) Fig. 3 (b) : $[Cs^{+}F^{-} + C_{3}H_{7}OMs \rightarrow C_{3}H_{7}F + Cs^{+}OMs^{-}]$ in ionic liquid [mim-^tOH][OMs]. (MPW1K/6-311++G^{**}; ECP for Cs, Hay-Wadt VDZ(n+1)).

	Pre-reaction cplx	Transition state	Post-reaction cplx
E	-2064.463691	-2064.437759	-2064.491475
ZPE	0.442769	0.442363	0.44312
Gibbs(100°C)	0.340881	0.345407	0.336077

Center	Atomic	Atomic	c Coordinates (Angstroms)			
Number	Number	Туре	Х	Y		Ζ
1	6	0	3.692108	0.084002	-1.757899	
2	1	0	2.625459	0.221186	-1.544901	
3	1	0	3.842965	-0.829111	-2.326479	
4	6	0	4.260984	1.283557	-2.460465	
5	1	0	5.329183	1.143687	-2.630026	
6	1	0	3.787967	1.309128	-3.442241	
7	6	0	3,996059	2.582044	-1.725053	
8	1	0	4.467413	2.579460	-0.745050	
9	1	0	4.384918	3 432482	-2.280700	
10	1	0	2,926970	2.721945	-1.582919	
11	8	ů 0	4 458036	-0.088502	-0 516246	
12	16	0	3 769875	-0.732851	0.730349	
12	8	0	3 103063	0.752051	1 518918	
14	8	0	3.000125	-1 888224	0.340915	
14	6	0	5 215210	-1.241331	1 593107	
15	1	0	4 880443	1 682060	2 525115	
10	1	0	4.000443 5.741064	-1.062909	2.323113	
17	1	0	5 825707	-1.908138	1 781412	
10	55	0	0.185335	-0.300779	0.469107	
20	55	0	-0.185555	-2.011939	-0.409107	
20	9	0	1 772760	1 402081	-1.030312	
21	6	0	-1.772709	1.492981	0.462288	
22	6	0	-1.220751	1.606475	-0.405588	
23	0	0	-2.881333	3.011844	0.300331	
24	0	0	-2.779830	3.247093	-1.022136	
25	7	0	-1./30101	2.488834	-1.4/3446	
26	1	0	-1.896385	2.122438	0.633694	
27	6	0	-0.347414	1.383099	2.403173	
28	6	0	-0.418238	0.846604	3.885211	
29	1	0	-0.958081	-0.096922	3.902565	
30	1	0	-0.912849	1.546927	4.556088	
31	I	0	-5.064421	-3.011026	0.204788	
32	6	0	-5.282372	-1.958918	0.062360	
33	16	0	-3.756973	-1.097120	-0.216059	
34	1	0	-5.752946	-1.544142	0.946372	
35	1	0	-5.913865	-1.815624	-0.806929	
36	8	0	-3.154997	-1.711249	-1.405543	
37	8	0	-2.932186	-1.338506	0.985973	
38	8	0	-4.109830	0.310385	-0.383152	
39	1	0	-0.350343	1.156869	-0.608244	
40	1	0	-3.371622	3.858588	-1.672410	
41	1	0	-3.589737	3.369232	1.019517	
42	6	0	-1.268464	2.351711	-2.837740	
43	1	0	-2.055541	1.911802	-3.442013	
44	1	0	-0.998712	3.326860	-3.231922	
45	1	0	-0.401485	1.692576	-2.809318	
46	1	0	-2.211235	0.498046	1.867933	

17	1	0	2 366000	2 001071	2 625161
47	1	0	-2.300990	2.091071	2.025101
48	1	0	0.587826	0.671200	4.259445
49	8	0	0.287436	0.436986	1.633641
50	1	0	1.242350	0.533381	1.665612
51	6	0	0.389587	2.710433	2.425945
52	1	0	-0.117933	3.454707	3.036491
53	1	0	1.397764	2.586535	2.816869
54	1	0	0.468932	3.088849	1.410517
				-	

Ζ

Transition state

Center	Atomic	Atomic	Coordinates (A	Angstroms)	
Number	Number	Туре	Х	Y	
	6	0	2 319448	- 0.351681	-1 713088
2	1	0	1 902505	0.713239	-0.795950
3	1	0	2 298729	-0.695830	-1 926688
4	6	0	2.298729	1 300158	-2 789995
5	1	0	3 620142	0.943252	-3 245378
5	1	0	1 913453	1 214865	-3 536611
7	6	0	2 849416	2 729647	-2 315017
8	1	0	3 617001	2.729047	-1 548790
9	1	0	3 129115	3 384094	-3 137255
10	1	0	1 914405	3.098761	-1 898330
10	8	0	4 028591	0.169936	-0.922863
12	16	0	3 943137	-0 548888	0.394714
12	8	0	3 435270	0.326827	1 451019
14	8	0	3 21/720	-1 805596	0.269025
14	6	0	5 623533	-0.915341	0.209023
15	1	0	5 632585	-1 430616	1 733765
10	1	0	6.020058	-1 548276	-0.004514
18	1	0	6 169389	0.018262	0.841230
10	55	0	0.023564	-2 150997	-0.164707
20	9	0	0.357449	0.213186	-2 105303
20	5	0	1 321406	1.658034	2.103303
21	6	0	-1.321400	1.650296	0.443022
22	0	0	-1.450821	2 020052	-0.443022
23	0	0	-2.810033	3.030033	0.303394
24	07	0	-3.073137	2 222441	1 363420
25	7	0	-2.202332	2.222441	0.742896
20	6	0	-1.7885221	1 703795	2 242958
27	6	0	0.163222	1.703795	2.242958
28	1	0	0.024217	0.309729	3 880666
30	1	0	0.065346	2 003322	4 390252
31	1	0	-4 795256	-2 844127	1 242534
32	6	0	-5.035444	-1.922755	0.724837
32	16	0	-3 543350	-1 257610	0.035433
34	10	0	-5 449182	-1 194396	1 412726
35	1	0	-5 726107	-2 112380	-0.088743
36	8	0	-3 013434	-2 286415	-0.865278
37	8	0	-2 634071	-1.032604	1 179837
38	8	0	-3 923094	-0.014795	-0.633198
39	1	0	-0 671449	0.944741	-0.690645
40	1	0	-3 808741	3 633420	-1 303292
40	1	0	-3 269003	3 538113	1 389460
42	6	0	-2 225525	1 797688	-2 7/87/8
43	1	0	-3 087078	1 1 5 7 4 3 5	-2 887868
4J	1	0	_2 283228	2 669178	-3 392582
45	1	0	-1 311937	1 238949	-2 933672
45	1	0	-1.511957	0.637200	2.755072
40	1	0	-1.002739	2 282162	2.140373
+7 18	1	0	1 537801	1 210601	2.782908
40 /0	1 Q	0	0.730314	0.75/631	1 35/636
50	1	0	1 685459	0.681030	1 500781
50	1	0	1.005459	0.001059	1.500701

51	6	0	0.763883	3.080770	1.963739
52	1	0	0.340543	3.828989	2.631751
53	1	0	1.841147	3.064586	2.112933
54	1	0	0.572204	3.383256	0.937549
 				-	

Center	Atomic	Atomic	Coordinates (Ar	ngstroms)		
Number	Number	Type	х	Y		Z
		-) [-		-		_
1	6	0	1.716203	1.325546	-2.053656	
2	1	0	1.888403	1.606406	-1.019985	
3	1	0	2.244527	0.401288	-2.257039	
4	6	0	2.115582	2.410585	-3.007115	
5	1	0	3.199281	2.491472	-2.929084	
6	1	0	1.895540	2.090106	-4.025416	
7	6	0	1.463957	3.748684	-2.717560	
8	1	0	1.710156	4.091990	-1.714063	
9	1	0	1.800743	4.508008	-3.419374	
10	1	0	0.380540	3.686462	-2.794770	
11	8	0	4.464720	0.525127	-0.866905	
12	16	0	4.007687	-0.280409	0.253397	
13	8	0	3.226107	0.491961	1.248460	
14	8	0	3.291564	-1.502605	-0.144988	
15	6	0	5.453575	-0.818287	1.122750	
16	1	0	5.145818	-1.422791	1.967904	
17	1	0	6.058861	-1.399244	0.436479	
18	1	0	5.994305	0.060096	1.455109	
19	55	0	0.393871	-2.213248	-0.487192	
20	9	0	0.339216	1.048602	-2.171077	
21	6	0	-1.350048	0.936290	2.504215	
22	6	0	-1.782901	1.588723	0.160744	
23	6	0	-2.992705	2.638348	1.639554	
24	6	0	-3.378684	3.053725	0.415626	
25	7	0	-2.596302	2.396721	-0.491918	
26	7	0	-1.988083	1.726021	1.458466	
27	6	0	0.168508	1.046931	2.523020	
28	6	0	0.680089	0.213998	3.688829	
29	1	0	0.312061	-0.807274	3.618079	
30	1	0	0.370935	0.630537	4.645921	
31	1	0	-4.235880	-3.600526	0.193564	
32	6	0	-4.627249	-2.611122	-0.012751	
33	16	0	-3.267225	-1.524254	-0.342607	
34	1	0	-5.168970	-2.228531	0 844460	
35	1	0	-5 264555	-2 629248	-0.889259	
36	8	0	-2.553686	-2.088602	-1 493544	
37	8	Ő	-2.423183	-1.544326	0.869472	
38	8	0	-3.853041	-0.207913	-0.597831	
39	1	0	-1.050164	0.950047	-0 284798	
40	1	0	-4 137302	3 749134	0.118520	
40	1	0	-3 344844	2 909561	2 614115	
42	6	0	-2 788366	2.367539	-1 926912	
42	1	0	-3 532729	1 610831	-2 152924	
43	1	0	3 105572	3 348587	2.152724	
44	1	0	1 848535	2 106385	-2.201778	
45	1	0	-1.646555	0.096259	2.397797	
40	1	0	-1.040122	1 281510	2.554451	
47	1	0	-1.701903	0.188375	3.44/1/4	
40	1	0	0.609242	0.1003/3	1 205770	
49	0	0	1 500907	0.499313	1.303779	
50		0	1.39080/	0.322980	1.2/9/19	
51	0	0	0.0300/3	∠.48/5/0 2.022901	2.0510/3	
52	1	0	0.299494	2.932801	3.383803	
53	1	0	1.723209	2.51//93	2.028570	
54	1	U	0.209338	5.091323	1.824308	

(7) Fig. 3 (c) : $[Cs^+F^- + C_3H_7OMs \rightarrow C_3H_6 + HF + Cs^+OMs^-]$ in ionic liquid [mim-^tOH][OMs]. (MPW1K/6-311++G^{**}; ECP for Cs, Hay-Wadt VDZ(n+1)).

	Pre-reaction cplx	Transition state	Post-reaction cplx
E	-2064.463691	-2064.418242	-2064.47938
ZPE	0.442769	0.437175	0.438594
Gibbs(100°C)	0.340881	0.338942	0.333193

Center	Atomic	Atomic	Coordinates (A	Angstroms)		
Number	Number	Туре	Х	Y		Z
1	6	0	3.692108	0.084002	-1.757899	
2	1	0	2.625459	0.221186	-1.544901	
3	1	0	3.842965	-0.829111	-2.326479	
4	6	0	4.260984	1.283557	-2.460465	
5	1	0	5.329183	1.143687	-2.630026	
6	1	0	3.787967	1.309128	-3.442241	
7	6	0	3.996059	2.582044	-1.725053	
8	1	0	4.467413	2.579460	-0.745050	
9	1	0	4.384918	3.432482	-2.280700	
10	1	0	2.926970	2.721945	-1.582919	
11	8	0	4.458036	-0.088502	-0.516246	
12	16	0	3.769875	-0.732851	0.730349	
13	8	0	3.103063	0.276218	1.518918	
14	8	0	3.000125	-1.888224	0.340915	
15	6	0	5.215210	-1.241331	1.593107	
16	1	0	4.880443	-1.682969	2.525115	
17	1	0	5.741064	-1.968138	0.986719	
18	1	0	5.825797	-0.366779	1.781413	
19	55	0	-0.185335	-2.011959	-0.469107	
20	9	0	0.806943	0.465796	-1.650512	
21	6	0	-1.772769	1.492981	1.941133	
22	6	0	-1.220731	1.808473	-0.463388	
23	6	0	-2.881553	3.011844	0.300351	
24	6	0	-2.779830	3.247093	-1.022136	
25	7	0	-1.736101	2.488834	-1.473446	
26	7	0	-1.896385	2.122438	0.633694	
27	6	0	-0.347414	1.383099	2.463173	
28	6	0	-0.418238	0.846604	3.885211	
29	1	0	-0.958081	-0.096922	3.902565	
30	1	0	-0.912849	1.546927	4.556088	
31	1	0	-5.064421	-3.011026	0.204788	
32	6	0	-5.282372	-1.958918	0.062360	
33	16	0	-3.756973	-1.097120	-0.216059	
34	1	0	-5.752946	-1.544142	0.946372	
35	1	0	-5.913865	-1.815624	-0.806929	
36	8	0	-3.154997	-1.711249	-1.405543	
37	8	0	-2.932186	-1.338506	0.985973	
38	8	0	-4.109830	0.310385	-0.383152	
39	1	0	-0.350343	1.156869	-0.608244	
40	1	0	-3.371622	3.858588	-1.672410	
41	1	0	-3.589737	3.369232	1.019517	
42	6	0	-1.268464	2.351711	-2.837740	
43	1	0	-2.055541	1.911802	-3.442013	
44	- 1	0	-0.998712	3.326860	-3.231922	
45	1	0	-0.401485	1.692576	-2.809318	
46	1	0	-2.211235	0.498046	1.867933	

17	1	0	2 366000	2 001071	2 625161
47	1	0	-2.300990	2.091071	2.025101
48	1	0	0.587826	0.671200	4.259445
49	8	0	0.287436	0.436986	1.633641
50	1	0	1.242350	0.533381	1.665612
51	6	0	0.389587	2.710433	2.425945
52	1	0	-0.117933	3.454707	3.036491
53	1	0	1.397764	2.586535	2.816869
54	1	0	0.468932	3.088849	1.410517
				-	

Transition state

Center	Atomic	Atomic	Coordinates (A	Angstroms)	
Number	Number	Type	Х	Y	
		51			
	<i>.</i>	0	0.555105	0.00001.5	1 8 4 5 0 5 8
1	6	0	-2.575105	0.277715	1.765857
2	1	0	-2.065744	0.586216	0.866901
3	1	0	-2.622621	-0.781325	1.952937
4	6	0	-2.426366	1.118617	2.863725
5	1	0	-2.849570	0.762087	3.795405
6	1	0	-1.194890	0.673822	2.772149
7	6	0	-2.398001	2.611027	2.687189
8	1	0	-3.404580	3.025040	2.648144
9	1	0	-1.871896	3.092085	3.508598
10	1	0	-1.894811	2.882832	1.761385
11	8	0	-4.262889	0.228023	0.876551
12	16	0	-4.081797	-0.414962	-0.467691
13	8	0	-3.481169	0.511682	-1.429928
14	8	0	-3.367244	-1.683450	-0.358759
15	6	0	-5.724461	-0.747296	-1.014027
16	1	0	-5.655521	-1.208049	-1.992877
17	1	0	-6.186477	-1.420212	-0.301900
18	1	0	-6.261061	0.192230	-1.066250
19	55	0	-0.143576	-2.078683	0.251403
20	9	0	-0.019203	0.253906	2.442156
21	6	0	1.279162	1.682246	-2.000301
22	6	0	1.662047	1.616649	0.457469
23	6	0	2 989030	2 931948	-0.670191
23	6	0	3 394042	2 935884	0.615413
25	7	0	2 542652	2 119301	1 301137
25	7	0	1 899754	2.115501	-0.750805
20	6	0	0.656861	1 480204	3 480367
27	1	0	0.208422	0.488706	2 755062
20	1	0	-0.296422	0.466790	-3.733903
29	1	0	-0.274312	2.197855	-4.212015
21	1	0	4.422343	-3.005174	-1.049409
22	0	0	4.792922	-2.160241	-1.151557
32	16	0	5.444098	-1.433/85	-0.261329
33	1	0	5.190597	-1.465160	-1.836129
34	1	0	5.547940	-2.463920	-0.404907
35	8	0	2.927793	-2.452539	0.658223
36	8	0	2.438183	-1.091239	-1.290617
37	8	0	3.993439	-0.251770	0.399301
38	1	0	0.871746	0.953649	0.761140
39	1	0	4.216434	3.431839	1.089491
40	1	0	3.386573	3.430800	-1.530642
41	6	0	2.703764	1.665144	2.668790
42	1	0	3.521617	0.952022	2.688230
43	1	0	2.912921	2.517583	3.306366
44	1	0	1.781794	1.175520	2.967706
45	1	0	1.557489	0.640841	-2.145117
46	1	0	1.736273	2.283616	-2.779881
47	1	0	-1.742478	1.477139	-3.554144
48	8	0	-0.775515	0.901311	-1.166594
49	1	0	-1.729317	0.829062	-1.328003
50	6	0	-0.686647	3.240936	-1.712754

Ζ

•	. ,	•	•	•		
51	1		0	-0.264648	3.979423	-2.392470
52	1		0	-1.770501	3.303516	-1.775526
53	1		0	-0.393459	3.496652	-0.697783
54	6		0	-0.231923	1.836679	-2.072940

Center	Atomic	Atomic	Coordinates (Ar	ngstroms)		
Number	Number	Type	Х	Y		Ζ
		51				
		0	0.607000	0.01.0000	0.105050	
1	6	0	-2.68/322	2.316333	2.105952	
2	I	0	-2.266732	3.260310	2.429186	
3	1	0	-2.796744	2.144348	1.043901	
4	6	0	-3.099132	1.408812	2.985212	
5	1	0	-3.521392	0.491581	2.591097	
6	1	0	-1.160421	0.943020	2.217185	
7	6	0	-3.036507	1.557151	4.464702	
8	1	0	-4.038557	1.511392	4.890089	
9	1	0	-2.469996	0.743261	4.915693	
10	1	0	-2.582951	2.500289	4.759157	
11	8	0	-3.435519	-0.695485	0.569831	
12	16	0	-3.592083	-0.302051	-0.836507	
13	8	0	-3.080344	1.062282	-1.088829	
14	8	0	-3.032106	-1.291594	-1.756935	
15	6	0	-5.329792	-0.217711	-1.154949	
16	1	0	-5.471644	0.073971	-2.188905	
17	1	0	-5.751788	-1.199517	-0.974423	
18	1	0	-5.764858	0.515385	-0.485870	
19	55	0	-0.552339	-2.110978	0.093196	
20	9	0	-0.341777	0.490025	2.181393	
21	6	0	1.629347	1.460104	-2.190156	
22	6	0	1.989894	1.570186	0.244154	
23	6	0	3.283209	2.885349	-0.920703	
24	6	0	3 618522	3 017095	0.379373	
25	7	0	2 785164	2 197185	1 089541	
25	, 7	0	2 257981	1 979601	-0.983122	
20	, 6	0	-0 404334	1.099985	-3 530023	
28	1	0	-0 188128	0.034786	-3 533763	
20	1	0	0.024602	1 550736	-4 423603	
30	1	0	4.039084	3 571/16	0.850733	
30	1	0	4.039084	-3.371410	-0.839733	
22	0 16	0	4.475752	-2.721238	-0.346944	
32	10	0	5.100300	-1.705085	0.270174	
33	1	0	5.073436	-2.129525	-1.028796	
34	1	0	5.069495	-3.049956	0.496750	
35	8	0	2.369573	-2.548304	1.1692/1	
36	8	0	2.3/1659	-1.293345	-0.910044	
37	8	0	3.805810	-0.567785	0.930195	
38	1	0	1.228055	0.868654	0.50/43/	
39	1	0	4.3/1317	3.614838	0.852081	
40	I	0	3.683322	3.352195	-1.797856	
41	6	0	2.888578	1.873442	2.497516	
42	1	0	3.580483	1.045020	2.607705	
43	1	0	3.225644	2.751143	3.037278	
44	1	0	1.911254	1.575381	2.857716	
45	1	0	1.803294	0.387500	-2.186880	
46	1	0	2.146047	1.908346	-3.032855	
47	1	0	-1.484024	1.218634	-3.566585	
48	8	0	-0.417075	1.147319	-1.124757	
49	1	0	-1.391732	1.208864	-1.148132	
50	6	0	-0.153468	3.242081	-2.261300	
51	1	0	0.285006	3.736280	-3.127049	
52	1	0	-1.228381	3.404152	-2.287946	
53	1	0	0.231776	3.709289	-1.357616	
54	6	0	0.134845	1.749102	-2.265669	

3. Preparation and Characterization of [N-butylthiazolium][OMs]

A solution of [*N*-butylthiazolium][Br] (1 g, 4.52 mmol) in methaol (15 mL) was prepared. To this was added slowly potassium methanesulfonate (5.33 g, 45.2 mmol) with stiring. After addition, the mixture was heated at reflux for 120 h, and then the organic phase was filtered. The filtrate was concentrated *in vacuo* to afford 1.0 g (93%) of [*N*-butylthiazolium][OMs] as a yellow thick liquid.

¹H NMR (300 MHz, DMSO-d₆) δ 0.95 (t, *J* = 7.5 Hz, 3H), 0.97-1.33 (m, 2H) 1.91-1.96 (m, 2H), 4.13 (s, 3H) 4.67 (t, *J* = 7.2 Hz, 2H) 8.49 (dd, 3.6, 2.1 Hz, 1H) 8.73 (dd, 3.6, 1.2 Hz, 1H) 10.38 (dd, 2.1, 1.2 Hz 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ 13.4, 18.9, 31.7, 39.8, 54.4, 127.0, 137.3, 159.4; Anal. Calcd for C₈H₁₅NO₃S₂: C, 40.48; H, 6.37; N, 5.90; O, 20.22; S, 27.02. Found: C, 40.52; H, 6.38; N, 5.87.

¹H and ¹³C NMR spectra of [N-butylthiazolium][OMs]

10 - 12 - 12 					
10 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -					
687-01 752-16					
111 1111 1111 1111 1111 1111 1111 1111 11111 11111	505'51				
N2/16	h10.81				
127 12 127 127 12 127 12 12					
67 - 251	982°18				
299° 46 140° / 21 83° / 61 08° 651	005'68 6// 68	and the second second second			
ý 10°./21 63°./21 08°.551	298.62				
10°/21 63°/21 09° 151	880 DS-		0	 	
67.751					
10°.221 13°.401					
06.821					
10°.21					
L0.721 63.761 06.821				ý	
140° / 281 68° / 681 [
10°.221					
122.04 123.10 129.121 129.10					
T23. 251					
123.23	11-0.721			 	
123.201					
128.40	762.761 - j				
128.40					
101- 251					
	00p.6S1		e		
х Л					

HBJ-N-DutylthiazoliumOMs13CDMS0

File: 100822-thiazoltum-oms-13C

4. General Procedure for Fluorination in Table 1

CsF 1.0 (151 mmol) added the mg, was to mixture of 2-(3methanesulfonyloxypropoxy)naphthalene (56 mg, 0.2 mmol) and each ionic liquid (1.6 mmol) in 0.6 mL CH₃CN. The mixture was stirred for 50 min at 100 °C. The reaction mixture was extracted with diethyl ether (10 mL × 3). The organic layer was dried over anhydrous sodium sulfate and evaporated under reduced pressure. The conversion was determined by ¹H NMR and the crude product was purified by flash column chromatography (5% EtOAc/hexane) to obtain 2-(3-fluoro-*n*-propoxy)naphthalene as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 2.14-2.39 (m, 2H), 4.24 (t, / = 6.2 Hz, 2H), 4.72 (dt, / = 46.8, 5.8 Hz, 2H), 7.16-7.22 (m, 2H), 7.34-7.53 (m, 2H), 7.76-7.83 (m, 3H); 13 C NMR (75 MHz, CDCl₃) δ 30.4, 63.6, 80.8, 106.8, 118.8, 123.7, 126.4, 126.7, 127.6, 129.1, 129.4, 134.6, 156.7; see D. W. Kim, C. E. Song, D. Y. Chi, J. Am. Chem. Soc. 2002, 124, 10278-10279.