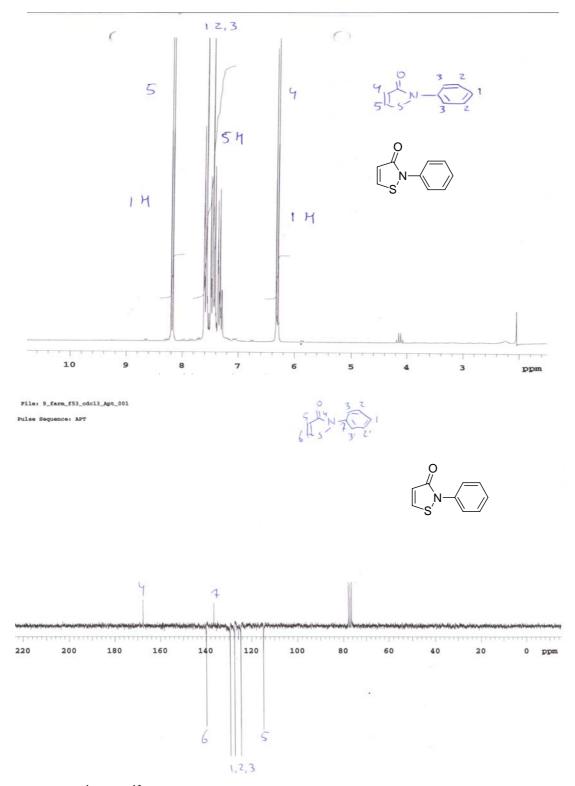
Electronic supporting information

for

Isothiazolones; thiol-reactive inhibitors of cysteine protease cathepsin B and histone acetyl transferase PCAF

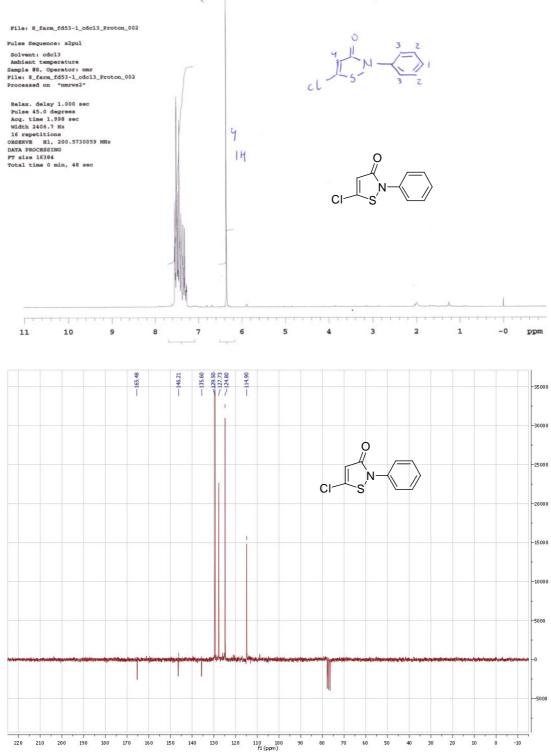
Rosalina Wisastra, Massimo Ghizzoni, Adriaan J. Minnaard, Harm Maarsingh, Hidde J. Haisma, Frank J. Dekker

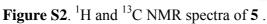
Experimental section


Chemistry

		2-phenyl-	5-chloro-2-	Literature values sp ^{2 a}	Literature values sp ^{3 a}
		isothiazo-	phenyl-isothiazo-		
		lone 1	lone 5		
Cl	C1		1.7084(18)		1.76
S	Ν	1.715(4)	1.7038(15)	1.56	1.78
S	C1	1.702(6)	1.7269(18)	1.70 (thiophene) ^b	1.81
0	<u></u>	1.242(()	1.021(0)	1.61	1 42 1 44 (41 49)
0	C3	1.243(6)	1.231(2)	1.23-1.24 (amides)	1.42-1.44 (ethers)
Ν	C3	1.401(7)	1.396(2)	1.35 (imines)	1.46-1.48 (amines)
Ν	C4	1.433(7)	1.433(2)	1.35 (imines)	1.46-1.48 (amines)
C1	C2	1.345(7)	1.346(3)	1.31-1.34 (alkene)	
C2	C3	1.452(7)	1.454(3)	1.45-1.46	
				(single conjugated)	
C4	C5	1.399(7)	1.396(3)	1.38-1.40 (aromatic)	
C4	C9	1.408(7)	1.393(3)	1.38-1.40 (aromatic)	
C5	C6	1.383(7)	1.384(3)	1.38-1.40 (aromatic)	
C6	C7	1.391(8)	1.395(3)	1.38-1.40 (aromatic)	
C7	C8	1.402(8)	1.392(3)	1.38-1.40 (aromatic)	
C8	C9	1.374(9)	1.389(3)	1.38-1.40 (aromatic)	

Table S1. Interatomic distances (Å) in the crystal structures for compounds 1 and 5


Standard uncertainty in the last decimal place is given in parentheses


a¹, b CCDC 617103

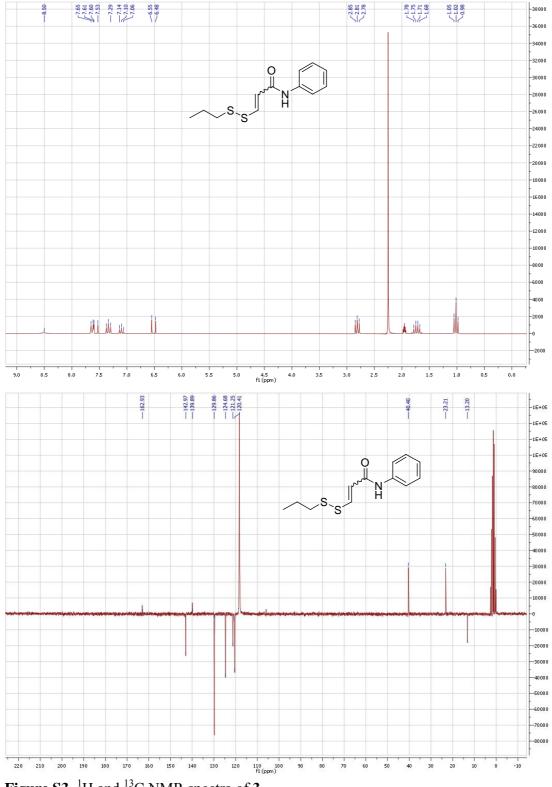


Figure S1. ¹H and ¹³C NMR spectra of $\mathbf{1}$.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Figure S3. ¹H and ¹³C NMR spectra of **3**.

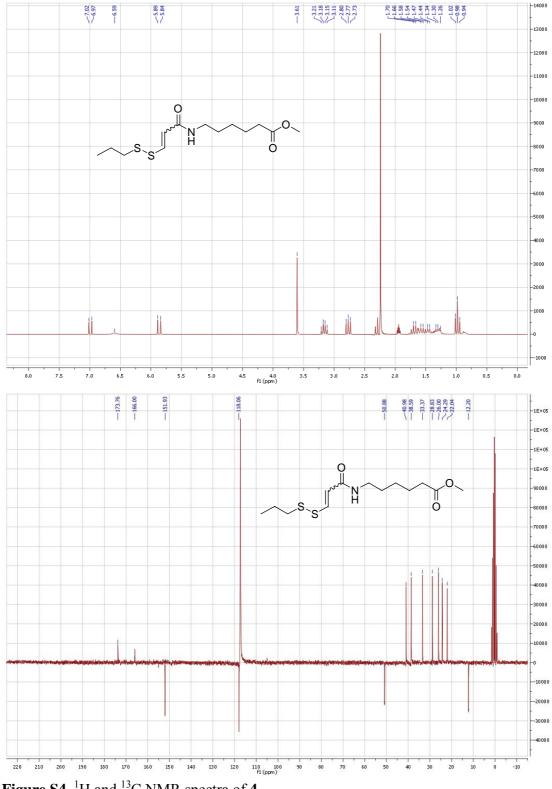


Figure S4. ¹H and ¹³C NMR spectra of 4.

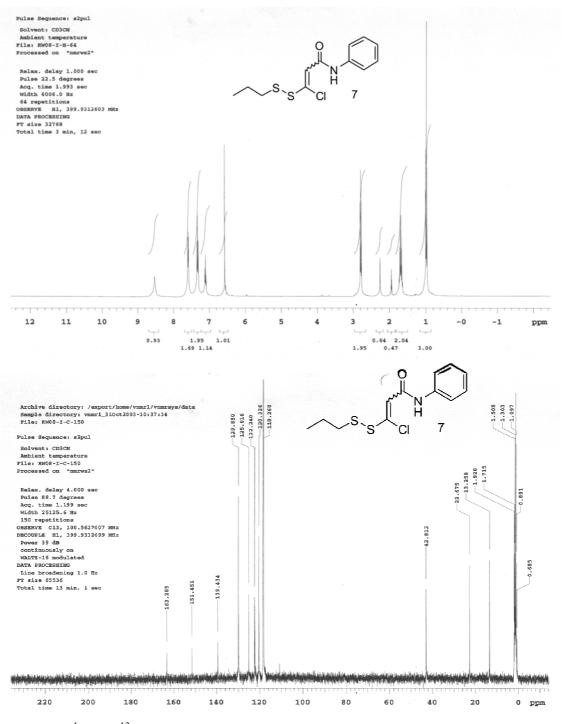


Figure S5. ¹H and ¹³C NMR spectra of 7.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

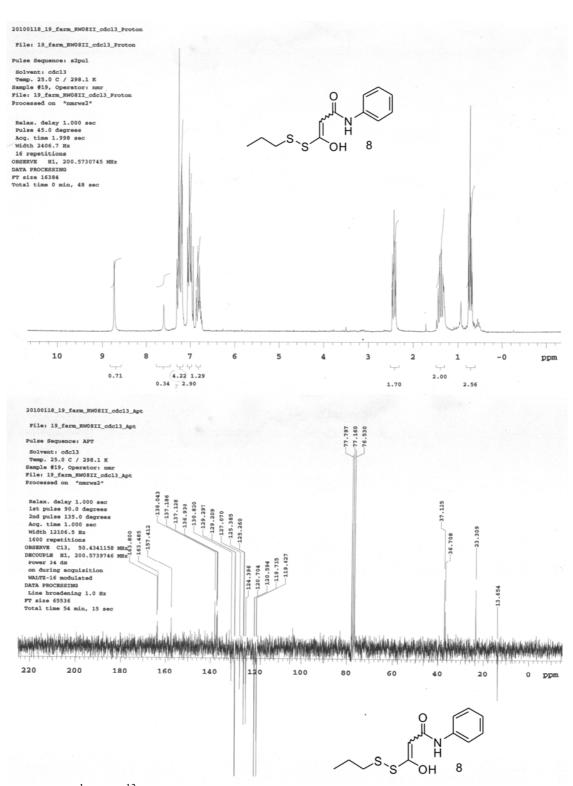


Figure S6. ¹H and ¹³C NMR spectra of 8.

Biochemistry

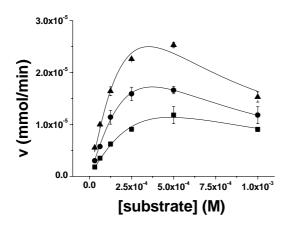

$ \begin{array}{c} $	R ₁	R ₂	R ₃	Cat B ^a IC ₅₀ (µM)	PCAF ^b IC ₅₀ (μM)
19	Cl	Н	-Ethyl	27.4 ± 1.1	>10
20	Cl	Cl	-Ethyl	39.0 ± 0.5	>10
21	Cl	Metyl	-Ethyl	17.4 ± 1.3	>10
22	Cl	Н	-(CH ₂) ₂ CO ₂ Me	21.3 ± 1.5	5.6 ± 0.2
23	Cl	Cl	-(CH ₂) ₂ CO ₂ Me	34.5 ± 1.2	>10
24	Cl	Metyl	-(CH ₂) ₂ CO ₂ Me	23.1 ± 3.1	>10
25	-S(CH ₂) ₁₁ CH ₃	Н	-(CH ₂) ₂ CO ₂ Me	>100	>10
26	-S(CH ₂) ₁₁ CH ₃	Cl	-(CH ₂) ₂ CO ₂ Me	>100	>10
a maximal concentration in the agent 100 mM					

Table S2. IC_{50} values for inhibition of Cathepsin B and PCAF

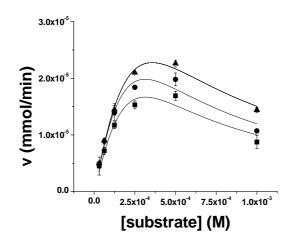

 a maximal concentration in the assay 100 $\mu M.$ b data reported previously. $^{2,\,3}$ maximal concentration in the assays 10 μM

Table S3. Enzyme kinetics parameters for Cathepsin B inhibition (n = 3)

	Conc inhibitor (µM)	V _{max} (nmol/s)	K _m (mM)	K _S (mM)	R ²
	0	0.65 ± 0.66	1.2 ± 1.3	0.10 ± 0.11	0.989
	6	0.51 ± 0.24	1.4 ± 0.7	0.10 ± 0.051	0.998
CI ^S 14	12	0.23 ± 0.13	1.2 ± 0.7	0.20 ± 0.13	0.995
	0	0.56 ± 0.67	1.1 ± 1.4	0.098 ± 0.13	0.982
	11	0.52 ± 0.59	1.1 ± 1.2	0.11 ± 0.15	0.972
	22	0.50 ± 0.70	1.1 ± 1.9	0.090 ± 0.15	0.972

Figure S7. Conversion of the substrate Cbz-Arg-Arg-AMC by the enzyme Cathepsin B with no inhibitor present (\blacktriangle) shows substrate inhibition at high substrate concentrations. The same is observed for the enzyme activity after preincubation with 6 μ M inhibitor 14 (•) and the enzyme activity after preincubation with 12 μ M inhibitor 14 (•). The data were fitted to equation 1 and the parameters are shown in table S3.

Figure S8. Conversion of the substrate Cbz-Arg-Arg-AMC by the enzyme Cathepsin B with no inhibitor present (\blacktriangle) shows substrate inhibition at high substrate concentrations. The same is observed for the enzyme activity after preincubation with 11 µM inhibitor 22 (\bullet) and the enzyme activity after preincubation with 22 µM inhibitor 22 (\bullet). The data were fitted to equation 1 and the parameters are shown in table S3. The data represented by the blocks (\bullet) and circles (\bullet) did not fit well to equation 1.

Table S4. Time dependent inhibition of Cathepsin B by **5**. The IC₅₀ of the residual enzyme activity was determined after 1, 15, 40 or 120 minutes pre-incubation of the enzyme with the inhibitor (n = 3).

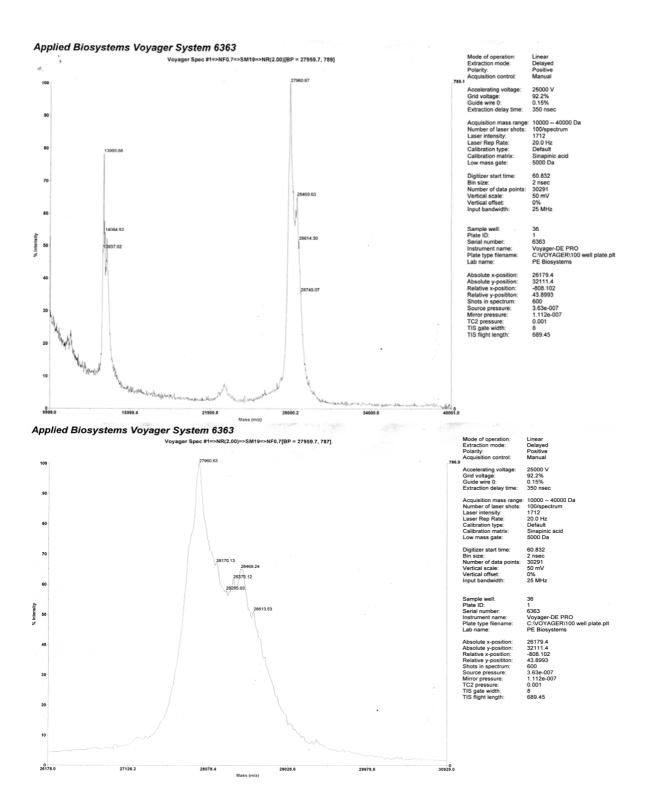

Time (min)	IC ₅₀ (µM)
1	13.6 ± 1.5
15	12.7 ± 1.3
40	9.3 ± 1.1
120	8.1 ± 1.0

Table S5. Dilution experiments after pre-incubation of Cathepsin B (20 nM) and inhibitor **5** (17 μ M) with a substrate solution (100 μ M) demonstrates a reduction of activity that is proportional to the dilution. This demonstrates covalent binding of the enzyme to the inhibitor (n = 3)⁶.

Dilution	v (fluorescence units/min)	Reduction in activity
1	13.3 ± 0.5	1.00
2	6.9 ± 0.1	1.93
5	2.7 ± 0.1	4.93

Table S6. Reduction rate of cathepsin B by **5**. The initial rate of cathepsin B (1.5 nM) activity with or without inhibitor **5** (14 μ M) were determine after 20 second reaction of the enzyme with the substrate (33.3 μ M). (n = 3) The result shows a very quick reduction of the enzyme activity in presence of the inhibitor.

Inhibitor	V (fluorescence units/s)	
No Inhibitor	25.3 ± 1.2	
5 (14 µM)	11.9 ± 5.0	

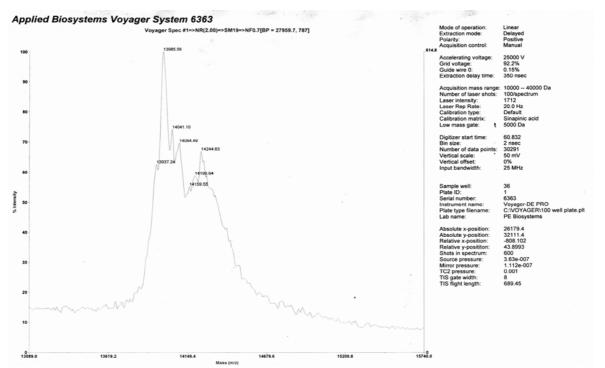
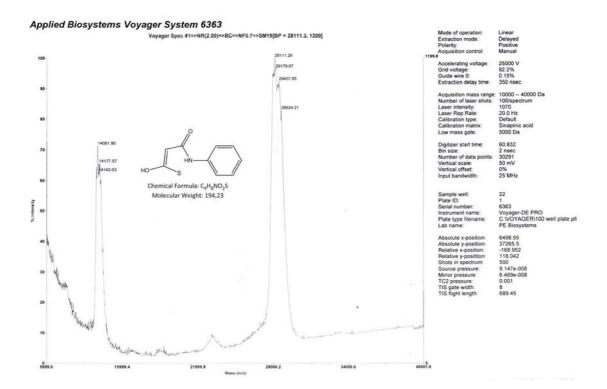
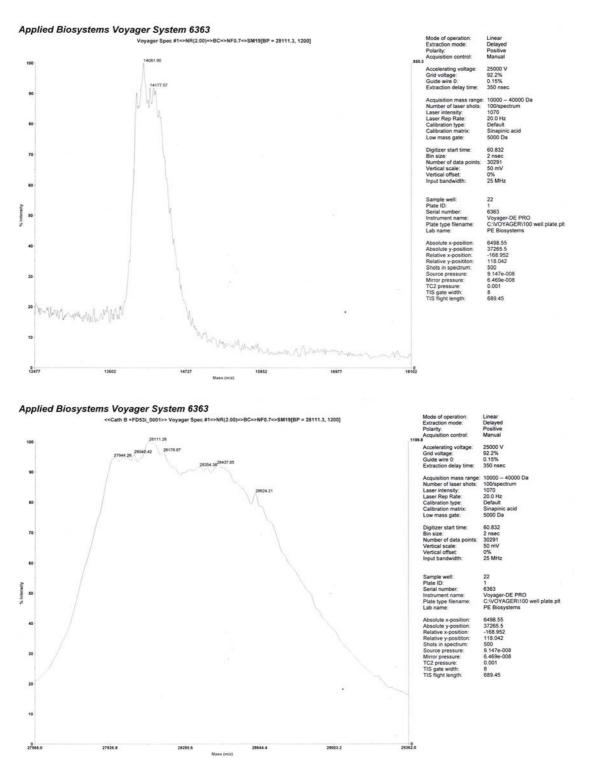




Figure S9. MALDI – TOF mass spectrum of Cathepsin B.

Figure S10. MALDI – TOF mass spectrum of Cathepsin B that was pre-incubated with inhibitor **5**.

References

- 1. E. V. Anslyn and D. A. Dougherty, *University Science Books*, 2006, 22.
- 2. F. J. Dekker, M. Ghizzoni, N. Van der Meer, R. Wisastra and H. J. Haisma, *Bioorg. Med. Chem.*, 2009, **17**, 460-466.
- 3. M. Ghizzoni, H. J. Haisma and F. J. Dekker, *Eur J Med Chem*, 2009, **44**, 4855-4861.