Supplementary Information

Kinetics and mechanism of the anilinolyses of aryl dimethyl, methyl phenyl and diphenyl

phosphinates

Nilay Kumar Dey, Chan Kyung Kim^{*} and Hai Whang Lee^{*}

Department of Chemistry, Inha University, Incheon 402-751, Korea

hwlee@inha.ac.kr

Contents

Substrates and Products analysis (S2-S5)

Hammett and Brönsted plots (S5-S8)

References (S9-S10)

Substrates

Substituted phenyl dimethyl, methyl phenyl, and diphenyl phosphinates were prepared by reacting dimethyl, methyl phenyl, and diphenyl phosphinic chlorides with phenols in the presence of triethyl amine in acetonitrile at room temperature, respectively. Finally the products were isolated by solvent evaporation under reduced pressure, after filtration, and the products passed through column chromatography (50% ethyl acetate and n-hexane) for purification. Analytical data of the products gave the following results:

Me₂P(=O)OPh-4-Me.¹⁻³ White solid, mp 58-60 °C; ¹H NMR (400MHz, CDCl₃) *δ*7.059, 7.060, 7.081, 7.102, 7.123, 7.124 (4H, m, aromatic), 1.588, 1.590, 1.624, 1.625 (6H, m, methyl), 2.303 (3H, s, methyl); ¹³C NMR (100 MHz, CDCl₃) *δ*120.443, 120.481, 130.260, 134.459, 148.407 (C=C, m, aromatic), 115.182, 16.130, 20.670 (C=C, s, methyl); ³¹P NMR (162 MHz, CDCl₃) *δ*57.295 (1P, s); Mass, m/z, 184 (M⁺), Anal. Calcd for C₉H₁₃O₂P: C, 58.69; H, 7.11; Found: C, 58.63; H, 7.30.

Me₂P(=O)OPh.³⁻⁶ White solid, mp 40-42 °C; ¹H NMR (400MHz, CDCl₃) δ 6.795, 6.797, 6.818, 7.109, 7.114, 7.128, 7.130, 7.148, 7.152, 7.163, 7.177, 7.229, 7.295, 7.314, 7.717 (5H, m, aromatic), 1.533, 1.570, 1.585, 1.611, 1.612, 1.620, 1.636, 1.670, 1.672 (6H, m, methyl); ¹³C NMR (100 MHz, CDCl₃) δ 115.395, 119.185, 124.840, 129.206, 129.737, 157.125 (C=C, m, aromatic), 120.633-120.678 (C=C, aromatic, d, J = 4.5 Hz), 150.469-150.552 (C=C, aromatic, d, J = 8.3 Hz); 156.129, 16.077 (C=C, s, methyl); ³¹P NMR (162 MHz, CDCl₃) δ 57.924 (1P, s); Mass, m/z, 169 (M⁺); Anal. Calcd for C₈H₁₁O₂P: C, 56.47; H, 6.52; Found: C, 56.25; H, 6.42.

Me₂P(=O)OPh-4-NO₂.^{1,3,7} White crystal, mp 88-90 °C; ¹H NMR (400MHz, CDCl₃) δ 7.256, 7.378, 7.401, 8.223, 8.224, 8.246 (4H, m, phenyl), 1.696, 1.731 (6H, m, methyl); ¹³C NMR (100 MHz, CDCl₃) δ 115.592 (C=C, s, aromatic), 121.065-121.110 (C=C, aromatic, d, J = 4.5 Hz), 125.840, 126.166 (C=C, s, aromatic); ³¹P NMR (162 MHz, CDCl₃) δ 60.463 (1P, s); Mass, m/z, 215 (M⁺); Anal. Calcd for C₈H₁₀NO₄P: C, 44.66; H, 4.68; N, 6.51. Found: C, 44.34; H, 4.86; N, 6.65.

MePhP(=O)OPh-4-Me.⁹⁻¹¹ White solid, mp 70-72 °C, ¹H NMR (400MHz, CDCl₃) δ 7.014, 7.256, 7.468, 7.482, 7.523, 7.839, 7.849, 7.853, 7.870 (9H, m, aromatic), 2.247 (3H, s, methyl), 1.807-1.843 (3H, d, *J* = 14.4 Hz, methyl); ¹³C NMR (100 MHz, CDCl₃) δ 120.352-120.398 (C=C, aromatic, d, *J* = 4.6 Hz), 128.398, 128.668, 130.093, 131.260, 131.366, 132.496, 134.148, 148.460 (C=C, m, aromatic), 20.647 (C=C, s, methyl), 15.455, 16.471 (C=C, s, methyl); ³¹P NMR (162 MHz, CDCl₃) δ 46.800 (1P, s); Mass, m/z, 246 (M⁺); Anal. Calcd for C₁₄H₁₅O₂P: C, 68.29; H, 6.14; Found: C, 68.02; H, 6.17.

McPhP(=O)OPh.^{5,6,9,10,12,13} White crystal, mp 60-62 °C, ¹H NMR (400MHz, CDCl₃) δ 7.051, 7.088, 7.116, 7.210, 7.449, 7.454, 7.544, 7.823, 7.873 (10H, m, aromatic), 1.831-1.867 (3H, d, *J* = 14.4 Hz, methyl); ¹³C NMR (100 MHz, CDCl₃) δ 120.602-120.648 (C=C, aromatic, d, *J* = 4.6 Hz), 124.628, 128.698, 129.615, 130.184, 131.207, 131.306, 131.480, 132.579, 132.610, 150.734 (C=C, m, aromatic), 15.417, 16.433 (C=C, s, methyl); ³¹P NMR (162 MHz, CDCl₃) δ 47.478 (1P, s); Mass, m/z, 232 (M⁺); Anal. Calcd for C₁₃H₁₃O₂P: C, 67.24; H, 5.64; Found: C, 67.42; H, 5.87.

MePhP(=O)OPh-4-NO₂.^{9,12} Light-yellowish liquid, ¹H NMR (400MHz, CDCl₃) δ 7.255, 7.298, 7.531, 7.827, 7.841, 7.859, 8.116, 8.122, 8.139 (9H, m, aromatic), 1.428-1.414 (3H, d, J = 5.6 Hz, methyl); ¹³C NMR (100 MHz, CDCl₃) δ 121.012–121.065 (C=C, aromatic, d, J = 4.6 Hz), 125.628, 126.151, 128.971, 129.100, 131.169, 131.276, 133.315 (C=C, m, aromatic), 15.773, 16.789, 17.426 (C=C, s, methyl); ³¹P NMR (162 MHz, CDCl₃) δ 49.983 (1P, s); Mass, m/z, 277 (M⁺); Anal. Calcd for C₁₃H₁₂NO₄P: C, 56.32; H, 4.36; N, 5.05. Found: C, 56.53; H, 4.38; N, 4.88.

Ph₂P(=O)OPh-4-Me.¹⁵⁻¹⁷ White solid, mp 122-124 °C, ¹H NMR (400MHz, CDCl₃) δ 7.025, 7.062, 7.064, 7.445, 7.455, 7.473, 7.504, 7.508, 7.856, 7.877, 7.891, 7.908 (14H, m, aromatic), 2.244 (3H, s, methyl); ¹³C NMR (100 MHz, CDCl₃) δ 120.405-120.451 (C=C, aromatic, d, J = 4.6 Hz), 128.463, 128.592, 130.070, 131.768, 131.867, 132.322, 132.352 (C=C, m, aromatic), 20.655 (C=C, s, methyl); ³¹P NMR (162 MHz, CDCl₃) δ 35.548 (1P, s); Mass, m/z, 308 (M⁺); Anal. Calcd for C₁₉H₁₇O₂P: C, 74.02; H, 5.56. Found: C, 73.88; H, 5.67.

Ph₂P(=O)OPh.¹⁸⁻²¹ White solid, mp 132-134 °C, ¹H NMR (400MHz, CDCl₃) δ 7.070, 7.182, 7.185, 7.200, 7.202, 7.203, 7.436, 7.454, 7.457, 7.463, , 7.532, 7.862, 7.894, 7.915, 7.918 (15H, m, aromatic); ¹³C NMR (100 MHz, CDCl₃) δ 120.716, 124.567, 128.516, 128.645, 129.631, 131.761, 131.867, 132.405 (C=C, m, aromatic); ³¹P NMR (162 MHz, CDCl₃) δ 35.714 (1P, s); Mass, m/z, 294 (M⁺); Anal. Calcd for C₁₈H₁₅O₂P: C, 73.46; H, 5.14. Found: C, 73.26; H, 5.28.

Ph₂P(=O)OPh-4-NO₂.^{17,22-24} White solid, mp 100-102 °C, ¹H NMR (400MHz, CDCl₃) δ 7.357, 7.380, 7.496, 7.505, 7.515, 7.526, 7.570, 7.589, 7.593, 7.854, 7.878, 7.910, 8.131, 8.155 (14H, m, aromatic); ¹³C NMR (100 MHz, CDCl₃) δ 121.156-121.209 (C=C, aromatic, d, J = 5.3 Hz), 125.636, 126.083 (C=C, s, aromatic), 128.835-128.971 (C=C, aromatic, d, J = 13.6 Hz), 131.624–131.730 (C=C, aromatic, d, J = 10.6 Hz), 133.095-133.125 (C=C, aromatic, d, J = 3 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 38.3 (1P, s); Mass, m/z, 339 (M⁺); Anal. Calcd for C₁₈H₁₄NO₄P: C, 63.72; H, 4.16; N, 4.13. Found: C, 63.48; H, 3.99; N, 3.89.

Product Analysis. Me₂P(=O)PhO-4-NO₂, MePhP(=O)PhO-4-NO₂, and Ph₂P(=O)PhO-4-NO₂ were reacted with excess 4-MePhNH₂, 4-MeOPhNH₂ and PhNH₂ for more than 15 half-lives at 60.0 °C in DMSO, respectively. The 4-methyl, 4-methoxy, and anilinium chloride salts were separated by filtration. Analytical and spectroscopic data of the products gave the following results:

Me₂P(=O)NHPh-4-Me.⁸ Brown solid, mp 172-174 °C; ¹H NMR (400MHz, CDCl₃) δ 1.62-1.70 (6H, m, CH₃), 2.23-2.27 (3H, d, J = 16.0 Hz, CH₃), 4.84-4.86 (1H, d, J = 8.0 Hz, NH), 6.61-7.26 (4H, m, phenyl); ¹³C NMR (100 MHz, CDCl₃) δ 16.3-17.2 (CH₃, s), 20.6 (CH₃, s), 115.2, 119.2, 119.3, 129.7, 130.0, 131.8, 37.7 (C=C, aromatic); ³¹P NMR (162 MHz, CDCl₃) δ 39.9-40.0 (1P, d, J = 16.2 Hz, P=S); Mass, m/z, 183 (M⁺); Anal. Calcd for C₉H₁₄NOP: C, 59.1; H, 7.7; N, 7.8; Found: C, 59.0; H, 7.7; N, 7.7.

MePhP(=O)NHPh-4-OMe.^{8,14} Purple gummy solid, ¹H NMR (400 MHz, CDCl₃) δ 1.77, 1.80 (3H, s, CH₃), -

3.72 (3H, s, OCH₃), 4.96 (1H, d, J = 8.4 Hz, NH), 6.73 (d, J = 8.8 Hz, 2H, phenyl), 6.96 (2H, d, J = 8.8 Hz, phenyl), 7.47 (2H, t, J = 8.8 Hz, phenyl), 7.52 (1H, d, J = 8.8 Hz, phenyl), 7.86 (2H, d, J = 8.8 Hz, phenyl); ¹³C NMR (100 MHz, CDCl₃) δ 16.2–17.1 (CH₃, s), 55.5 (OCH₃), 114.6, 115.4, 120.6, 121.2, 128.3, 131.5, 132.1, 133.1, 155.2 (C=C, aromatic); ³¹P NMR (162 MHz, CDCl₃) δ 31.9 (s, 1P, P=O); m/z 261 (M⁺); Anal. Calcd for C₁₄H₁₆NO₂ P: C, 64.4; H, 6.2; N, 5.4. Found: C, 64.3; H, 6.2; N, 5.4.

Ph₂P(=O)NHPh.²⁴⁻²⁶ Yellowish Solid; mp 85-86 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.2 (1H, d, J = 11.6Hz, NH), 6.9 (1H, d, J = 7.6 Hz), 7.0 (2H, d, J = 7.6 Hz), 7.1 (2H, d, J = 7.6 Hz), 7.4 (4H, m), 7.5 (2H, m), 7.8-7.9 (4H, m); ¹³C NMR (100 MHz, CDCl₃) δ 118.331, 120.716, 124.567, 128.516, 128.645, 129.631, 131.761, 131.867, 140.213 (C=C, aromatic); ³¹P NMR (162 MHz, CDCl₃) δ 23.7 (s, 1P); m/z, 292 (M⁺); Anal. Calcd for C₁₈H₁₆ONP: C, 73.7; H, 5.5; N,4.8. Found: C, 73.7; H, 5.7; N, 4.5.

Fig. S1 The Hammett (a) and Brönsted (b) plots of the aminolysis of $Me_2P(=O)OPh-4-NO_2$ with XPhNH₂ (•) and XPhND₂ (•) in DMSO at 60.0 °C.

Fig. S2 The Hammett (a) and Brönsted (b) plots of the aminolysis of MePhP(=O)OPh-4-NO₂ with XPhNH₂ (\bullet) and XPhND₂ (\circ) in DMSO at 60.0 °C.

Fig. S3 The Hammett (a) and Brönsted (b) plots of the aminolysis of $Ph_2P(=O)OPh-4-NO_2$ with XPhNH₂ (•) and XPhND₂ (•) in DMSO at 60.0 °C.

Fig. S4 The Hammett plots a, b, and c by plotting $\log k_{\rm H}$ vs σ_Z for the reactions of Me₂P(=O)OPhZ, MePhP(=O)OPhZ, and Ph₂P(=O)OPhZ, respectively, with XPhNH₂ in DMSO at 60.0 °C.

Fig. S5 The Brönsted (a) for $\log k_{\rm H}$ vs $pK_{\rm a}(Z)$ (in DMSO) and (b) for $\log k_{\rm H}$ vs $pK_{\rm a}(Z)$ (in water) plots of the aminolysis of Me₂P(=O)OPhZ with XPhNH₂ in DMSO at 60.0 °C.

Fig. S6 The Brönsted (a) for $\log k_{\rm H}$ vs $pK_{\rm a}(Z)$ (in DMSO) and (b) for $\log k_{\rm H}$ vs $pK_{\rm a}(Z)$ (in water) plots of the aminolysis of (Me)(Ph)P(=O)(OPhZ) with XPhNH₂ in DMSO at 60.0 °C.

Fig. S7 The Brönsted (a) for $\log k_{\rm H}$ vs $pK_{\rm a}(Z)$ (in DMSO) and (b) for $\log k_{\rm H}$ vs $pK_{\rm a}(Z)$ (in water) plots of the aminolysis of (Ph)₂P(=O)(OPhZ) with XPhNH₂ in DMSO at 60.0 °C.

References

- (1) E. Buncel, K. G. Albright and I. Onyido, Org. Biomol. Chem., 2004, 2, 601.
- (2) E. J. Dunn, J. G. Purdon, R. A. B. Bannard, K. Albright and E. Buncel, Can. J. Chem., 1988, 66, 3137.
- (3) K. T. Douglas and A. Williams, J. Chem. Soc., Perkin Trans. 2, 1976, 515.
- (4) S. Trippett and P. J. Whittle, J. Chem. Soc., Perkin Trans. 1, 1975, 1220.
- (5) S. A. Bone, S. Trippett and P. J. Whittle, J. Chem. Soc., Perkin Trans. 1, 1977, 437.
- (6) M. J. P. Harger, J. Chem. Soc., Perkin Trans. 2, 1980, 1505.
- (7) M. E. U. Hoque, D N. K.ey, C. K. Kim, B. S. Lee and H. W. Lee, Org. Biomol. Chem., 2007, 5, 3944.
- (8) N. K. Dey, M. E. U. Hoque, C. K. Kim, B. S. Lee and H. W. Lee, J. Phys. Org. Chem., 2009, 22, 425.
- (9) I. Onyido, K.Albright and E. Buncel, Org. Biomol. Chem., 2005, 3, 1468.
- (10) G. Baccolini and C. Boga, Tetrahedron Lett., 2001, 42, 6121.
- (11) J.-F. Gal, I. Koppel, R. Kurg and P.-C. Maria, In. J. Quantum Chem., 1996, 59, 409.
- (12) Y. Li, S. D. Aubert, E. G. Maes and F. M. Raushel, J. Am. Chem. Soc., 2004, 126, 8888.
- (13) D. I. Phillips, I. Szele and F. H. Westheimer, J. Am. Chem. Soc., 1976, 98, 184.
- (14) M. J. P. Harger, J. Chem. Soc., Perkin Trans. 1, 1979, 1294.
- (15) A. Williams and R. A. Naylor, J. Chem. Soc. B, Physical Organic, 1971, 1967.
- (16) P. Haake, D. R. McCoy, W. Okamura, S. R. Alpha, S.-Y. Wong, D. A. Tyssee, J. P. McNeal and R. D. Cook, *Tetrahedron Lett.*, 1968, **50**, 5243.

(17) S. Hoz, E. J. Dunn, E. Buncel, R. A. B. Bannard and J. G. Purdon, *Phosphorus and Sulfur and the Related Elements*, 1985, **24**, 321.

(18) I.-H. Um, J. E. Park and Y.-H. Shin, Org. Biomol. Chem., 2007, 5, 3539.

(19) M. Aresta, A. Dibenedetto and E. Quaranta, Tetrahedron, 1998, 54, 14145.

(20) A. Blasko, C. A. Bunton, Y. S. Hong, M. M. Mhala, J. R. Moffatt and S. Wright, *J. Phys. Org. Chem.*, 1991, **4**, 618.

(21) L. Horner and R. Gehring, Phosphorus and Sulfur and the Related Elements, 1981, 11, 157.

(22) J.-K. Limb, S.-E. Jeon, S.-E. Lee and I.-H. Um, Bull. Korean. Chem. Soc., 2002, 23, 1263.

- (23) R. M. Tarkka and E. Buncel, J. Am. Chem. Soc., 1995, 117, 1503.
- (24) A. Williams, K. T. Douglas and J. S. Loran, J. Chem. Soc., Perkin Trans. 2, 1975, 1010.
- (25) M. E. U. Hoque and H. W. Lee, Bull. Korean Chem. Soc., 2007, 28, 936.
- (26) M. E. U. Hoque, S. Dey, A. K. Guha, C. K. Kim, B. S. Lee and H. W. Lee, J. Org. Chem., 2007, 72, 5493.