Desymmetrization of 7-Dimethylphenylsilylcycloheptatriene: Towards The Synthesis of new Aminocycloheptitols

Emeline Girard, ${ }^{\dagger}$ Valérie Desvergnes, ${ }^{\dagger}$ Céline Tarnus ${ }^{\dagger \dagger}$ and Yannick Landais ${ }^{*, \dagger}$
${ }^{\dagger}$ Université de Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351, Cours de la Libération, F-33405 Talence cedex, France.
${ }^{\dagger \dagger}$ ENSCMu, Université de Haute-Alsace, UMR 7015, 3 rue Alfred Werner F-68200 Mulhouse, France. y.landais@ism.u-bordeaux1.fr

General considerations

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker AC-250 FT (${ }^{1} \mathrm{H}: 250 \mathrm{MHz},{ }^{13} \mathrm{C}: 62.9 \mathrm{MHz}$), Bruker Avance-300 FT (${ }^{1} \mathrm{H}: 300 \mathrm{MHz},{ }^{13} \mathrm{C}: 75.5 \mathrm{MHz}$), and Bruker DPX-400 FT (${ }^{1} \mathrm{H}: 400 \mathrm{MHz},{ }^{13} \mathrm{C}: 100.6$ MHz) using CDCl_{3} as internal reference unless otherwise indicated. The chemical shifts (δ) and coupling constants (J) are expressed in ppm and hertz respectively. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintuplet, $\mathrm{m}=$ multiplet, br = broad. IR spectra were recorded on a Perkin-Elmer Paragon 1000 FT-IR spectrophotometer or on a thermo-optek 6700 FTIR spectrometer as neat films on NaCl windows or using a diamond ATR accessory (Golden gate). HRMS were recorded on a Micromass ZABSpec TOF, on a Q-Tof Applied Biosystems and on Waters Q-Tof 2 apparatus (for ESI). Melting points were determined by using a Stuart scientific digital 7SMP3 apparatus and are uncorrected. Microanalysis were determined by using a Flash EA1112 microanalysis asparatus. VWR geduran Si 60 (0.040-0.063 mm) silica gel was used for flash chromatography. All reactions were carried out under nitrogen atmosphere unless specified. THF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried on a MB SPS-800. All other solvents were used without further purification. All reagent-grade chemicals were obtained from commercial suppliers and were used as received, unless otherwise stated.
Yields refer to chromatographically and spectroscopically ($\left.{ }^{1} \mathrm{H} N \mathrm{NR}\right)$ homogeneous materials. DOWEX $\mathrm{CO}_{3}{ }^{2-}$ was prepared by stirring overnight DOWEX Cl${ }^{-} 1-10$ in a $\mathrm{Na}_{2} \mathrm{CO}_{3} 2 \mathrm{M}$ aqueous solution (N.B. the stirring was insured by the rotatory-evaporator turning without vacuum; magnetic stirring was avoided in order to not degrade the resin). The resin was then filtered and rinsed to neutrality with
water. Water was removed by washing thoroughly the resin with methanol. The resin was kept in methanol, and was rinsed with methanol before each use.

The sulfonate resin amberlite IRA120 was reactivated by stirring it with a $10 \% \mathrm{HCl}$ aqueous solution during 4 hours (N.B. the stirring was insured by the rotatory-evaporator turning without vacuum; magnetic stirring was avoided in order to not degrade the resin). The resin was then filtered and rinsed to neutral with water. Water was removed by washing thoroughly the resin with methanol. The resin was kept in methanol, and was rinsed with methanol before each use.

Experimental protocol:

A three step sequence from the tropylium tetrafluoroborate can be carried out without purification. Each step was considered as complete and a yield of 34% was obtained over three steps.

If it is not the case, the diol 7 is purified and fully characterized as followed:

7-(dimethyl(phenyl)silyl)cyclohepta-3,5-diene-1,2-diol (7):

The crude mixture was first filtrated on silica gel chromatography ($70: 30$ petroleum ether/EtOAc eluent), secondly purified by silica gel column flash chromatography (60:40 petroleum ether/EtOAc) to obtain 7 as a sticky oil ($904 \mathrm{mg}, 31 \%$). Rf 0.23 (60:40 petroleum ether/EtOAc). FTIR (film, NaCl): 3393, 3019, 2956, 1603, 1428, 1252, $832 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})=7.55-7.46(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$), 7.43-7.32 (m, 3H, CHar), 5.87-5.76 (m, 2H, CH ${ }_{\text {olefinic }}$), 5.71-5.60 (m, 1H, CH ${ }_{\text {olefinic }}$), 5.52-5.41 (m, 1H, CH ${ }_{\text {olefinic }}$), 4.29 (broad s, 1H, CH-O), 4.01 (broad s, 1H, CH-O), 2.81 (broad s, $0.6 \mathrm{H}, \mathrm{OH}$), 2.68 (t, J = 5.7 Hz, 1H, CH-Si), 2.25 (broad s, $0.8 \mathrm{H}, \mathrm{OH}$), $0.35\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 75.5\right.$ $\mathrm{MHz}): \delta(\mathrm{ppm})=135.8(\mathrm{Cq}$, ar), $134.0(\mathrm{CH}$, ar), 132.1 (CH, olefinic), 130.8 (CH, olefinic), 129.7 (CH, ar), 128.2 (CH, ar), 123.6 (CH, olefinic), 122.7 (CH, olefinic), 72.9 (CH, CH-O), 70.9 (CH, CH-O), $40.0(\mathrm{CH}, \mathrm{CH}-\mathrm{Si}),-3.9(\mathrm{CH} 3, \mathrm{CH} 3-\mathrm{Si})$, $-4.8\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{Si}\right)$. HRMS (ESI): calc. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}$: 283.1130, found : 283.1127.

7-(dimethyl(phenyl)silyl)cyclohepta-3,5-diene-1,2-diyl diacetate (9) 3-steps sequence synthesis:

Hammered lithium wire ($1 \mathrm{~g}, 146 \mathrm{mmol}, 13 \mathrm{eq}$) was added to THF (50 mL). The mixture was cooled to $0^{\circ} \mathrm{C}$ and chlorodimethyl(phenyl)silane ($5 \mathrm{~mL}, 30 \mathrm{mmol}, 2.7 \mathrm{eq}$) was added. The mixture turned dark red within 30 minutes. The reaction was allowed to warm to room temperature overnight and the resulting lithiated specie was titrated using phenolphtaleïne as color indicator and a 0.120 M solution of HCl . The concentration was found to be $0.52 \mathrm{M}(27 \mathrm{mmol}, 2.4 \mathrm{eq})$). In parallel, $\mathrm{ZnCl}_{2}(1.8 \mathrm{~g}, 13.49$
mmol, 1.2 eq) was gun-heated under vacuum until complete melting. After complete cooling the flask was placed under argon and THF (37.5 mL) was added, sonication helped the dissolution of ZnCl_{2}. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and the lithiated species was transferred via a cannula, the reaction mixture turned immediately green. The mixture was stirred during half an hour and a suspension of tropylium tertrafluoroborate (I) (ALFA AESAR $2 \mathrm{~g}, 11.2 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (37.5 mL) was prepared. It was stirred during half an hour more and then the zinc reagent was poured into it via a cannula. The resulting solution was dark green and was left stirring until the coloration turned bright yellow (from 4 to 14 days).
The reaction was quenched using saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc (3x50 mL). Combined organic layers were washed with brine and dried over MgSO_{4}. The solvent was evaporated under reduced pressure to provide an orange oily product which could be purified by chromatography on silica gel (petroleum ether). See ref 14 for description.
"AD-mix like" mixture was prepared by dry mixing $\mathrm{K}_{2} \mathrm{CO}_{3}\left(2.9 \mathrm{~g}, 22.5 \mathrm{mmol}\right.$, 2 eq), $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (ALDRICH, $166 \mathrm{mg}, 0.45 \mathrm{mmol}, 0.04 \mathrm{eq}$), $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(7.4 \mathrm{~g}, 22.5 \mathrm{mmol}, 3 \mathrm{eq}$), quinuclidine (50 mg , $0.45 \mathrm{mmol}, 0.04 \mathrm{eq})$ in a round bottomed flask for 10 minutes. A mixture of $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,56 \mathrm{~mL} /$ 56 mL) and methanesulfonamide ($1 \mathrm{~g}, 11.2 \mathrm{mmol}, 1 \mathrm{eq}$) were added. After 10 minutes the resulting orange mixture was added in one portion onto the cycloheptatriene $\mathbf{6}$ ($11.2 \mathrm{mmol}, 1 \mathrm{eq}$). The reaction mixture quickly thickened and turned brown. After 3h, no starting material remained and the reaction was quenched with solid sodium sulfite $\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$. Extraction was carried out with EtOAc (3x50 mL). The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure (tBuOH was co-evaporated with hexane) to provide a brown pasty residue mixture of $\mathbf{7}$ and $\mathbf{8}$.

The crude product ($11.2 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (112 mL). Pyridine ($7.3 \mathrm{~mL}, 90 \mathrm{mmol}, 8$ eq), acetic anhydride ($6.5 \mathrm{~mL}, 90 \mathrm{mmol}, 8 \mathrm{eq}$) and DMAP (catalytic amount) were then added. No starting material remained in the orange solution after 9 hours (TLC control), and quench was performed using saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Extraction was carried out using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×50 mL), the combined organic layers were washed with brine and dried over MgSO_{4}. The solvent was evaporated under reduced pressure (pyridine and acetic anhydride were co-evaporated with toluene) to provide a yellow oil. The residue was then purified by column chromatography on silica gel (90:10, Petroleum ether/EtOAc) to provide the acetylated product $\mathbf{9}(1.3 \mathrm{~g}, 34 \%)$ as a yellow oil.
Rf 0.61 (80:20 Petroleum ether/EtOAc). FTIR (film, NaCl): 3070, 3022, 2960, 1737, 1607, 1428, $1372,1248,1028 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})=7.59-7.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.39-7.30(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$), 5.92-5.82 (m, 1H, CH olefinic), $5.81-5.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\text {olefinic }}\right.$), $5.65-5.52\left(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{CH}_{\text {olefinic }}+\right.$ 1CH-O), 5.45-5.40 (m, 1H, CH-O), 5.36-5.28 (m, 1H, CH olefinic), 2.68 (t, J = 5.3 Hz, 1H, CH-Si), 2.03
(s, $3 \mathrm{H}, \mathrm{CH}_{3}$ of acetate), $1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of acetate), $0.45\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right.$): $\delta(\mathrm{ppm})=170.8$ (Cq, C=O of acetate), 170.2 (Cq, C=O of acetate), 135.9 (Cq, ar), 134.2 (CH, ar), 131.0 (CH, olefinic), 129.6 (CH, ar), 128.0 (CH, ar), 126.4 (CH, olefinic), 125.4 (CH, olefinic), 122.2 (CH, olefinic), 72.9 (CH, CH-O), 70.3 (CH, CH-O), 37.3 (CH, CH-Si), $21.3\left(\mathrm{CH}_{3}\right.$, acetate), $21.1\left(\mathrm{CH}_{3}\right.$, acetate), -4.2 $\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{Si}\right)$, $-4.4\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{Si}\right)$. HRMS (ESI): calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 367.1342, found: 367.1339.

General procedure for cycloaddition

$\mathrm{NaIO}_{4}(4.2 \mathrm{~g}, 31.3 \mathrm{mmol}, 10 \mathrm{eq})$ was added to a solution of the diacetate $9(1 \mathrm{~g}, 3.13 \mathrm{mmol}, 1 \mathrm{eq})$ in a mixture of methanol/water ($100 \mathrm{~mL} / 39 \mathrm{~mL}$). A solution of hydroxamic acid ($6.7 \mathrm{~g}, 31.3 \mathrm{mmol}, 10 \mathrm{eq}$) in methanol (17 mL) was then added slowly over 6 hours using a syringe pump leading to a very thick orange mixture. The medium was stirred overnight and then the reaction was buffered using a saturated aqueous solution of $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and quenched using a saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (40 mL). Extraction was carried out using EtOAc ($3 \times 40 \mathrm{~mL}$). The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the organic solvents led to a biphasic mixture, insoluble salts were removed by a quick filtration over silica gel pad using EtOAc as eluent. After evaporation, ${ }^{1} \mathrm{H}$ NMR spectra of the resulting residue was performed in $\mathrm{C}_{2} \mathrm{D}_{6} \mathrm{CO}$ to split the signals and allowed the ratio measurement by integration of the relevant signals. The crude products were then purified by column chromatography on silica gel (85:15 Petroleum ether/EtOAc) and 3 compounds (10/11/12) were isolated.

7-(tert-butoxycarbonyl)-4-(dimethyl(phenyl)silyl)-6-oxa-7-azabicyclo[3.2.2]non-8-ene-2,3-diyl

diacetate (10): Major cycloadduct
The product was obtained as a yellow powder (431 mg , 29 \%). Rf 0.29 (80:20 Petroleum ether/EtOAc) mp: 92-93${ }^{\circ}$. FTIR (film, NaCl): 3068, 2977, 1744, 1427, 1368, 1248, $1029 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (CDCl_{3}, $250 \mathrm{MHz}): \delta(\mathrm{ppm})=7.66-7.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.42-7.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 6.44-6.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\text {olefinic }}\right)$, 5.52 (t, J = $4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}$), $5.25\left(\mathrm{t}_{\text {appearing, }} \mathrm{J}_{1}=3.8 \mathrm{~Hz}, \mathrm{~J}_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}\right), 4.84-4.73(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}-\mathrm{N}$), 4.70-4.59 (m, 1H, CH-O), 2.02 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of acetate), 1.86 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of acetate), 1.72-1.61 (m, 1H, CH-Si), 1.48 (s, $9 \mathrm{H}, \mathrm{CH}_{3}$ of Boc), $0.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta(\mathrm{ppm})=169.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\mathrm{O}\right.$ of acetate $), 169.3\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\mathrm{O}\right.$ of acetate), $155.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\mathrm{O}\right.$ of Boc), 136.5 (C_{q}, ar), 134.2 (CH, ar), 132.2 (CH, olefinic), 129.5 (CH, ar), 128.0 (CH, ar or olefinic), 127.9 (CH, ar or olefinic), 82.2 (C_{q}, Boc), 73.6 (CH, CH-O), 72.7 (CH, CH-O), 69.4 (CH, CH-O), 55.4 (CH, CH-N), $36.5(\mathrm{CH}, \mathrm{CH}-\mathrm{Si}), 28.3\left(\mathrm{CH}_{3}, \mathrm{Boc}\right), 21.0\left(\mathrm{CH}_{3}\right.$, acetate), $20.8\left(\mathrm{CH}_{3}\right.$, acetate), -3.2 $\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{CH}_{3}-\mathrm{Si}\right)$, $-3.6\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{Si}\right)$. HRMS (ESI): calc. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}=498.1924$, found: 498.1923.

7-(tert-butoxycarbonyl)-2-(dimethyl(phenyl)silyl)-6-oxa-7-azabicyclo[3.2.2]non-8-ene-3,4-diyl

 diacetate (11): Second major cycloadductThe product was obtained as a white solid ($312 \mathrm{mg}, 21 \%$). Rf 0.22 (80:20 Petroleum ether/EtOAc) Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{Si}, \mathrm{C}, 60.61$; H, 6.99; N, 2.94 found C, 60.35; H, 6.92; N, 2.88. mp: 118$119^{\circ} \mathrm{C}$. FTIR (film, NaCl): 2978, 1742, 1428, 1368, 1248, $1051 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): δ $(\mathrm{ppm})=7.64-7.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.41-7.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 6.52\left(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\text {olefinic }}\right), 6.16$ ($\mathrm{t}_{\text {appearing, }} \mathrm{J}_{1}=8.7 \mathrm{~Hz}, \mathrm{~J}_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\text {olefinic }}$), 5.58 ($\mathrm{t}_{\text {appearing, }} \mathrm{J}_{1}=4.7, \mathrm{~J}_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}$), 5.20 ($\mathrm{t}_{\text {appearing, }} \mathrm{J}_{1}=4.3 \mathrm{~Hz}, \mathrm{~J}_{2}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}$), 4.83-4.67 (m, 2H, CH-O and CH-N), $2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of acetate), 1.82 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of acetate), 1.76 ($\mathrm{t}_{\text {appearing, }} \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Si}$), $1.38\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Boc), $0.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta(\mathrm{ppm})=169.8(\mathrm{Cq}, \mathrm{C}=\mathrm{O}$ of acetate), 169.6 (Cq, C=O of acetate), 157.2 (Cq, C=O of Boc), 136.9 (Cq, ar), 135.0 (CH, ar), 134.1 (CH, olefinic), 129.4 (CH, ar), 128.0 (CH, olefinic), 125.7 (CH, ar), 82.2 (Cq, Boc), 72.9 (CH, CH-O), 72.8 (CH, CH-O), 69.3 (CH, CH-O), 54.2 (CH, CH-N), 32.1 (CH, CH-Si), 28.2 ($\left.\mathrm{CH}_{3}, \mathrm{Boc}\right), 21.0\left(\mathrm{CH}_{3}\right.$, acetate), $20.8\left(\mathrm{CH}_{3}\right.$, acetate), $-3.2\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{Si}\right),-3.6\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{Si}\right)$. HRMS (ESI): calc. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}=498.1924$, found: 498.1927.

7-(tert-butoxycarbonyl)-2-(dimethyl(phenyl)silyl)-6-oxa-7-azabicyclo[3.2.2]non-8-ene-3,4-diyl

 diacetate (12): Minor cycloadductThe product was obtained as a white powder (119 mg, 8%). Rf 0.16 ($80: 20$ Petroleum ether/EtOAc) mp: 99-102 ${ }^{\circ}$. . FTIR (film, NaCl): 2977, 1744, 1427, 1368, 1246, $1056 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($\mathrm{CDCl}_{3}, 250$ $\mathrm{MHz}): \delta(\mathrm{ppm})=7.58-7.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.41-7.29\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 6.24\left(\mathrm{t}_{\text {appearing, }} \mathrm{J}_{1}=8.7 \mathrm{~Hz}, \mathrm{~J}_{2}=6.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{\text {olefinic }}$), 6.01 ($\mathrm{t}_{\text {appearing, }} \mathrm{J}_{1}=7.5 \mathrm{~Hz}, \mathrm{~J}_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\text {olefinic }}$), $5.22\left(\mathrm{t}_{\text {appearing, }} \mathrm{J}_{1}=4.8 \mathrm{~Hz}, \mathrm{~J}_{2}=\right.$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}$), 5.04 (dd, $\mathrm{J}_{1}=4.3 \mathrm{~Hz}, \mathrm{~J}_{2}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}$), 4.90-4.74 (m, 2H, CH-O and CHN), 2.13 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of acetate), 1.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of acetate), 1.41 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}$ of Boc), 1.26-1.10 (m, $1 \mathrm{H}, \mathrm{CH}-\mathrm{Si}), 0.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta(\mathrm{ppm})=$ 170.9 (Cq, C=O of acetate), 169.9 (Cq, C=O of acetate), 155.0 (Cq, C=O of Boc), 136.5 (Cq, ar), 133.8 (CH, ar), 131.1 (CH, olefinic), 129.7 (CH, ar), 128.2 (CH, ar), 127.6 (CH, olefinic), 81.8 (Cq, Boc), 71.6 (CH, CH-O), 70.4 (CH, CH-O), 70.0 (CH, CH-O), 53.6 (CH, CH-N), 29.1 (CH, CH-Si), 28.4 $\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}\right.$ of Boc), $21.0\left(\mathrm{CH}_{3}\right.$, acetate $)$, $20.8\left(\mathrm{CH}_{3}\right.$, acetate $)$, -3.2 $\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{Si}\right),-3.5\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{Si}\right)$. HRMS (ESI): calc. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}=498.1924$, found: 498.1928.

7-(tert-butoxycarbonyl)-6-oxa-7-azabicyclo[3.2.2]nonane-2,3,4-triyl triacetate (17) 3 steps-sequence synthesis:
To a solution of the olefinic compound 10 ($1281 \mathrm{mg}, 2.69 \mathrm{mmol}, 1 \mathrm{eq}$) in a $2: 1$ mixture of

EtOAc/MeOH ($0.12 \mathrm{M}, 15 \mathrm{~mL}+7.5 \mathrm{~mL}$), 10 \% Pd / C (287 mg of the mixture, 0.27 mmol of palladium, $0.1 \mathrm{eq})$ was added. Vacuum followed by nitrogen refill was performed 3 times. Then vacuum followed by dihydrogen was performed twice and the mixture was stirred overnight under dihydrogen atmosphere. Palladium was removed by filtration on celite pad, using ethyl acetate as eluent. $\mathbf{1 3}$ was obtained as a white sticky foam.
$\mathrm{KBr}(640 \mathrm{mg}, 5.38 \mathrm{mmol}, 2 \mathrm{eq})$ and $\mathrm{NaOAc}(927 \mathrm{mg}, 11.3 \mathrm{mmol}, 4.2 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$, acetic acid (6.1 $\mathrm{mL}, 0.44 \mathrm{M}$) was added to $\mathbf{1 3}$ ($2.69 \mathrm{mmol}, 1 \mathrm{eq}$). The mixture solidified and peracetic acid (9.78 mL , $0.275 \mathrm{M}, 32 \%$) was added over 10 minutes, the liquid mixture then bubbled and turned orange. 5 minutes after the addition, the ice bath was removed, and the mixture was stirred overnight. The reaction was quenched using a 25% aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ at $0^{\circ} \mathrm{C}$, followed by saturation of the aqueous phase with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The two phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were then washed first with a saturated aqueous solution of NaHCO_{3}, secondly with brine and were then dried over sodium sulfate. An orange crude mixture containing 15 was obtained.
To a solution of this residue ($2.69 \mathrm{mmol}, 1 \mathrm{eq}$) in dichloromethane ($27 \mathrm{~mL}, 0.1 \mathrm{M}$), pyridine (0.9 mL , $10.76 \mathrm{mmol}, 4 \mathrm{eq}$), acetic anhydride ($0.8 \mathrm{~mL}, 10.76 \mathrm{mmol}, 4 \mathrm{eq}$) and DMAP (catalytic amount) were added. The reaction mixture was stirred overnight. It was then quenched using $\mathrm{NH}_{4} \mathrm{Cl}$ saturated aqueous solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic fractions were washed successively with $\mathrm{H}_{2} \mathrm{O}$ and brine and were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were evaporated under reduced pressure (pyridine and acetic anhydride were co-evaporated with toluene). The crude was purified on silica gel column chromatography (60:40 Pentane/ EtOAc) providing 17 as a vitrified colorless oil (604 mg, 56 \%).

FTIR (film, NaCl): 2979, 1751, 1460, 1370, 1228, $1048 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta(\mathrm{ppm})=$ 5.57-5.40 (m, 2H, CH-O or/and CH-N), $4.95\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}\right.$ or CH-N), $4.52\left(\mathrm{t}_{\text {appearing, }} \mathrm{J}_{1}=5.3\right.$ $\mathrm{Hz}, \mathrm{J}_{2}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}$ or CH-N), 4.33 ($\mathrm{d}_{\text {appearing, }} \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}$ or CH-N), 2.14-1.86 (m, $13 \mathrm{H}, 2 \mathrm{CH}_{2}+\mathrm{CH}_{3}$ of 3 acetate), $1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Boc$) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right): \delta(\mathrm{ppm})=$ 170.3 (Cq, C=O of acetate), 169.3 (Cq, C=O of acetate), 154.2 (Cq, C=O of Boc), 82.3 (Cq, Boc), 76.8 (CH, CH-O), 76.2 (CH, CH-O), $69.3(\mathrm{CH}, \mathrm{CH}-\mathrm{O}), 68.3(\mathrm{CH}, \mathrm{CH}-\mathrm{O}), 51.5(\mathrm{CH}, \mathrm{CH}-\mathrm{N}), 28.2\left(\mathrm{CH}_{3}\right.$, $\mathrm{Boc}), 20.8\left(\mathrm{CH}_{3}\right.$ or $\left.\mathrm{CH}_{2}\right)$, $20.71\left(\mathrm{CH}_{3}\right.$ or $\left.\mathrm{CH}_{2}\right)$, $20.68\left(\mathrm{CH}_{3}\right.$ or $\left.\mathrm{CH}_{2}\right)$, $20.6\left(\mathrm{CH}_{3}\right.$ or $\left.\mathrm{CH}_{2}\right)$, $16.2\left(\mathrm{CH}_{2}\right)$. HRMS (ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}=424.15835$ found: 424.1582.

When the sequence was performed step by step, the intermediate $\mathbf{1 3}$ and $\mathbf{1 5}$ were purified and fully characterized as followed:

(7-(tert-butoxycarbonyl)-4-(dimethyl(phenyl)silyl)-6-oxa-7-azabicyclo[3.2.2]nonane-2,3-diyl diacetate (13) :

To a solution of the olefinic compound $10(86 \mathrm{mg}, 0.18 \mathrm{mmol}, 1 \mathrm{eq})$ in a $2: 1$ mixture of $\mathrm{EtOAc} / \mathrm{MeOH}$ ($0.12 \mathrm{M}, 1 \mathrm{~mL}+0.5 \mathrm{~mL}$), 10 \% Palladium on Charcoal (19 mg of the mixture, 0.018 mmol of palladium, $0.1 \mathrm{eq})$ was added. Vacuum followed by nitrogen refill was performed 3 times. Then vacuum followed by H_{2} refill was performed twice and the mixture was left stirring overnight under H_{2} atmosphere. Palladium was removed by filtration on celite pad, using ethyl acetate as eluent. Purification was performed by chromatography on silica gel ($85: 15$ Pentane/EtOAc) providing the product $\mathbf{1 3}$ as colorless oil ($84 \mathrm{mg}, 98 \%$).
Rf 0.11 (85:15, Petroleum ether/EtOAc). FTIR (film, NaCl): 3049, 2977, 1744, 1688, 1427, 1367, $1247,1024 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})=7.65-7.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.47-7.30(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{CH}_{\mathrm{ar}}$), 5.58 (appearing $\mathrm{t}, \mathrm{J}_{1}=4.1 \mathrm{~Hz}, \mathrm{~J}_{2}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}$), 5.21-5.10 (m, 1H, CH-O), 4.46-4.24 (m, $2 \mathrm{H}, \mathrm{CH}-\mathrm{N}$ and $\mathrm{CH}-\mathrm{O}$), 2.45-2.28 (m, 1H, CH2 $), 2.22-2.07\left(\mathrm{~m}, 1 \mathrm{H}_{2} \mathrm{CH}_{2}\right.$), 2.07-1.97 (m, 1H, CH 2), 2.02 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of acetate), $1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of acetate), 1.97-1.88 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$), $1.68\left(\mathrm{t}_{\text {appearing, }} \mathrm{J}_{1}=3.4 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{2}=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Si}\right), 1.52\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Boc), $0.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta(\mathrm{ppm})=169.8(\mathrm{Cq}, \mathrm{C}=\mathrm{O}$ of acetate), $169.2(\mathrm{Cq}, \mathrm{C}=\mathrm{O}$ of acetate), 153.3 (Cq, C=O of Boc), 136.5 (Cq, ar), 134.2 (CH, ar), 129.5 (CH, ar), 128.0 (CH, ar), 81.8 (Cq, Boc), 74.8 (CH, CH-O), 74.1 (CH, CH-O), 69.5 (CH, CH-O), 53.5 (broad CH, CH-N), $39.5(\mathrm{CH}, \mathrm{CH}-\mathrm{Si}), 28.5\left(\mathrm{CH}_{3}\right.$, Boc), $24.2\left(\mathrm{CH}_{2}\right)$, $21.2\left(\mathrm{CH}_{3}\right.$, acetate $)$, $20.8\left(\mathrm{CH}_{3}\right.$, acetate $)$, $17.9\left(\mathrm{CH}_{2}\right),-3.4\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{Si}\right)$, $-3.5\left(\mathrm{CH}_{3}\right.$, $\mathrm{CH}_{3}-\mathrm{Si}$). HRMS (ESI): calc. for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{NO}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}=500.2080$ found: 500.2088

7-(tert-butoxycarbonyl)-4-hydroxy-6-oxa-7-azabicyclo[3.2.2]nonane-2,3-diyl diacetate (15):

To a mixture of reduced cycloadduct 13 ($1.31 \mathrm{mmol}, 627 \mathrm{mg}, 1 \mathrm{eq}$), $\mathrm{KBr}(2.62 \mathrm{mmol}, 312 \mathrm{mg}, 2 \mathrm{eq})$ and $\mathrm{NaOAc}(5.5 \mathrm{mmol}, 451 \mathrm{mg}, 4.2 \mathrm{eq})$ at $0{ }^{\circ} \mathrm{C}$, acetic acid ($2.98 \mathrm{~mL}, 0.44 \mathrm{M}$) was added. peracetic acid ($4.76 \mathrm{~mL}, 0.275 \mathrm{M}, 32 \%$) was added over 10 minutes to the solid mixture, which turned into liquid, bubbled, and turned orange. 5 minutes after the addition, the ice bath was removed, and the mixture was stirred overnight. The reaction was quenched using a 25% weight aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ at $0{ }^{\circ} \mathrm{C}$, followed by saturation of the aqueous phase with solid $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The two phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were then washed first with a saturated aqueous solution of NaHCO_{3}, secondly with brine and were then dried over
sodium sulfate. Purification was performed by chromatography on silica gel (99:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$) to provide the following product $\mathbf{1 5}$ as a colorless oil ($206 \mathrm{mg}, 44 \%$).
Rf 0.22 (98:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$). FTIR (film, NaCl): 3463, 2979, 1751, 1371, 1244, $1069 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm})=5.41(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}), 5.21\left(\mathrm{t}_{\text {appearing, }} \mathrm{J}_{1}=5.7 \mathrm{~Hz}, \mathrm{~J}_{2}=5.3 \mathrm{~Hz}\right.$, 1H, CH-O), 4.38 (broad s, 2H, CH-O and CH-N), 3.81 (d, J = $4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}$), 2.13-1.92 (m, 2H, CH_{2}), 1.99 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of acetate), $1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of acetate), 1.92-1.77 (m, 2H, CH_{2}), $1.41(\mathrm{~s}, 9 \mathrm{H}$, CH_{3} of Boc). ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta(\mathrm{ppm})=169.9(\mathrm{Cq}, \mathrm{C}=\mathrm{O}$ of acetate), $169.3(\mathrm{Cq}, \mathrm{C}=\mathrm{O}$ of acetate), 154.3 (Cq, C=O of Boc), 82.4 (Cq, Boc), 78.6 (CH, CH-O), 74.6 (CH, CH-O), 72.5 (CH, CH-O), 69.3 ($\mathrm{CH}, \mathrm{CH}-\mathrm{O}$), $52.3(\mathrm{CH}, \mathrm{CH}-\mathrm{N}), 28.1\left(\mathrm{CH}_{3}, \mathrm{Boc}\right), 20.7\left(\mathrm{CH}_{3}\right.$, acetate), $20.6\left(\mathrm{CH}_{3}\right.$ acetate), $20.3\left(\mathrm{CH}_{2}\right)$, $16.7\left(\mathrm{CH}_{2}\right)$. HRMS (ESI): calc. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 382.1478$ found: 382.1470

7-(tert-butoxycarbonyl)-6-oxa-7-azabicyclo[3.2.2]nonane-2,3,4-triyl triacetate (18) 3 steps sequence synthesis:

To a solution of 11 ($581 \mathrm{mg}, 1.22 \mathrm{mmol}, 1 \mathrm{eq}$) in a 2:1 mixture of EtOAc/MeOH ($0.12 \mathrm{M}, 6.8 / 3.4 \mathrm{~mL}$), 10 \% Palladium on charcoal (ALDRICH, 129 mg of the mixture, 0.122 mmol of palladium, 0.1 eq) was added. Vacuum followed by nitrogen refill was performed 3 times. Then vacuum followed by dihydrogen was performed twice and the mixture was stirred overnight under dihydrogen atmosphere. Palladium was removed by filtration on celite pad, using ethyl acetate as eluent. $\mathbf{1 4}$ was obtained as a sticky foam.
$\mathrm{KBr}(229 \mathrm{mg}, 1.92 \mathrm{mmol}, 2 \mathrm{eq})$ and sodium acetate ($331 \mathrm{mg}, 4.03 \mathrm{mmol}, 4.2 \mathrm{eq}$), acetic acid (2.18 mL , $0.44 \mathrm{M})$ was added to $\mathbf{1 4}(460 \mathrm{mg}, 0.96 \mathrm{mmol}, 1 \mathrm{eq})$, at $0^{\circ} \mathrm{C}$. peracetic acid ($3.5 \mathrm{~mL}, 0.275 \mathrm{M}$) was added dropwise over 10 minutes to the solid medium which then became liquid and orange upon the addition. The reaction was stirred 5 more minutes at $0^{\circ} \mathrm{C}$ and was then allowed to warm at room temperature. After 8 hours the reaction was quenched at $0{ }^{\circ} \mathrm{C}$ using a 25% aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (the mixture turned light yellow and gas was produced), followed by $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solid until saturation was reached. Extraction was carried out with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were washed successively with a saturated aqueous solution of NaHCO_{3} and with brine. The organic layer was then dried over sodium sulfate. Solvent was evaporated under reduced pressure providing $\mathbf{1 6}$ which was used without further purification in the following step.
The alcohol 16 ($0.96 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in dichloromethane ($9.2 \mathrm{~mL}, 0.1 \mathrm{M}$) and pyridine (0.3 $\mathrm{mL}, 3.68 \mathrm{mmol}, 3.8 \mathrm{eq})$, acetic anhydride ($0.27 \mathrm{~mL}, 3.68 \mathrm{mmol}, 3.8 \mathrm{eq}$) and DMAP ($11 \mathrm{mg}, 0.09 \mathrm{mmol}$, $0.09 \mathrm{eq})$ were added. The colorless solution was stirred overnight and turned yellow. The reaction was quenched using $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous saturated solution, and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were then washed successively with $\mathrm{H}_{2} \mathrm{O}$ and brine and were dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated under reduced pressure (pyridine and acetic anhydride were coevaporated with toluene). The crude was purified on silica gel column chromatography (80:20 Pentane/ EtOAc) providing 18 as a white crystalline solid ($196 \mathrm{mg}, 40 \%$).
Rf 0.08 (60:40, Petroleum ether/EtOAc) Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{9}, \mathrm{C}, 53.86 ; \mathrm{H}, 6.78$; N, 3.49, found C, 53.81; H, 6.81; N, 3.30. mp: 133-134² ${ }^{\circ}$. FTIR (film, NaCl): 2979, 1746, 1699, 1430, 1370, 1226, $1047,918 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta(\mathrm{ppm})=5.66-5.51(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}-\mathrm{O}), 5.07-4.97(\mathrm{~m}, 1 \mathrm{H}$, CH-O), 4.64-4.50 (m, 2H, CH-O and CH-N), 2.27-2.12 (m, 1H, 1H of CH ${ }_{2}$), $2.05\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{CH}_{3}\right.$ of acetate), 2.04 ($\mathrm{s}, 1.5 \mathrm{H}, \mathrm{CH}_{3}$ of acetate), $2.00\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{CH}_{3}\right.$ of acetate), 1.99 (s, $1.5 \mathrm{H}, \mathrm{CH}_{3}$ of acetate), $1.96\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{CH}_{3}\right.$ of acetate), $1.95\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{CH}_{3}\right.$ of acetate), $1.92-1.79\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.43\left(\mathrm{~s}, 4.5 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Boc), 1.42 (s, $4.5 \mathrm{H}, \mathrm{CH}_{3}$ of Boc). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta(\mathrm{ppm})=170.3(\mathrm{Cq}, \mathrm{C}=\mathrm{O}$ of acetate), 169.6 (Cq, C=O of acetate), 169.5 ($\mathrm{Cq}, \mathrm{C}=\mathrm{O}$ of acetate), 155.1 (Cq, C=O of Boc), 82.0 (Cq, Boc), 76.6 (CH, CH-O), 73.4 (CH, CH-O), 70.9 (CH, CH-O), 70.6 (CH, CH-O), 53.7 (CH, CH-N), 28.2 $\left(\mathrm{CH}_{3}, \mathrm{Boc}\right), 20.9\left(\mathrm{CH}_{3}\right.$, acetate), $20.7\left(\mathrm{CH}_{3}\right.$, acetate), $19.9\left(\mathrm{CH}_{2}\right), 19.3\left(\mathrm{CH}_{2}\right)$. HRMS (ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}=424.15835$ found: 424.1577.

When the sequence was performed step by step, the intermediate $\mathbf{1 4}$ and $\mathbf{1 6}$ were purified and fully characterized as followed:

7-(tert-butoxycarbonyl)-2-(dimethyl(phenyl)silyl)-6-oxa-7-azabicyclo[3.2.2]nonane-3,4-diyl

 diacetate (14) :The olefinic compound ($654 \mathrm{mg}, 1.38 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in a $2: 1$ mixture of $\mathrm{EtOAc} / \mathrm{MeOH}$ ($0.12 \mathrm{M}, 8 \mathrm{~mL}+4 \mathrm{~mL}$). 10 \% Palladium on charcoal (147 mg of the mixture, 0.138 mmol of palladium, $0.1 \mathrm{eq})$ was then added. Vacuum followed by nitrogen refill was performed 3 times. Then vacuum followed by dihydrogen was performed twice and the mixture was stirred overnight under dihydrogen atmosphere. Palladium was removed by filtration on celite pad, using ethyl acetate as eluent. No further purification was necessary; the product $\mathbf{1 4}$ was obtained as white powder ($645 \mathrm{mg}, 98 \%$)
Rf 0.16 (85:15 Petroleum ether/EtOAc). FTIR (film, NaCl): 2976, 1743, 1428, 1368, 1246, 1038. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})=7.57-7.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.39-7.27\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 5.64(\mathrm{t}, \mathrm{J}=4.5$ Hz, 1H, CH-O), 5.30 (t, J = $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}$), 4.41 (broad, 1H, CH-N), 4.26 (broad, 1H, CH-O), 2.13-1.90 (m, $7 \mathrm{H}, \mathrm{CH}_{3}$ of acetate $+2 \mathrm{CH}_{2}$), $1.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of acetate), $1.79(\mathrm{t}, \mathrm{J}=4.53 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Si})$ 1.41 (s, $9 \mathrm{H}, \mathrm{CH}_{3}$ of Boc), 0.42 (s, 3H, $\mathrm{CH}_{3}-\mathrm{Si}$), $0.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right) .{ }^{13} \mathrm{C}$ NMR (CDCl3, 75.5 Mhz): δ $(\mathrm{ppm})=169.7(\mathrm{Cq}, \mathrm{C}=\mathrm{O}$ of acetate), 169.4 (Cq, C=O of acetate), 155.8 (Cq, C=O of Boc), 136.9 (Cq, ar), 133.9 (CH, ar), 129.3 (CH, ar), 127.8 (CH, ar), 81.5 (Cq, Boc), 73.7 (CH, CH-O), 73.6 (CH, CH-O), $69.5(\mathrm{CH}, \mathrm{CH}-\mathrm{O}), 52.3(\mathrm{CH}, \mathrm{CH}-\mathrm{N}), 36.4(\mathrm{CH}, \mathrm{CH}-\mathrm{Si})$, $28.2\left(\mathrm{CH}_{3}, \mathrm{Boc}\right), 22.8\left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}\right.$ of
acetate), $20.8\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}\right.$ of acetate), $18.7\left(\mathrm{CH}_{2}\right),-3.40\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{Si}\right),-3.6\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{Si}\right)$. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+} 500.20805$ found 500.2085

7-(tert-butoxycarbonyl)-2-hydroxy-6-oxa-7-azabicyclo[3.2.2]nonane-3,4-diyl diacetate (16):

To a mixture of 14 ($114 \mathrm{mg}, 0.24 \mathrm{mmol}, 1 \mathrm{eq}$), $\mathrm{KBr}(57 \mathrm{mg}, 0.48 \mathrm{mmol}, 2 \mathrm{eq})$ and $\mathrm{NaOAc}(82 \mathrm{mg}, 1$ mmol, 4.2 eq), acetic acid ($0.55 \mathrm{~mL}, 0.44 \mathrm{M}$) was added at $0^{\circ} \mathrm{C}$. Peracetic acid ($0.9 \mathrm{~mL}, 0.275 \mathrm{M}$) was added drop wise over 10 minutes to the solid mixture, the mixture became then liquid and orange upon the addition. The reaction was stirred 5 more minutes at $0{ }^{\circ} \mathrm{C}$ and was then allowed to warm at room temperature. After 8 hours the reaction was quenched at $0^{\circ} \mathrm{C}$ using a 25% aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (the mixture turned light yellow and gas was produced), solid $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was then added until saturation was reached. Extraction was carried out with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic fractions were washed successively with a saturated aqueous solution of NaHCO_{3} and with brine. The organic layers were then dried over sodium sulfate. Solvent was evaporated under reduced pressure. Purification was performed by silica gel chromatography ($70: 30$ Pentane/EtOAc) providing the product $\mathbf{1 6}$ as a white solid ($56 \mathrm{mg}, 65 \%$)
Rf 0.15 (60:40 Petroleum ether/EtOAc). mp: 148-149${ }^{\circ} \mathrm{C}$. FTIR (film, NaCl): 3456, 2978, 2936, 1746, 1702, 1370, 1250, 1053, $921 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta(\mathrm{ppm})=5.59-5.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{O})$, 4.61-4.50 (m, 2H, CH-O and CH-N), 3.94 (broad s, 1H, CH-O), 3.10 (broad s, 1H, OH), 2.30-1.96 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.07 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ of acetate), 2.06 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of acetate), 1.86 (broad s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.48 (s , $9 \mathrm{H}, \mathrm{CH}_{3}$ of Boc). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta(\mathrm{ppm})=170.5(\mathrm{Cq}, \mathrm{C}=\mathrm{O}$ of acetate), 169.8 (Cq, $\mathrm{C}=\mathrm{O}$ of acetate), 156.7 (Cq, C=O of Boc), 82.5 (Cq, Boc), 76.1 (CH, CH-O), 73.9 (CH, CH-O), 73.8 ($\mathrm{CH}, \mathrm{CH}-\mathrm{O}$), $71.4(\mathrm{CH}, \mathrm{CH}-\mathrm{O}), 56.9(\mathrm{CH}, \mathrm{CH}-\mathrm{N}), 28.3\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}\right.$ of Boc), $21.0\left(\mathrm{CH}_{3}\right.$, acetate), 20.9 $\left(\mathrm{CH}_{3}\right.$, acetate), $19.6\left(\mathrm{CH}_{2}\right), 19.1\left(\mathrm{CH}_{2}\right)$. HRMS (ESI): calc. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 382.14779$ found: 382.1479.

Elaboration of original aminocycloheptitols 22 and 24.

4-(tert-butoxycarbonylamino)-7-hydroxycycloheptane-1,2,3-triyl triacetate and regioisomers (19) :
To a solution of hydroxylamine 17 ($199 \mathrm{mg}, 0.5 \mathrm{mmol}, 1 \mathrm{eq}$) in a 9:1 $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{M}, 4.5 / 0.5 \mathrm{~mL})$ mixture, $\mathrm{Mo}(\mathrm{CO})_{6}$ (ALDRICH-98 \%, $162 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.3 \mathrm{eq}$) was added. The white mixture was refluxed overnight and rapidly turned black when temperature increased. Reflux was then stopped and silica was used to quench the reaction. The mixture was then filtered and the products were eluted with EtOAc. Solvent was evaporated under reduced pressure. The residue was purified on silica gel column
chromatography (60:40 Pentane/EtOAc) affording a mixture of 19 and regioisomers as a white solid (161 mg, 80%).
tert-butyl-2,3,4,5-tetrahydroxycycloheptylcarbamate (21) :
To a solution of the acetate compounds mixture (19 and regioisomers) ($482 \mathrm{mg}, 1.2 \mathrm{mmol}$) in methanol, DOWEX CO ${ }_{3}{ }^{2-}$ (2 spoons) was added. The mixture was stirred overnight. It was then filtered and the resin was rinsed thoroughly with methanol. The clean material 21 was obtained after evaporation as a white solid ($320 \mathrm{mg}, 96 \%$). No further purification was performed.

Rf 0.23 ($90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$). mp: $149-151^{\circ} \mathrm{C}$. FTIR (neat) : 3334, 1725, 1519, 1455, 1366, $1157 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})=4.05-3.91(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{CH}-\mathrm{O}), 3.82-3.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O})$, 3.78-3.65 (m, 1H, CH-N), 1.96-1.79 (m, 2H, CH2), 1.79-1.61 (m, 2H, CH2), 1.47 (s, 9H, CH3 of Boc).
${ }^{13}$ C NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 75.5 \mathrm{MHz}\right): \delta(\mathrm{ppm})=158.0(\mathrm{Cq}, \mathrm{C}=\mathrm{O}$ of Boc$), 80.0(\mathrm{Cq}, \mathrm{Boc}), 74.7(\mathrm{CH}, \mathrm{CH}-\mathrm{O})$, 73.9 (CH, CH-O), 73.2 (CH, CH-O), 71.8 (CH, CH-O), 54.1 (CH, CH-N), $28.8\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}\right.$ of Boc), 28.4 $\left(\mathrm{CH}_{2}\right)$, $27.2\left(\mathrm{CH}_{2}\right)$. HRMS (ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}=300.14231$ found: 300.1419 5-aminocycloheptane-1,2,3,4-tetraol (22) :
To a solution of carbamate $\mathbf{2 1}(180 \mathrm{mg}, 0.65 \mathrm{mmol})$ in methanol (8 mL) Amberlite IRA 120 (2 spoons) was added. The mixture was refluxed during 2 hours, stirred overnight and refluxed again for additional 2 hours. The resin was then separated by filtration and placed in a round bottomed flask. The flask was cooled to $0{ }^{\circ} \mathrm{C}$ and a $15 \% \mathrm{NH}_{3}$ aqueous solution was added. After 15 hours of stirring the resin was eliminated by filtration and the solution was evaporated under reduced pressure providing the colorless oil (63mg, 56%).
${ }^{1} \mathbf{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}$): $\delta(\mathrm{ppm})=4.15-3.91(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}-\mathrm{O})$, $3.91-3.76(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}-\mathrm{O})$, 3.14-2.96 (m, 1H, CH-N), 2.05-1.77 (m, 2H, CH2), 1.77-1.55 (m, 2H, CH $)_{2}$) ${ }^{13}$ C NMR ($\mathrm{CD}_{3} \mathrm{OD}, 75.5$ $\mathrm{MHz}): \delta(\mathrm{ppm})=74.9$ (CH, CH-O), 74.8 (CH, CH-O), 74.4 (CH, CH-O), 71.7 (CH, CH-O), 53.2 (CH, $\mathrm{CH}-\mathrm{N}), 28.4\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right)$. HRMS (ESI): calc. for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}=178.10793$ found: 178.1076.

4-(tert-butoxycarbonylamino)-7-hydroxycycloheptane-1,2,3-triyl triacetate (20):

To a solution of hydroxylamine 18 ($152 \mathrm{mg}, 0.38 \mathrm{mmol}, 1 \mathrm{eq}$) in a 9:1 $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{M}, 3.4 / 0.4 \mathrm{~mL})$ mixture, $\mathrm{Mo}(\mathrm{CO})_{6}$ (ALDRICH-98 \%, $112 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added. The white mixture was refluxed overnight and rapidly turned black when temperature increased. Heating was then stopped and silica was used to quench the reaction. It was then filtered and the products were eluted with EtOAc. Solvent was evaporated under reduced pressure. The product was purified by silica gel column chromatography (60-40 Pentane/EtOAc) providing 20 as a white solid (152 mg , 99%, mixture of
regioisomers).
tert-butyl 2,3,4,5-tetrahydroxycycloheptylcarbamate (23) :
To a solution of 20 ($98 \mathrm{mg}, 0.24 \mathrm{mmol}$) in methanol (about 5 mL), resin DOWEX CO ${ }_{3}{ }^{2-}$ (2 spoons) was added. The reaction mixture was stirred and the progress of the reaction was followed by TLC. After 4 hours no starting material remained. Resin was removed by filtration and rinsed with methanol. After evaporation, $\mathbf{2 3}$ was obtained as a vitrified colorless solid ($42 \mathrm{mg}, 63 \%$). No further purification was required.
Rf $0.14\left(90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right) \mathbf{m p}: 154-155^{\circ} \mathrm{C}$. FTIR (film, NaCl): $3351,3003,2920,1686,1507$, 1452, 1363, 1172, $1087 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$): $\delta(\mathrm{ppm})=3.99-3.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{O}), 3.88-$ 3.77 (m, 3H, CH-O and CH-N), 2.11-1.95 (m, 1H, 1 H of CH2 $), 1.95-1.83\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of CH2 $\mathrm{CH}_{2}, 1.83-$ $1.68\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 1.45\left(\mathrm{~s}, 10 \mathrm{H}, 9 \mathrm{H}\right.$ of $\mathrm{Boc}+1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right){ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100.6 \mathrm{MHz}\right): \delta$ (ppm) = 157.5 (Cq, C=O of Boc), 80.1 (Cq, Boc), 76.2 (CH, CH-O), 75.7 (CH, CH-O), 73.8 (CH, CHO), $72.6(\mathrm{CH}, \mathrm{CH}-\mathrm{O}), 53.0(\mathrm{CH}, \mathrm{CH}-\mathrm{N}), 32.0\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}\right.$ of Boc), $25.2\left(\mathrm{CH}_{2}\right)$. HRMS (ESI): calc. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}=300.14231$ found: 300.1420.

5-aminocycloheptane-1,2,3,4-tetraol (24) :

To a solution of 23 ($40 \mathrm{mg}, 0.14 \mathrm{mmol}$) in methanol (4 mL), Amberlite IRA 120 was added (2 spoons). The mixture was refluxed during 2 hours, stirred overnight and refluxed again for additional 2 hours. The resin was then separated by filtration and placed in a round bottomed flask. The flask was cooled to $0^{\circ} \mathrm{C}$ and a $15 \% \mathrm{NH}_{3}$ aqueous solution was added. After 15 hours of stirring the resin was eliminated by filtration and the solution was evaporated under reduced pressure affording the clean product $\mathbf{2 4}$ (8 mg , 32%) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})=4.01-3.90(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}-\mathrm{O}), 3.86-3.76(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}-\mathrm{O}), 3.13$ (dt, $\left.\mathrm{J}_{1}=9.5 \mathrm{~Hz}, \mathrm{~J}_{2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{N}\right), 2.05-1.68\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.58-1.47\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of CH $\left.\mathrm{CH}_{2}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 75.5 \mathrm{MHz}$): $\delta(\mathrm{ppm})=75.6$ (CH, CH-O), 74.8 (CH, CH-O), 73.9 (CH, CH-O), 72.1 (CH, CH-O), $52.9(\mathrm{CH}, \mathrm{CH}-\mathrm{N}), 30.7\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right)$. HRMS (ESI): calc. for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}=$ 178.10793 found: 178.1082.

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

Compound 7－CDCl ${ }_{3}$－75．5 MHz

（ppm）

Compound 11-CDCl ${ }_{3}-75.5 \mathrm{MHz}$

Compound 12-CDCl ${ }_{3}-100.6 \mathrm{MHz}$

Compound 13-CDCl $3_{3}-100.6 \mathrm{MHz}$

Compound $14-\mathrm{CDCl}_{3}-75.5 \mathrm{MHz}$

Compound 16-CDCl ${ }_{3}-75.5 \mathrm{MHz}$

Compound 17-CDCl ${ }_{3}$-62.9 MHz

Compounds 19-CDCl ${ }_{3}-250 \mathrm{MHz}$

19, $\mathrm{R}=\mathrm{H}, \mathrm{Ac}$

Compounds 19-CDCl 3 -62.9 MHz

19, $R=H, A c$

Compounds 20-CDCl 3 - 400 MHz

20, $R=H, A c$

Compound 21-CD ${ }_{3}$ OD-75.5 MHz

Compound 22-CD ${ }_{3}$ OD-300 MHz

Compound 23-CD ${ }_{3}$ OD-100.6 MHz

