ESI for

Oxygen-promoted ligand-free palladium-catalyzed Suzuki reaction in aqueous media

Chun Liu*, Qijian Ni, Pingping Hu, and Jieshan Qiu

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 PR China E-Mail: chunliu70@yahoo.com

Contents

Materials and Methods and Experimental Procedure	S 1
Control Experiments under Different Atmosphere	S2
Characterization Data	S2-S4
References	S5
¹ H NMR Spectra of Cross-Coupling Products	S6-S17

Materials and Methods

All aryl bromides and aryl boronic acids were used as received (Alfa Aesar, Avocado). All other chemicals were purchased from commercial sources and used without further purification. ¹H NMR spectra were recorded on a Varian Inova 400 spectrometer. Chemical shifts are reported in ppm relative to TMS. UV-vis spectroscopy measurements (300 nm-700 nm) were performed on a Beijing Rui-Li UV-2100 using quartz cells. All products were isolated by short chromatography on a silica gel (200-300 mesh) column using petroleum ether (60-90°C), unless otherwise noted. Compounds described in the literature were characterized by comparison of their ¹H NMR spectra to reported data.

Typical procedure for Suzuki-Miyaura reaction

A mixture of aryl bromide (0.5 mmol), arylboronic acid (0.75 mmol), palladium loading (0.5 mol %), K_2CO_3 (1 mmol, 138 mg) and 50% ethanol (4 mL) was stirred at 25 °C for the indicated time. The mixture was then added to brine (10 mL) and extracted four times with ethyl acetate (4 ×10 mL). The solvent was concentrated *in vacuo* and the product was isolated by short chromatography on a silica gel (200-300 mesh) column.

Control experiments under different atmosphere

Suzuki reaction performed in oxygen for example:

A mixture of aryl bromide (0.5 mmol), phenylboronic acid (0.75 mmol), $PdCl_2$ (0.5 mol %, 0.44 mg), K_2CO_3 (1 mmol) and 50% ethanol (4 mL) was stirred at 25 °C for indicated time with a balloon full of oxygen. The mixture was added to brine (10 mL) and extracted four times with ethyl acetate (4 ×10 mL), the solvent was evaporated *in vacuo* and the product isolated by column chromatography.

Tabel 1 Effects of bases on the reaction of 4-bromoanisole with phenylboronic acid

Entry	Base	Isolated Yield (%)
1	K_2CO_3	100
2	NaOH	78
3	t-BuOK	84
4	K ₃ PO ₄ ·7H ₂ O	83
5	Na ₂ CO ₃	10
6	CH ₃ COONa	71
7	K_2CO_3	99^b

^{*a*} Reaction conditions: 4-bromoanisole (0.5 mmol), phenylboronic acid (0.75 mmol), PdCl₂ (0.5 mol%), base (1.0 mmol), reaction time: 30 min, 50% EtOH (4 mL), 25 °C, in air. ^{*b*} 1.5 mmol K₂CO₃ was used.

Table 2 Effects of the ratio of ethanol to water on the Suzuki reaction.

Entry	Solvent	Isolated Yield (%)
1	Pure H ₂ O	Trace
2	$EtOH/H_2O = 1/2$	37
2	$EtOH/H_2O = 1/1$	100
3	$EtOH/H_2O = 2/1$	92
		1) I II I I I I I I I I I I I I I I I I

Reaction conditions: 4-bromoanisole (0.5 mmol), phenylboronic acid (0.75 mmol), PdCl2 (0.5 mol%), K_2CO_3 (1.0 mmol), reaction time: 30 min, 25 °C, in air.

Characterization Data

4-methoxybiphenyl¹

¹H NMR (400 MHz, CDCl₃, TMS): δ 7.54 (t, J = 8.0 Hz, 4H), 7.42 (t, J = 7.6, 2H), 7.31 (d, J = 7.2 Hz, 1H), 6.98 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H), ppm.

4-acetylbiphenyl²

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.04 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 7.4 Hz, 2H), 7.48 (t, J = 7.4 Hz, 2H), 7.41 (t, J = 7.2 Hz, 1H), 2.62 (s, 3H), ppm.

4-phenylbenzonitrile³ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.00 (m, 4H), 7.59 (d, J = 7.6 Hz, 2H), 7.50 (t, J = 7.2 Hz, 2H), 7.45 (t, J = 9.2 Hz, 1H), ppm. 4-methoxyl-2'-methylbiphenyl⁴ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.19-7.23 (m, 6H), 6.92 (d, J = 8.4 Hz, 2H), 3.80 (s, 3H), 2.26 (s, 3H), ppm. 4-methoxvl-3'-methylbiphenyl⁴ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.52 (d, J = 9.2 Hz, 2H), 7.33 (m, 3H), 7.12 (d, J = 7.2 Hz, 1H), 6.96 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H), 2.41 (s, 3H), ppm. 4-methoxyl-4'-methylbiphenyl⁵ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.48 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H), 2.36 (s, 3H), ppm. 2-methoxylbiphenyl¹ ¹H NMR (400 MHz, CDCl₃, TMS): δ 6.95 - 7.60 (m, 9H), 3.81 (s, 3H), ppm. 2-methoxyl-2'-methylbiphenyl⁶ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.40 (t, J = 8.0 Hz, 1H), 7.21 - 7.32 (m, 5H), 7.08 (t, J = 7.2 Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 3.82 (s, 3H), 2.22 (s, 3H), ppm. 2-methoxyl-3'-methylbiphenyl⁷ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.31-7.37 (m, 5H), 7.70 (d, J = 7.2 Hz, 1H), 7.04 (t, J = 8.0 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 3.81 (s, 3H), 2.43 (s, 3H), ppm. 2-methoxyl-4'-methylbiphenyl⁷ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.42 (d, J = 8.0 Hz, 2H), 7.30 (t, J = 6.6 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.96 - 7.03 (m, 2H), 3.80 (s, 3H), 2.39 (s, 3H), ppm. 2,4'-dimethoxybiphenyl⁵ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.47 (d, J = 9.2 Hz, 2H), 7.29 (t, J = 3.2 Hz, 2H), 6.93 - 7.03 (m, 4H), 3.84 (s, 3H), 3.81 (s, 3H), ppm. 4-methoxyl-4'-fluorobiphenyl⁵ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.50 (m, 4H), 7.10 (t, J = 8.8 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H), ppm. 4-acetyl-4'-fluorobiphenyl⁸ ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.03 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 2.0 Hz, 2H), 7.59 (m, J = 3.2 Hz, 2H), 7.16 (t, J = 6.0 Hz, 2H), 2.54 (s, 3H), ppm. 4'-methoxy-4-biphenylaldehyde⁵

¹H NMR (400 MHz, CDCl₃, TMS): δ 10.05 (s, 1H), 7.95 (d, J = 8.0 Hz, 2H), 7.70 (d, J =

8.0 Hz, 2H), 7.60 (d, *J* = 8.8 Hz, 2H), 7.0 (d, *J* = 8.8 Hz, 2H), 3.85 (s, 3H), ppm.

2-phenylpyridine⁹

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.70 (d, J = 4.4 Hz, 1H), 7.99 (d, J = 7.2 Hz, 2H), 7.75 (m, 2H), 7.49-7.39 (m, 3H), 7.25 - 7.21 (m, 1H), ppm.

2-(2-tolyl) pyridine⁹

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.68 (m, 1H), 7.68-7.72 (m, 1H), 7.38 (t, *J* = 7.2 Hz, 2H), 7.18 - 7.28 (m, 4H), 2.36 (s, 3H), ppm.

2-(3-tolyl) pyridine⁹

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.68 (d, J = 4.8 Hz, 1H), 7.83 (s, 1H), 7.70 - 7.76 (m, 3H), 7.35 (t, J = 7.6 Hz, 1H), 7.19 - 7.25 (m, 2H), 2.43 (s, 3H), ppm.

2-*p*-tolylpyridine⁹

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.66 (d, *J* = 4.8 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 2H), 7.72-7.68 (m, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.21-7.18(m, 1H), 2.41 (s, 3H), ppm.

2-(2-methoxylphenyl) pyridine⁹

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.69 (d, J = 4.4 Hz, 1H), 7.65 - 7.80 (m, 3H), 7.37 (t, J = 1.6 Hz, 1H), 7.17 (m, 1H), 7.09(t, J = 7.6 Hz, 1H), 6.98(d, J = 8.0 Hz, 1H), 3.81 (s, 3H), ppm.

2-(4-methoxyphenyl) pyridine⁹

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.66 (d, J = 4.4 Hz, 1H), 7.95 (d, J = 8.8 Hz, 2H), 7.65-7.73 (m, 2H), 7.17 (t, J = 6.0 Hz, 1H), 7.01 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H), ppm.

2-(4-fluorophenyl)pyridine⁹

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.66 (d, *J* = 4.8 Hz, 1H), 7.94 - 7.98 (m, 2H), 7.65 - 7.75 (m, 2H), 7.12 - 7.25 (m, 3H), ppm.

5-(4-methyl phenyl) pyrimidine⁹

¹H NMR (400 MHz, CDCl₃, TMS): δ 9.18 (s, 1H), 8.93 (s, 2H), 7.49 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8 Hz, 2H), 2.43 (s, 3H), ppm.

5-phenylpyrimidine⁹

¹H NMR (400 MHz, CDCl₃, TMS): δ 9.17 (s, 1H), 8.92 (s, 2H), 7.43 - 7.59 (m, 5H), ppm.

References:

- 1 D. Saha, K. Chattopadhyay and B. C. Ranu, *Tetrahedron Lett.*, 2009, 50, 1003
- 2 Indolese, A. F. Tetrahedron Lett., 1997, 38, 3513.
- 3 D. Saha, K Chattopadhyay and B Ranu, *Tetrahedron Lett.*, 2009, **50**, 1003.
- 4 L. Ackermann, C. J. Gschrei, A. Althammer and M. Riederer, *Chem. Commun.*, 2006, 1419.

5 Y. Kitamura, A. Sakurai, T. Udzu, T. Maegawa, Y. Monguchi and H. Sajiki, *Tetrahedron*, 2007, **63**, 10596.

- 6 T. Hatakeyama and M. Nakamura, J. Am. Chem. Soc., 2007, 129, 9844.
- 7 M. Dai, B. Liang, C. Wang, J. Chen and Z. Yang, Org. Lett., 2004, 6, 221.
- 8 Bumagin, N. A.; Bykov, V. V. Tetrahedron, 1997, 53, 14437.
- 9 C Liu, and W. Yang, Chem. Commun., 2009, 6267.

