Concise Total Synthesis and Structural Revision of (+)-Pestalazine B

Carlos Pérez-Balado and Ángel R. de Lera* August, 2010

Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, Campus As Lagoas-Marcosende s/n, 36310, Vigo Galicia, Spain

[†]Correspondence: qolera@uvigo.es

Contents

1. General synthetic methods	S-3
3.Comparison of NMR data of synthetic 2 , 11 , 15 , 16 and 21 with the natural (+)-Pestalazine B.	S-4
3. ¹ H NMR, ¹³ C NMR and CD Spectral Data	S-16
4. X-Ray details	S-53

1. General synthetic methods.

Solvents were dried according to published methods and distilled before use. All reagents were commercial compounds of the highest purity available. Reactions were carried out under an argon atmosphere, unless indicated otherwise. Analytical TLC was performed on aluminum plates with Merck Kieselgel 60F₂₅₄ and visualised by UV irradiation (254 nm) or by staining with a ethanolic solution of phosphomolibdic acid. Flash-column chromatography was carried out using Merck Kieselgel 60 (230-400 mesh) under pressure. IR spectra were obtained on a JASCO IR 4200 spectrophotometer from a thin film deposited onto NaCl glass. Specific rotations were obtained on a JASCO P-1020 polarimeter. Mass spectra and HRMS (ESI⁺) were taken on a Apex III FT ICR MS (Bruker Daltonics) and (FAB⁺) on a Micromass AutoSpec apparatus. ¹H-NMR spectra were recorded in CDCl₃, CD₃OD, (CD₃)₂CO or DMSO-d₆ at ambient temperature or the indicated temperature on a Bruker AMX-400 spectrometer at 400 MHz with residual protic solvent as the internal reference CDCl₃ $(\delta_{\rm H}=7.24 \text{ ppm})$, CD₃OD ($\delta_{\rm H}=3.31 \text{ ppm}$), (CD₃)₂CO ($\delta_{\rm H}=2.05 \text{ ppm}$). Chemical shifts (δ) are given in parts per million (ppm) and coupling constants (J) are given in Hertz (Hz). The proton spectra are reported as follows: δ (multiplicity, coupling constant J, number of protons, assignment). ¹³C-NMR spectra were recorded in CDCl₃, CD₃OD or (CD₃)₂CO at ambient temperature otherwise indicated on the same spectrometer at 100 MHz, with the central peak of CDCl₃ (δ_{C} = 77.23 ppm), CD₃OD (δ_{C} = 49.15 ppm), $(CD_3)_2CO$ ($\delta_C = 29.92$ ppm) as the internal reference. DEPT135 and bi-dimensional (COSY, HSQCed, HMBC) sequences were used where appropriate to aid in the assignment of signals. CD spectra were recorded on a JASCO J-815 spectropolarimeter, using CH₃OH as a solvent.

Assignment	Che's Report	Epi-C34		Epi-C15
	Acetone $-d_6$ -600 MHz	Acetone $-d_6$ -400 MHz	Acetone $-d_6$ -400 MHz	Acetone $-d_6$ -400 MHz
	Pestalazine B [α] _D +199° (c 0.1 MeOH)	H H H H H H H H H H	H H H H H H H H	$ \begin{array}{c} $
		11	$[a]_{D} = 79$ (C 0.09 MeOH)	$[\alpha]_{D}$ +166° (c 0.1 MeOH)
		$[\alpha]_{\rm D}$ +122° (c 0.1 MeOH)		
N1	6.83 (d, $J = 3.0$ Hz)	6.67 overlapped	6.54 (d, J = 3.9 Hz)	6.61 (d, $J = 3.7$ Hz)
C2	6.03 (d, J = 3.0 Hz)	6.07 (d, <i>J</i> = 4.0 Hz)	5.92 (d, J = 3.9 Hz)	6.06 (d, J = 3.4 Hz)
C3	-	-	-	-
C4	-	-	-	-
C5	6.90 (d, <i>J</i> = 7.2 Hz)	6.86 overlapped	7.20 overlapped	6.92 (d, <i>J</i> = 7.2 Hz)
C6	6.62 (t, J = 7.2 Hz)	6.64	6.68	6.65 (t, <i>J</i> = 7.4 Hz)
C7	7.14 m	7.19 (d, J = 7.7 Hz)	6.98	7.19 (m)
C8	6.83 (d, <i>J</i> = 7.8 Hz)	6.86 overlapped	6.64	6.86 (d, <i>J</i> = 8.0 Hz)
С9	-		-	
C11	4.82 (dd, <i>J</i> = 12.0, 6.0 Hz)	4.76 (dd, <i>J</i> = 12.1, 5.7 Hz)	4.97 (dd, <i>J</i> = 11.7, 6.2 Hz)	4.84 (dd, <i>J</i> = 11.6, 6.0 Hz)

C12	3.68 (dd, J = 14.0, 6.0 Hz)	3.65 overlapped	3.56 overlapped	3.68 (dd, J = 14.6, 6.1 Hz)
	2.42 (dd, <i>J</i> = 14.0, 12.0 Hz)	2.38 (dd, <i>J</i> = 14.7, 12.2 Hz)	2.45 (dd, <i>J</i> = 14.8, 11.8 Hz)	2.41 (dd, <i>J</i> = 14.6, 11.7 Hz)
C13	-	-	-	
N14	7.32 br s	7.38 (d, J = 4.3 Hz)	7.4-7.3	6.85 br s
C15	3.47 (br t, $J = 4.8$ Hz)	4.12 (dt, <i>J</i> = 11.4, 4.0, 4.0 Hz)	4.76 (dd, $J = 7.5$, 4.8 Hz)	4.53 (dd, $J = 6.7, 5.2$ Hz)
C16	-	-	-	
C17	3.06 (dd, J = 14.5, 4.8 Hz)	3.55 overlapped	3.41 (dd, <i>J</i> = 14.4, 4.7 Hz)	3.68 (dd, <i>J</i> = 14.6, 6.1 Hz)
	2.88 overlapped	3.05 (dd, J = 13.6, 3.9Hz)	3.00 (dd, <i>J</i> = 14.8, 7.6 Hz)	3.02 (dd, <i>J</i> = 14.6, 7.6 Hz)
C18	-	-	-	
C19, C23	7.14 m	7.33 (dd, $J = 7.8$, 1.4 Hz)	7.3-7.2 m	7.38 (d, <i>J</i> = 7.4 Hz)
C20, C22	7.20 m	7.25 overlapped	7.4-7.3 m	7.27 (d, <i>J</i> = 7.6 Hz)
C21	7.20 m	7.25 overlapped	7.4-7.3 m	7.20 (m)
	DKP	DKP	DKP	
C24	6.75 (d, <i>J</i> = 7.8 Hz)	6.68 overlapped	6.63 m	6.80 (d, <i>J</i> = 8.3 Hz)
C25	6.95 (t, <i>J</i> = 7.8 Hz)	6.93 (t, <i>J</i> = 7.0 Hz)	6.92 m	6.92 (m)
C26	6.98 (t, <i>J</i> = 7.8 Hz)	6.99 (t, <i>J</i> = 7.0 Hz)	6.98 m	7.00 (m)
C27	7.53 (d, <i>J</i> = 7.8 Hz)	7.61 (t, <i>J</i> = 7.6 Hz)	7.61 (d, <i>J</i> = 7.8 Hz)	7.62 (d, <i>J</i> = 7.9 Hz)
C28	-	-	-	-
C29	-	-	-	-
N30	-	-	-	-
C31	7.64 s	7.71 s	7.66 (s)	7.69 (s)
C32	-	-	-	
C33	3.21 (dd, <i>J</i> = 14.0, 5.4 Hz)	3.64 overlapped	3.55 overlapped	3.27 (m)
	3.15 (dd, <i>J</i> = 14.0, 4.8 Hz)	3.23 (dd, <i>J</i> = 14.4, 5.4 Hz)	3.15 (dd, <i>J</i> = 14.4, 5.0 Hz)	3.27 (m)

C34	3.62 (dd, J = 5.2, 4.8 Hz)	4.35 m	4.3-4.2 (m)	4.22 (m)
N35	7.38 br s	7.55 (t, $J = 1.6$ Hz)	7.11 s	7.17 br s
C36	-	-	-	
C37	3.85 (m)	3.60 overlapped	2.13 (dd, $J = 8.5$, 4.2 Hz)	2.98 m
N38	8.05	7.09 (d, $J = 1.9$ Hz)	6.84	6.99 (m)
C39	-	-	-	-
C40	1.73 (m)	0.96 (ddd, <i>J</i> = 13.3, 11.0, 2.6Hz)	1.39 (ddd, J = 13.5, 9.0, 4.3 Hz)	1.56 (ddd, J = 13.5, 8.8, 4.5 Hz)
	1.50 (m)	-0.49 (ddd, J = 13.3, 11.0, 2.6Hz)	1.27 (ddd, <i>J</i> = 13.5, 8.4, 5.7 Hz)	1.43 (m)
C41	1.80 m	1.2-1.1 (m)	1.6-1.5 (m)	1.69 (m)
C42	0.95 (d, J = 6.6 Hz)	0.60 (dd, J = 6.5 Hz)	0.68 (d, J = 6.5 Hz)	0.78 (d, J = 6.6 Hz)
C43	0.90 (d, J = 6.0 Hz)	$0.34 (\mathrm{dd}, J = 6.5 \mathrm{Hz})$	0.39 (d, J = 6.5 Hz)	0.59 (d, J = 6.5 Hz)

Assignment	Che's Report	<i>Epi</i> -C34 Acetone – <i>d</i> ₆ -100 MHz	Acetone – <i>d</i> ₆ -100 MHz	<i>Epi</i> -C15 Acetone – <i>d</i> ₆ -100 MHz
	Acetone – <i>d</i> ₆ -600 MHz Pestalazine B	$ \begin{array}{c} \mathbf{O} \mathbf{H} \\ \mathbf{N} \mathbf{N} \mathbf{N} \\ \mathbf{N} \mathbf{N} \mathbf{O} \\ \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{O} \\ \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N} \\ \mathbf{N} \mathbf$		
	[α] _D +199° (c 0.1 MeOH)	$ \begin{array}{c} $	$\begin{bmatrix} \alpha \end{bmatrix}_{D} -79^{\circ} (c \ 0.09 \ MeOH) \end{bmatrix} = \begin{bmatrix} \alpha \\ 15 \end{bmatrix}$	$\begin{bmatrix} \alpha \end{bmatrix}_{D} + 166^{\circ} (c \ 0.1 \text{ MeOH}) $
N1				
C2	83.4 CH	84.1 CH	83.6 CH	83.1 CH
C3	74.2 qC	74.3 qC	75.2 qC	74.9 qC
C4	129.8 qC	129.6 qC	129.5 qC	129.8 qC
C5	123.3 CH	123.5 CH	130.8 CH	123.7 CH
C6	119.4 CH	119.8 CH	119.8 CH	119.8 CH
C7	130.5 CH	130.8 CH	120.7 CH	130.8 CH
C8	110.9 CH	111.1 CH	111.3 CH	111.1 CH
С9	148.9 qC	148.9 qC	148.9 qC	148.9 qC
C11	57.2 CH	57.5 CH	58.7 CH	58.6CH
C12	41.2 CH ₂	41.6 CH ₂	40.2 CH ₂	40.6 CH ₂

C13	168.8 qC	169.0 qC	170.5 qC	168.8 qC
N14	-	-		-
C15	56.1 CH	60.1 CH	57.0 CH	57.2 CH
C16	168.4 qC	170.2 qC	168.7 qC	168.2 qC
C17	38.9 CH ₂	39.9 CH ₂	35.7 CH ₂	36.2 CH ₂
C18	137.1 qC	138.2 qC	138.5 qC	138.1 qC
C19, C23	130.9 CH	130.8 CH	130.3 CH	130.5 CH
C20, C22	130.9 CH	129.3 CH	129.4 CH	129.4 CH
C21	127.4 CH	129.3 CH	127.5 CH	127.6 CH
	DKP	DKP	DKP	
C24	112.8 qC	113.1 qC	113.2 CH	113.0 CH
C25	122.2 CH	122.4 CH	122.6 CH	122.5 CH
C26	120.3 CH	120.7 CH	123.5 CH	120.7 CH
C27	120.3 CH	120.9 CH	120.8 CH	120.4 CH
C28	130.8 qC	131.3 qC	130.7 qC	130.9 qC
C29	136.3 qC	136.2 qC	136.7 qC	136.9 qC
N30	-	-	-	-
C31	126.4 CH	127.6 CH	127.8	126.8 CH
C32	109.9 qC	109.6 qC	109.9 qC	110.1 qC
C33	30.2 CH ₂	30.7 CH ₂	30.8 CH ₂	30.4 CH ₂
C34	55.8 CH	55.6 CH	56.9 CH	56.7 CH
N35	-	-	-	
C36	168.9 qC	167.9 qC	171.0 qC	169.9 qC
C37	56.7 CH	54.0 CH	52.7 CH	53.3 CH

N38	-	-	-	
C39	168.6 qC	167.9 qC	169.6 qC	169.6 qC
C40	42.8 CH ₂	44.1 CH ₂	41.4 CH ₂	42.4 CH ₂
C41	24.9 CH	24.1 CH	24.3 CH	24.7 CH
C42	23. 2 CH ₃	23.9 CH ₃	23.4 CH ₃	23. 4 CH ₃
C43	21.7 CH ₃	21.0 CH ₃	21.2 CH ₃	21.9 CH ₃

Assignment	Che's Report	Acetone –d ₆ -400 MHz	Acetone –d ₆ -600 MHz	Assignment
Pestalazine A numbering	Acetone $-d_6$ -600 MHz Pestalazine B $[\alpha]_D$ +199° (c 0.1 MeOH)	$\begin{bmatrix} \alpha \end{bmatrix}_{D} + 87^{\circ} (c \ 0.1 \ MeOH) \end{bmatrix}$	$\begin{array}{c} \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	Revised numbering
			$[\alpha]_{\rm D}$ +194° (c 0.1 MeOH)	
N1	6.83 (d, J = 3.0 Hz)	6.59 (d, <i>J</i> = 3.6 Hz)	6.65 (d, J = 3.0 Hz)	N1
C2	6.03 (d, J = 3.0 Hz)	5.86 (d, <i>J</i> = 3.6 Hz)	6.05 (d, <i>J</i> = 3.3 Hz)	C2
C3	-	-	-	C3
C4	-	-	-	C4
C5	6.90 (d, <i>J</i> = 7.2 Hz)	6.86 (d, <i>J</i> = 7.9 Hz)	6.93 (m)	C5
C6	6.62 (t, $J = 7.2$ Hz)	6.60 (t, $J = 7.2$ Hz)	6.64 (t, <i>J</i> = 7.2 Hz)	C6
C7	7.14 m	7.13 (t, $J = 7.2$ Hz)	7.17 (m)	C7
C8	6.83 (d, <i>J</i> = 7.8 Hz)	6.79 overlapped	6.85 (d, <i>J</i> = 7.8 Hz)	C8
С9	-	-		С9
C11	4.82 (dd, <i>J</i> = 12.0, 6.0 Hz)	3.33 overlapped	4.84 (dd, <i>J</i> = 11.7, 6.0 Hz)	C11

C12	3.68 (dd, <i>J</i> = 14.0, 6.0 Hz)	3.35 overlapped	3.69 (dd, <i>J</i> = 14.8, 6.0 Hz)	C12
	2.42 (dd, <i>J</i> = 14.0, 12.0 Hz)	2.19 (dd, <i>J</i> = 15.8, 13.3 Hz)	2.41 (dd, <i>J</i> = 14.6, 11.7 Hz)	
C13	-	-	-	C13
N14	7.32 br s	7.48 (d, <i>J</i> = 4.0 Hz)	6.98 (m)	N14
C15	3.47 (br t, <i>J</i> = 4.8 Hz)	4.21 (dt, <i>J</i> = 5.7, 4.4, 4.4 Hz)	3.50 (br t, J = 4.7 Hz)	C34
C16	-	-		C16
C17	3.06 (dd, <i>J</i> = 14.5, 4.8 Hz)	3.14 (dd, <i>J</i> = 13.6, 6.1 Hz)	3.06 (dd, <i>J</i> = 13.9, 5.4 Hz)	C37
	2.88 overlapped	2.99(dd, <i>J</i> = 13.6, 6.1 Hz)	2.96 (dd, <i>J</i> = 13.9, 4.6 Hz)	
C18	-	-		C38
C19, C23	7.14 m	7.12 overlapped	7.12 (m)	C39, C43
C20, C22	7.20 m	7.10 overlapped	7.20 (m)	C40, C42
C21	7.20 m	7.22 (t, J = 7.3 Hz)	7.20 (m)	C41
		DKP		
C24	6.75 (d, <i>J</i> = 7.8 Hz)	6.66 (d, J = 8.0 Hz)	6.78 (d, <i>J</i> = 8.2 Hz)	C28
C25	6.95 (t, <i>J</i> = 7.8 Hz)	6.89 (t, <i>J</i> = 7.8 Hz)	6.94 (m)	C27
C26	6.98 (t, <i>J</i> = 7.8 Hz)	6.98 (t, <i>J</i> = 7.8 Hz)	6.98 (m)	C26
C27	7.53 (d, $J = 7.8$ Hz)	7.62 (d, $J = 7.8$ Hz)	7.52 (d, <i>J</i> = 7.8 Hz)	C25
C28	-	-	-	C24
C29	-	-	-	C29
N30	-	-	-	N30
C31	7.64 (s)	7.29 s	7.66 (s)	C22
C32	-	-		C23
C33	3.21 (dd, <i>J</i> = 14.0, 5.4 Hz)	3.50 (dd, <i>J</i> = 14.5, 5.1 Hz)	3.21 (m)	C30
	1		I Contraction of the second	

	3.15 (dd, <i>J</i> = 14.0, 4.8 Hz)	3.36 overlapped	3.21 (m)	
C34	3.62 (dd, J = 5.2, 4.8 Hz)	4.30 (dd, <i>J</i> = 4.8, 2.3 Hz)	3.66 (m)	C31
N35	7.38 br s	7.14 br s	7.11 (m)	N32
C36	-	-		C33
C37	3.85 (m)	2.82 overlapped	3.89 (dt, J = 9.6, 4.8 Hz)	C15
N38	8.05	6.79 overlapped	7.81 (d, <i>J</i> = 4.3 Hz)	N35
C39	-	-	-	C36
C40	1.73 (m)	1.57 (m)	1.75 (m)	C17
	1.50 (m)	1.42 (m)	1.52 (ddd, J = 13.6, 8.5, 5.3 Hz)	
C41	1.80 (m)	1.69 m	1.80 (m)	C18
C42	0.95 (d, J = 6.6 Hz)	0.76 (d, J = 6.5 Hz)	0.95 (d, J = 6.5 Hz)	C19
C43	0.90 (d, J = 6.0 Hz)	0.52 (d, J = 6.5 Hz)	0.90 (d, <i>J</i> = 6.5 Hz)	C20

Assignment Pestalazine A numbering	Che´s Report Acetone –d ₆ -150 MHz Pestalazine B [α] _D +199° (c 0.1 MeOH)	Acetone $-d_6$ -100 MHz $A_{eetone} -d_6$ -100 MHz $A_{H} - \alpha_{0}$ $A_{H} - \alpha_{0}$ A_{A	Acetone $-d_6$ -100 MHz	Assignment Revised numbering
N1				N1
C2	83.4 CH	83.2 CH	83.5 CH	C2
C3	74.2 qC	74.1 qC	74.4 qC	C3
C4	129.8 qC	129.6 qC	129.9 qC	C4
C5	123.3 CH	122.5 CH	123.6 CH	C5
C6	119.4 CH	119.7 CH	119.7 CH	C6
C7	130.5 CH	128.0 CH	130.8 CH	C7
C8	110.9 CH	111.0 CH	111.0 CH	C8
С9	148.9 qC	148.9 qC	148.9 qC	C9
C11	57.2 CH	56.8 CH	57.3 CH	C11
C12	41.2 CH ₂	41.2 CH ₂	41.3 CH ₂	C12

C13	168.8 qC	168.8 qC	169.0 qC	C13
N14	-	-	-	N14
C15	56.1 CH	59.8 CH	56.3 CH	C34
C16	168.4 qC	167.7 qC	168.6 qC	C16
C17	38.9 CH ₂	40.5 CH ₂	39.1 CH ₂	C37
C18	137.1 qC	137.0 qC	137.1 qC	C38
C19, C23	130.9 CH	130.8 CH	131.0 CH	C39, C43
C20, C22	130.9 CH	129.4 CH	129.1 CH	C40, C42
C21	127.4 CH	123.8 CH	127. 7 CH	C41
	DKP	DKP	DKP	
C24	112.8 CH	112.8 qC	113.0 CH	C28
C25	122.2 CH	122.5 CH	122.4 CH	C27
C26	120.3 CH	120.5 CH	120.5 CH	C26
C27	120.3 CH	120.6CH	120.4 CH	C25
C28	130.8 qC	130.7 qC	130.8 qC	C24
C29	136.3 qC	136.5 qC	136.6 qC	C29
N30	-	-	-	N30
C31	126.4 CH	126.9 CH	126.6 CH	C22
C32	109.9 qC	109.8 qC	110.0 qC	C23
C33	30.2 CH ₂	30.4 CH ₂	30.3 CH ₂	C30
C34	55.8 CH	56.5 CH	55.8 CH	C31
N35	-	-		N32
C36	168.9 qC	171.5 qC	169.0 qC	C33
C37	56.7 CH	53.2 CH	56.9 CH	C15

N38	-	-	-	N35
C39	168.6 qC	169.7 qC	168.6 qC	C36
C40	42.8 CH ₂	42.3 CH ₂	42.9 CH ₂	C17
C41	24.9 CH	24.5 CH	25.1 CH	C18
C42	23. 2 CH ₃	23.4 CH ₃	23.3 CH ₃	C19
C43	21.7 CH ₃	21.7 CH ₃	21.8 CH ₃	C20

3. ¹H NMR, ¹³C NMR Spectral Data. ¹H NMR (400 MHz, CD₃OD)

¹³C NMR (100 MHz, CD₃OD)

¹³C NMR (400 MHz, CD₃OD)

¹³C NMR (100 MHz, CD₃OD)

¹³C NMR (400 MHz, CD₃OD)

¹³C NMR (100 MHz, CD₃OD)

¹H NMR (400 MHz, (CD₃)₂CO)

¹H NMR (100 MHz, (CD₃)₂CO)

¹H NMR (400 MHz, CD₃OD)

¹H NMR (100 MHz, CD₃OD)

¹H NMR (400 MHz, CD₃OD)

¹³C NMR (100 MHz, CD₃OD)

¹H NMR (400 MHz, CD₃OD)

¹³C NMR (100 MHz, CD₃OD)

¹H NMR (400 MHz, (CD₃)₂CO)

¹H NMR (100 MHz, (CD₃)₂CO)

¹H NMR (400 MHz, CD₃OD)

¹³C NMR (100 MHz, CD₃OD)

¹H NMR (400 MHz, CD₃OD)

¹³C NMR (100 MHz, CD₃OD)

¹H NMR (400 MHz, (CD₃)₂CO)

¹H NMR (100 MHz, (CD₃)₂CO)

¹H NMR (400 MHz, (CD₃)₂CO)

¹H NMR (100 MHz, (CD₃)₂CO)

¹H NMR (400 MHz, CD₃OD)

¹H NMR (100 MHz, CD₃OD)

¹H NMR (400 MHz, CD₃OD)

¹H NMR (100 MHz, CD₃OD)

¹H NMR (400 MHz, CD₃OD)

¹H NMR (100 MHz, CD₃OD)

¹H NMR (600 MHz, (CD₃)₂CO)

¹H NMR (100 MHz, (CD₃)₂CO)

4. X-Ray Details

Identification code	ar1658s		
Empirical formula	C37 H38 N6 O7		
Formula weight 678.73			
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Tetragonal		
Space group	P4(3)		
Unit cell dimensions	a = 12.0209(8) Å α=	= 90°.	
	$b = 12.0209(8) \text{ Å}$ $\beta =$	= 90°.	
	$c = 25.881(3) \text{ Å}$ $\gamma =$	= 90°.	
Volume	3739.8(6) Å ³		
Z	4		
Density (calculated)	1.205 Mg/m ³		
Absorption coefficient	0.085 mm ⁻¹		
F(000)	1432		
Crystal size	0.50 x 0.35 x 0.35 mm ³		
Theta range for data collection	1.69 to 25.05°.		
Index ranges	-9<=h<=14, -14<=k<=13, -29<=l<=30		
Reflections collected	19786		
Independent reflections	6553 [R(int) = 0.0570]		
Completeness to theta = 25.05°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.000 and 0.808		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	6553 / 1 / 501		
Goodness-of-fit on F ²	1.048		
Final R indices [I>2sigma(I)]	R1 = 0.0613, $wR2 = 0.1525$		
R indices (all data)	R1 = 0.1265, wR2 = 0.1936		
Absolute structure parameter	4(2)		
Extinction coefficient 0.0070(12)			
Largest diff. peak and hole	0.572 and -0.209 e.Å ⁻³		

Table 1. Crystal data and structure refinement for ar1658s.

Table 2. A	tomic coordinates (x 1	10 ⁴) and equivalent	isotropic displacement	parameters (Å ² x 10 ³)
for ar1658s	. U(eq) is defined as on	ne third of the trace	of the orthogonalized U	^{ij} tensor.

	х	У	Ζ	U(eq)
N(1)	3173(3)	8323(3)	682(2)	59(1)
C(2)	3995(3)	9122(3)	513(2)	48(1)
C(3)	4949(3)	8395(3)	266(2)	46(1)
C(4)	4560(4)	7226(3)	366(2)	49(1)
C(5)	5076(5)	6235(4)	253(2)	67(1)
C(6)	4520(5)	5251(4)	366(2)	80(2)
C(7)	3467(6)	5285(4)	566(2)	80(2)
C(8)	2942(5)	6262(4)	680(2)	65(1)
C(9)	3505(4)	7256(3)	580(2)	52(1)
N(10)	3624(3)	9841(3)	98(1)	51(1)
C(11)	4397(4)	9847(4)	-336(2)	52(1)
C(12)	4858(4)	8684(4)	-320(2)	51(1)
C(13)	3830(4)	10166(4)	-835(2)	60(1)
O(13)	4207(3)	9847(3)	-1251(1)	74(1)
N(14)	2924(3)	10800(3)	-786(2)	64(1)
C(15)	2502(4)	11257(4)	-312(2)	67(1)
C(16)	2756(4)	10523(4)	144(2)	59(1)
O(16)	2193(3)	10579(3)	542(2)	75(1)
C(17)	2930(6)	12466(4)	-204(3)	85(2)
C(18)	4125(5)	12495(4)	-76(2)	73(2)
C(19)	4899(7)	12706(5)	-469(3)	98(2)
C(20)	6040(8)	12625(7)	-359(6)	129(3)
C(21)	6398(9)	12353(7)	119(6)	137(4)
C(22)	5626(9)	12177(5)	508(4)	113(3)
C(23)	4520(7)	12248(4)	415(2)	83(2)
C(24)	5909(4)	7742(4)	1352(2)	61(1)
C(25)	6504(5)	7568(5)	1805(2)	70(1)
C(26)	7573(5)	7976(4)	1866(2)	67(1)
C(27)	8068(4)	8585(4)	1479(2)	57(1)
C(28)	7496(3)	8791(4)	1025(2)	48(1)
C(29)	6419(4)	8347(4)	961(2)	50(1)
N(30)	6047(3)	8647(3)	472(1)	51(1)
C(31)	6856(4)	9304(4)	254(2)	53(1)

C(32)	7750(4)	9414(4)	568(2)	54(1)
C(33)	8816(4)	10021(4)	449(2)	62(1)
C(34)	9649(4)	9302(4)	138(2)	68(1)
N(35)	9197(3)	8990(4)	-360(2)	74(1)
C(36)	8704(5)	8037(6)	-464(2)	80(2)
O(36)	8148(5)	7915(4)	-861(2)	119(2)
C(37)	8809(5)	7097(4)	-84(2)	71(1)
N(38)	9581(3)	7332(4)	336(2)	64(1)
C(39)	9999(4)	8322(4)	451(2)	60(1)
O(39)	10662(3)	8454(3)	822(1)	69(1)
C(40)	9202(6)	6060(5)	-377(3)	96(2)
C(41)	9309(7)	5016(6)	-59(3)	104(2)
C(42)	8220(9)	4725(10)	236(5)	155(4)
C(43)	9630(18)	4058(9)	-415(6)	193(5)
O(1W)	1026(5)	209(7)	1585(2)	156(2)
O(2WA)	-186(10)	3176(9)	1312(5)	174(5)
O(2WB)	1794(12)	2264(12)	1218(6)	142(5)
O(3W)	6240(18)	3870(20)	1590(11)	550(20)

N(1)-C(9)	1.369(6)
N(1)-C(2)	1.446(6)
C(2)-N(10)	1.449(5)
C(2)-C(3)	1.577(6)
C(3)-N(30)	1.456(5)
C(3)-C(4)	1.504(6)
C(3)-C(12)	1.558(6)
C(4)-C(5)	1.374(6)
C(4)-C(9)	1.384(6)
C(5)-C(6)	1.389(8)
C(6)-C(7)	1.369(8)
C(7)-C(8)	1.366(8)
C(8)-C(9)	1.398(6)
N(10)-C(16)	1.332(6)
N(10)-C(11)	1.456(6)
C(11)-C(12)	1.505(6)
C(11)-C(13)	1.512(7)
C(13)-O(13)	1.229(6)
C(13)-N(14)	1.335(7)
N(14)-C(15)	1.436(7)
C(15)-C(16)	1.504(8)
C(15)-C(17)	1.567(7)
C(16)-O(16)	1.235(6)
C(17)-C(18)	1.474(9)
C(18)-C(23)	1.388(8)
C(18)-C(19)	1.402(9)
C(19)-C(20)	1.403(12)
C(20)-C(21)	1.350(13)
C(21)-C(22)	1.385(14)
C(22)-C(23)	1.353(10)
C(24)-C(25)	1.388(7)
C(24)-C(29)	1.389(7)
C(25)-C(26)	1.385(7)
C(26)-C(27)	1.376(7)
C(27)-C(28)	1.384(7)
C(28)-C(29)	1.410(6)

Table 5. Donu lenguis [A] and angles [] for all 0508	Table 3.	Bond lengths	[Å] and	angles [°]	for	ar1658s.
---	----------	--------------	---------	------------	-----	----------

C(28)-C(32)	1.433(6)
C(29)-N(30)	1.390(6)
N(30)-C(31)	1.374(5)
C(31)-C(32)	1.354(6)
C(32)-C(33)	1.506(6)
C(33)-C(34)	1.550(7)
C(34)-N(35)	1.449(7)
C(34)-C(39)	1.490(7)
N(35)-C(36)	1.318(8)
C(36)-O(36)	1.234(7)
C(36)-C(37)	1.503(8)
C(37)-N(38)	1.457(7)
C(37)-C(40)	1.534(9)
N(38)-C(39)	1.326(6)
C(39)-O(39)	1.257(6)
C(40)-C(41)	1.506(9)
C(41)-C(43)	1.524(13)
C(41)-C(42)	1.554(13)
C(9)-N(1)-C(2)	111.4(3)
N(1)-C(2)-N(10)	114.2(3)
N(1)-C(2)-C(3)	104.6(3)
N(10)-C(2)-C(3)	104.7(3)
N(30)-C(3)-C(4)	114.4(3)
N(30)-C(3)-C(12)	111 0 (0)
	111.9(3)
C(4)-C(3)-C(12)	111.9(3) 110.8(3)
C(4)-C(3)-C(12) N(30)-C(3)-C(2)	111.9(3) 110.8(3) 113.2(3)
C(4)-C(3)-C(12) N(30)-C(3)-C(2) C(4)-C(3)-C(2)	111.9(3) 110.8(3) 113.2(3) 102.8(3)
C(4)-C(3)-C(12) N(30)-C(3)-C(2) C(4)-C(3)-C(2) C(12)-C(3)-C(2)	111.9(3) 110.8(3) 113.2(3) 102.8(3) 102.7(3)
C(4)-C(3)-C(12) N(30)-C(3)-C(2) C(4)-C(3)-C(2) C(12)-C(3)-C(2) C(5)-C(4)-C(9)	111.9(3) 110.8(3) 113.2(3) 102.8(3) 102.7(3) 121.4(4)
C(4)-C(3)-C(12) N(30)-C(3)-C(2) C(4)-C(3)-C(2) C(12)-C(3)-C(2) C(5)-C(4)-C(9) C(5)-C(4)-C(3)	111.9(3) 110.8(3) 113.2(3) 102.8(3) 102.7(3) 121.4(4) 129.3(4)
C(4)-C(3)-C(12) N(30)-C(3)-C(2) C(4)-C(3)-C(2) C(12)-C(3)-C(2) C(5)-C(4)-C(9) C(5)-C(4)-C(3) C(9)-C(4)-C(3)	111.9(3) 110.8(3) 113.2(3) 102.8(3) 102.7(3) 121.4(4) 129.3(4) 109.2(4)
C(4)-C(3)-C(12) N(30)-C(3)-C(2) C(4)-C(3)-C(2) C(12)-C(3)-C(2) C(5)-C(4)-C(9) C(5)-C(4)-C(3) C(9)-C(4)-C(3) C(4)-C(5)-C(6)	111.9(3) 110.8(3) 113.2(3) 102.8(3) 102.7(3) 121.4(4) 129.3(4) 109.2(4) 118.4(5)
C(4)-C(3)-C(12) N(30)-C(3)-C(2) C(4)-C(3)-C(2) C(12)-C(3)-C(2) C(5)-C(4)-C(9) C(5)-C(4)-C(3) C(9)-C(4)-C(3) C(4)-C(5)-C(6) C(7)-C(6)-C(5)	111.9(3) 110.8(3) 113.2(3) 102.8(3) 102.7(3) 121.4(4) 129.3(4) 109.2(4) 118.4(5) 120.0(5)
C(4)-C(3)-C(12) N(30)-C(3)-C(2) C(4)-C(3)-C(2) C(12)-C(3)-C(2) C(5)-C(4)-C(9) C(5)-C(4)-C(3) C(9)-C(4)-C(3) C(4)-C(5)-C(6) C(7)-C(6)-C(5) C(8)-C(7)-C(6)	111.9(3) 110.8(3) 113.2(3) 102.8(3) 102.7(3) 121.4(4) 129.3(4) 109.2(4) 118.4(5) 120.0(5) 122.3(5)
C(4)-C(3)-C(12) N(30)-C(3)-C(2) C(4)-C(3)-C(2) C(12)-C(3)-C(2) C(5)-C(4)-C(9) C(5)-C(4)-C(3) C(9)-C(4)-C(3) C(4)-C(5)-C(6) C(7)-C(6)-C(5) C(8)-C(7)-C(6) C(7)-C(8)-C(9)	111.9(3) 110.8(3) 113.2(3) 102.8(3) 102.7(3) 121.4(4) 129.3(4) 109.2(4) 118.4(5) 120.0(5) 122.3(5) 118.1(5)
C(4)-C(3)-C(12) N(30)-C(3)-C(2) C(4)-C(3)-C(2) C(12)-C(3)-C(2) C(5)-C(4)-C(9) C(5)-C(4)-C(3) C(9)-C(4)-C(3) C(4)-C(5)-C(6) C(7)-C(6)-C(5) C(8)-C(7)-C(6) C(7)-C(8)-C(9) N(1)-C(9)-C(4)	111.9(3) 110.8(3) 113.2(3) 102.8(3) 102.7(3) 121.4(4) 129.3(4) 109.2(4) 118.4(5) 120.0(5) 122.3(5) 118.1(5) 111.6(4)

C(4)-C(9)-C(8)	119.8(4)
C(16)-N(10)-C(2)	122.8(4)
C(16)-N(10)-C(11)	124.5(4)
C(2)-N(10)-C(11)	112.1(3)
N(10)-C(11)-C(12)	102.1(3)
N(10)-C(11)-C(13)	111.9(4)
C(12)-C(11)-C(13)	115.2(4)
C(11)-C(12)-C(3)	105.0(4)
O(13)-C(13)-N(14)	124.3(5)
O(13)-C(13)-C(11)	120.2(5)
N(14)-C(13)-C(11)	115.5(5)
C(13)-N(14)-C(15)	126.1(4)
N(14)-C(15)-C(16)	111.9(4)
N(14)-C(15)-C(17)	113.0(5)
C(16)-C(15)-C(17)	109.7(4)
O(16)-C(16)-N(10)	122.6(5)
O(16)-C(16)-C(15)	120.7(4)
N(10)-C(16)-C(15)	116.7(5)
C(18)-C(17)-C(15)	112.5(4)
C(23)-C(18)-C(19)	118.3(7)
C(23)-C(18)-C(17)	122.3(6)
C(19)-C(18)-C(17)	119.2(6)
C(18)-C(19)-C(20)	119.3(8)
C(21)-C(20)-C(19)	120.9(10)
C(20)-C(21)-C(22)	119.3(9)
C(23)-C(22)-C(21)	121.2(8)
C(22)-C(23)-C(18)	120.9(8)
C(25)-C(24)-C(29)	117.8(5)
C(26)-C(25)-C(24)	121.4(5)
C(27)-C(26)-C(25)	120.4(5)
C(26)-C(27)-C(28)	119.9(5)
C(27)-C(28)-C(29)	119.3(4)
C(27)-C(28)-C(32)	133.5(4)
C(29)-C(28)-C(32)	107.2(4)
C(24)-C(29)-N(30)	131.1(4)
C(24)-C(29)-C(28)	121.1(4)
N(30)-C(29)-C(28)	107.7(4)
C(31)-N(30)-C(29)	107.2(3)

C(31)-N(30)-C(3)	127.7(4)
C(29)-N(30)-C(3)	124.9(3)
C(32)-C(31)-N(30)	111.8(4)
C(31)-C(32)-C(28)	106.0(4)
C(31)-C(32)-C(33)	126.9(4)
C(28)-C(32)-C(33)	127.1(4)
C(32)-C(33)-C(34)	112.7(4)
N(35)-C(34)-C(39)	112.7(5)
N(35)-C(34)-C(33)	111.4(4)
C(39)-C(34)-C(33)	109.9(4)
C(36)-N(35)-C(34)	125.2(5)
O(36)-C(36)-N(35)	121.1(6)
O(36)-C(36)-C(37)	120.1(6)
N(35)-C(36)-C(37)	118.8(5)
N(38)-C(37)-C(36)	113.3(5)
N(38)-C(37)-C(40)	109.3(5)
C(36)-C(37)-C(40)	108.2(5)
C(39)-N(38)-C(37)	125.7(4)
O(39)-C(39)-N(38)	121.6(4)
O(39)-C(39)-C(34)	119.7(5)
N(38)-C(39)-C(34)	118.7(5)
C(41)-C(40)-C(37)	115.7(6)
C(40)-C(41)-C(43)	108.7(8)
C(40)-C(41)-C(42)	112.6(7)
C(43)-C(41)-C(42)	109.9(10)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	51(2)	49(2)	77(3)	4(2)	19(2)	0(2)
C(2)	49(2)	47(2)	50(2)	0(2)	1(2)	2(2)
C(3)	37(2)	48(2)	52(2)	-5(2)	-2(2)	0(2)
C(4)	52(3)	44(2)	51(2)	1(2)	-4(2)	-1(2)
C(5)	76(3)	52(3)	74(3)	-8(2)	5(3)	5(3)
C(6)	106(5)	43(3)	92(4)	-8(3)	1(4)	11(3)
C(7)	99(5)	53(3)	87(4)	0(3)	1(3)	-16(3)
C(8)	67(3)	59(3)	71(3)	5(2)	2(3)	-15(3)
C(9)	55(3)	44(3)	56(3)	1(2)	1(2)	-7(2)
N(10)	49(2)	43(2)	60(2)	0(2)	3(2)	6(2)
C(11)	47(3)	53(3)	56(3)	2(2)	-6(2)	-2(2)
C(12)	46(3)	52(3)	56(3)	-4(2)	-2(2)	1(2)
C(13)	65(3)	55(3)	59(3)	3(2)	-14(3)	-9(2)
O(13)	78(2)	88(3)	55(2)	10(2)	-2(2)	-1(2)
N(14)	63(3)	54(2)	75(3)	2(2)	-24(2)	2(2)
C(15)	58(3)	49(3)	94(4)	-2(3)	-11(3)	3(2)
C(16)	51(3)	41(3)	85(4)	0(2)	0(3)	0(2)
O(16)	66(2)	60(2)	99(3)	4(2)	15(2)	10(2)
C(17)	109(5)	49(3)	98(5)	2(3)	-21(4)	8(3)
C(18)	101(5)	38(3)	79(4)	-11(2)	-11(3)	-12(3)
C(19)	129(7)	70(4)	94(5)	-11(3)	-7(5)	-33(4)
C(20)	102(7)	94(6)	192(10)	-25(6)	12(8)	-41(5)
C(21)	115(8)	75(5)	222(12)	-8(6)	-70(9)	-23(4)
C(22)	140(8)	65(4)	135(7)	4(4)	-55(7)	-28(4)
C(23)	116(5)	59(3)	73(4)	0(3)	-24(4)	-14(3)
C(24)	57(3)	74(3)	52(3)	7(2)	-3(2)	-4(3)
C(25)	79(4)	80(4)	52(3)	17(3)	-2(3)	-4(3)
C(26)	78(4)	67(3)	54(3)	4(2)	-11(3)	4(3)
C(27)	56(3)	52(3)	63(3)	-7(2)	-10(2)	2(2)
C(28)	43(3)	44(2)	58(3)	-1(2)	-2(2)	4(2)
C(29)	48(3)	54(3)	49(3)	1(2)	0(2)	0(2)
N(30)	43(2)	58(2)	51(2)	8(2)	-2(2)	-4(2)
C(31)	46(3)	59(3)	53(3)	8(2)	-5(2)	-5(2)

Table 4. Anisotropic displacement parameters (Å²x 10³) for ar1658s. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(32)	45(3)	52(2)	65(3)	10(2)	-3(2)	1(2)
C(33)	47(3)	57(3)	82(3)	11(3)	-11(3)	-12(2)
C(34)	42(3)	73(3)	89(4)	22(3)	4(3)	-10(2)
N(35)	60(3)	95(4)	67(3)	22(3)	5(2)	5(2)
C(36)	64(4)	106(5)	72(4)	10(3)	-11(3)	4(3)
O(36)	132(4)	130(4)	94(3)	13(3)	-36(3)	5(3)
C(37)	68(4)	72(4)	73(3)	8(3)	-6(3)	-11(3)
N(38)	57(2)	66(3)	69(2)	14(2)	-3(2)	0(2)
C(39)	38(2)	71(3)	70(3)	19(3)	4(2)	0(2)
O(39)	49(2)	75(2)	83(2)	14(2)	-4(2)	-5(2)
C(40)	111(5)	83(4)	95(4)	-1(4)	-11(5)	-13(4)
C(41)	124(6)	79(4)	111(5)	3(4)	-26(5)	-16(4)
C(42)	167(9)	118(8)	180(9)	42(8)	-18(8)	-53(7)
C(43)	286(18)	87(7)	206(11)	-35(8)	7(17)	-3(8)
O(1W)	122(4)	224(7)	122(4)	-22(4)	31(4)	-7(4)
O(2WA)	202(11)	117(7)	202(11)	-16(7)	63(9)	-16(7)
O(2WB)	134(11)	124(10)	169(13)	-69(10)	29(10)	-4(9)
O(3W)	450(30)	660(40)	540(30)	-410(30)	170(30)	-160(30)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for ar1658s.

	х	У	Z	U(eq)
H(1)	2554	8496	828	100(20)
H(2)	4277	9558	804	37(10)
H(5)	5781	6224	105	84(18)
H(6)	4864	4571	305	66(14)
H(7)	3095	4619	626	110(20)
H(8)	2230	6266	821	48(12)
H(11)	4997	10377	-264	50(11)
H(12A)	5583	8653	-484	66(14)
H(12B)	4364	8169	-494	76(15)
H(14)	2560	10949	-1063	80(18)
H(15)	1690	11296	-344	120(20)
H(17A)	2798	12922	-507	80(17)
H(17B)	2510	12781	81	130(30)
H(19)	4660	12898	-799	110(20)
H(20)	6556	12761	-619	150(30)
H(21)	7155	12285	187	150(30)
H(22)	5872	12006	839	130(30)
H(23)	4019	12130	683	90(20)
H(24)	5193	7462	1312	55(13)
H(25)	6177	7168	2073	85(17)
H(26)	7960	7837	2171	74(14)
H(27)	8785	8859	1523	70(15)
H(31)	6797	9632	-70	43(11)
H(33A)	9162	10249	771	52(12)
H(33B)	8644	10688	254	48(11)
H(34)	10313	9757	75	75(14)
H(35)	9255	9464	-608	86(19)
H(37)	8074	6945	64	77(16)
H(38)	9784	6781	526	79(18)
H(40A)	8684	5918	-657	100(20)
H(40B)	9920	6221	-531	100(20)
H(41)	9906	5123	194	110(20)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2010

H(42A)	8012	5340	452	220(60)
H(42B)	8341	4078	446	280(70)
H(42C)	7637	4579	-8	300(90)
H(43A)	10321	4227	-583	110(30)
H(43B)	9060	3955	-671	240(80)
H(43C)	9710	3389	-216	240(60)

UNIDAD DIFRACCIÓN DE RAYOS X MONOCRISTAL SERVICIO DETERMINACIÓN ESTRUCTURAL, PROTEÓMICA Y GENÓMICA C.A.C.T.I. - UNIVERSIDADE DE VIGO 36310 VIGO TEL 986 812 669 / FAX 986 812 135

DATE: OCTOBER 19TH 2009 CACTI'S CODE: AR1658 USER'S CODE: CB61122

EXPERIMENTAL REPORT_CB61122(AR1658)

A single crystal of cB61122 was analysed by X-ray diffraction and a summary of the crystallographic data and the structure refinement parameters is reported in Table 1. Crystallographic data were collected on a Bruker Smart 1000 CCD diffractometer at CACTI (Universidade de Vigo) at 20 °C using graphite monochromated Mo-K α radiation (λ = 0.71073 Å), and were corrected for Lorentz and polarisation effects. The software SMART¹ was used for collecting frames of data, indexing reflections, and the determination of lattice parameters, SAINT² for integration of intensity of reflections and scaling, and SADABS³ for empirical absorption correction. The structure (Figure 1) was solved by direct methods using the program SHELXS97.⁴ All non-hydrogen atoms were refined with anisotropic thermal parameters by full-matrix least-squares calculations on F² using the program SHELXL97.⁵ Hydrogen atoms were inserted at calculated positions and constrained with isotropic thermal parameters except for the hydrogen atoms of crystallisation water molecules since due to the disorder these hydrogen atoms could not be located. One water molecule (O2w) is disordered ever two sites. Site occupations factors were refined with a sum constrained to 1, converging to 0.60 for atom O2wA and to 0.40 for atom O2wB.

1

¹ SMART Version 5.054, Instrument control and data collection software, Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA, 1997.

SÁINT Version 6.01, Data Integration software package. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA, 1997. Sheldrick, G. M., SADABS. A Computer Program for Absorption Corrections. University of Göttingen,

Germany, 1996.

⁴ Sheldrick, G. M.. SHELXS97. A Computer Program for the Solution of Crystal Structures from X-ray Data. University of Göttingen, Germany, 1997 ⁵ Sheldrick, G. M. SHELXL97. A Computer Program for the Refinement of Crystal Structures from X-ray

Data. University of Göttingen, Germany, 1997

UNIDAD DIFRACCIÓN DE RAYOS X MONOCRISTAL SERVICIO DETERMINACIÓN ESTRUCTURAL, PROTEÓMICA Y GENÓMICA C.A.C.T.I. - UNIVERSIDADE DE VIGO 36310 VIGO TEL 986 812 669 / FAX 986 812 135

DATE: OCTOBER 19TH 2009 CACTI'S CODE: AR1658 USER'S CODE: CB61122

Table 1. Crystal data and structure refinement for cB61122.

Empirical formula	C37 H38 N6 O7			
Formula weight	678.73			
Temperature	293(2) K			
Wavelength	0.71073 Â			
Crystal system	Tetragonal			
Space group	P4(3)			
Unit cell dimensions	a = 12.0209(8) Å a= 90°.			
	b = 12.0209(8) Å	b= 90°.		
	c = 25.881(3) Å	g = 90°.		
Volume	3739.8(6) Å ³			
Z	4			
Density (calculated)	1.205 Mg/m ³			
Absorption coefficient	0.085 mm ⁻¹			
F(000)	1432			
Crystal size	0.50 x 0.35 x 0.35 mm ³			
Theta range for data collection	1.69 to 25.05°.			
Index ranges	-9<=h<=14, -14<=k<=13, -29<=l<=30			
Reflections collected	19786			
Independent reflections	6553 [R(int) = 0.0570]			
Completeness to theta = 25.05°	99.9 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	1.000 and 0.808			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	6553 / 1 / 501			
Goodness-of-fit on F ²	1.046			
Final R indices [I>2sigma(I)]	R1 = 0.0613, wR2 = 0.1527			
R indices (all data)	R1 = 0.1265, wR2 = 0.1939			
Absolute structure parameter	4(2)			
Extinction coefficient	0.0070(12)			
Largest diff. peak and hole	0.572 and -0.209 e.Å ⁻³			

2

