P^{I} , P^{2} -Diimidazolyl derivatives of pyrophosphate and *bis*-phosphonates – Synthesis, Properties, and Use in Preparation of Dinucleoside Tetraphosphates and Analogs

Ivan B. Yanachkov, Edward J. Dix, Milka I. Yanachkova, George E. Wright

Supplementary Materials

¹ H NMR of the di-sodium salt of compound 7a in D_2O	2
31 P NMR (proton decoupled) of the di-sodium salt of compound 7a in D ₂ O	3
³¹ P NMR (proton coupled) of the di-sodium salt of compound 7a in D_2O	4
13 C NMR of the di-sodium salt of compound 7a in D ₂ O	5
ESI Negative mode MS and selective MS^2 and MS^3 fragmentation of compound 7a	6
ESI Positive mode MS and selective MS^2 fragmentation of compound 7a	7
¹ H NMR of the di-sodium salt of compound 7b in DMSO-d6/ D_2O	8
31 P NMR (proton decoupled) of the di-sodium salt of compound 7b in DMSO-d6/D ₂ O	9
31 P NMR (proton coupled) of the di-sodium salt of compound 7b in DMSO-d6/D ₂ O	10
LCMS of the di-sodium salt of compound 7b	11
LCMS of the di-sodium salt of compound 7c	12
¹ H NMR of the di-sodium salt of compound 7d in DMSO-d6	13
³¹ P NMR (proton decoupled) of the di-sodium salt of compound 7d in DMSO-d6	14
LCMS of the di-sodium salt of compound 7d	15
1H NMR spectrum of Ap ₄ A sodium salt, 3a in D_2O	16
³¹ P (proton decoupled) NMR spectrum of Ap ₄ A sodium salt, 3a in D ₂ O	17
³¹ P (proton coupled) NMR spectrum of Ap ₄ A sodium salt, 3a in D_2O	18
LCMS of Ap_4A , 3a	19
1H NMR spectrum of Up_4U sodium salt, 3f in D_2O	20
³¹ P (proton decoupled) NMR spectrum of Up ₄ U sodium salt, 3f in D_2O	21
³¹ P (proton coupled) NMR spectrum of Up ₄ U sodium salt, 3f in D_2O	22
LCMS of Up_4U , 3f	23
Simulated fitting of an AA'XX' spin system to the ³¹ P NMR spectra of Ap ₄ A and Up ₄ U (3a and 3f , resp)	24
¹ H NMR of APPCHClPPA sodium salt, $3c$ in D ₂ O	25
³¹ P NMR (proton decoupled) of APPCHCIPPA sodium salt, 3c in D_2O	26
³¹ P NMR (proton coupled) of APPCHCIPPA sodium salt, 3c in D_2O	27
LCMS analysis of APPCHClPPA sodium salt, 3c	28
¹ H NMR of APPCHFPPA, 3e as the tetrabutylammonium salt in D_2O	29
³¹ P NMR (proton decoupled) of APPCHFPPA, 3e as the tetrabutylammonium salt in D_2O	30
31 P NMR (proton coupled) of APPCHFPPA, 3e as the tetrabutylammonium salt in D ₂ O	31
LCMS of APPCHFPPA sodium salt, 3e	32
¹ H NMR of AP(S)PPP(S)A sodium salt, 3b in D_2O	33
31 P (proton decoupled) NMR of AP(S)PPP(S)A sodium salt, 3b in D ₂ O	34
Separation of the three diastereomers of AP(S)PPP(S)A, 3b by reverse phase ion-pairing chromatography	35
¹ H NMR spectrum of AP(S)PCHClPP(S)A sodium salt, 3d in D ₂ O	36
³¹ P (proton decoupled) NMR spectrum of AP(S)PCHClPP(S)A sodium salt, 3d in D ₂ O	37
³¹ P (proton coupled) NMR spectrum of AP(S)PCHClPP(S)A sodium salt, 3d in D ₂ O	38
Separation of the four diastereomers of AP(S)PPCHClP(S)A, 3d by reverse phase ion-pairing chromatography	39

¹H NMR of the di-sodium salt of compound **7a** in D_2O

31 P NMR (proton decoupled) of the di-sodium salt of compound **7a** in D₂O

, , , ,	150	100	50	0	-50	-100	-150	
PC	1.40							
SSB LB GB	1.00 Hz							
SF WDW	121.3207388 MHz EM							
F2 - Prc SI	ocessing parameters 32768							
SF02	9.00 dB 299.7011988 MHz							
PL12 PL13	29.00 dB 120.00 dB							
CPDPRG2 NUC2 PCPD2	waitzi6 1H 100.00 usec							
	= CHANNEL f2 ======							
PL1 SF01	12.70 dB 121.3207840 MHz							
 NUC1 P1	31P 7.00 usec							
TD0	1 = CHANNEL fl							
d11 DELTA	0.03000000 sec 0.00000000 sec							
TE D1	297.0 K 0.10000000 sec							
DW DE	14090.5 10.275 usec 6.50 usec							
FIDRES AQ	0.357156 Hz 1.3999982 sec					0	Na ONa 🖌	
DS SWH	48661.801 Hz					⊢ N−Ρ N≈∕ ⊥	-0-P-N / \∕≓N	
SOLVENT NS	D20 152							
PULPROG TD	zgpg30 136248					~	0	
INSTRUM PROBHD	spect 5 mm BBO BB-1H							
Date_ Time	20080731 15 38			Į. I				
PROCNO	1 minitian Desemptores			20.				
NAME EXPNO	ImPOPIM_Na_EJD_080415 20			485				
Current	Data Parameters			~				

^{31}P NMR (proton coupled) of the di-sodium salt of compound 7a in D2O

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

^{13}C NMR of the di-sodium salt of compound **7a** in D₂O

Current Data Para NAME ImPOPIM EXPNO PROCNO F2 - Acquisition Date 20	meters Na_EJD_080415 41 1 Parameters 080731			139.18	128.21	119.41							10485.5		9657.7	8997.4			
Time INSTRUM PROBHD 5 mm BEC PULPROG TD SOLVENT NS SWH 175 FIDRES 0. AQ 1.8 RG DW DE TE D1 0.11 dl1 0.00 DELTA 0.00 TD0	23.01 spect) BB-1H zgpg30 65536 D20 10240 4 85.611 Hz 274439 Hz 219508 sec 2580.3 27.800 usec 6.50 usec 295.0 K 000000 sec 000000 sec 1												\bigwedge	ſ	M	A			
===== CHANNEL NUC1 P1 PL1 SF01 75.3	f1 ====== 13C 8.00 usec 6.30 dB 6671609 MHz													v J			6		
CPDPRG2 V NUC2 V PCPD2 PL12 PL13 PL2 SFO2 299.	f2 ====== altz16 1H 100.00 usec 29.00 dB 120.00 dB 9.00 dB 011988 MHz											-		—Hz ——	———H2	<u>Z</u>	Hz		
F2 - Processing p SI SF 75.3 WDW SSB LB GB	arameters 32768 596627 MHz EM 0.50 Hz					Ĩ													
PC	1.40																		
															1				
var i desidd yn yn ywydd yr fel an ynllwyd yn wer gyr a folgener yn frwyddar gynryfniawa ywrafe	ter for for a particular for the particular of the term of the formation of the formation of the term of the formation of t	n hadd darad han a line da. Ny nag ar taol yn a gwrynau	n han a han han h	with the second	manifeld New	naintern	iteriteriteritetit Hyperailetipetyer	li sen kike dana Refine Constants	n al a la cinentani International a second	ladari (d. d. dista i pisa Talay ya Pelipisa						thend of an internet an property of the proper	an a		
200 190	180	170 160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm

ESI Negative mode MS and selective MS² and MS³ fragmentation of compound 7a

ESI Positive mode MS and selective MS² fragmentation of compound 7a

¹H NMR of the di-sodium salt of compound **7b** in DMSO-d6/D₂O

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

³¹P NMR (proton decoupled) of the di-sodium salt of compound **7b** in DMSO-d6/D₂O

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

31P dec of final product

³¹P NMR (proton coupled) of the di-sodium salt of compound **7b** in DMSO-d6/D₂O

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

31P of final product

LCMS of the di-sodium salt of compound 7b

CI O | O Supplementary Material (<u>HSI</u>) for Otganic & Biomolecular Chemistry This journal_lis (c) The Royal Society of Chemistry 2010 ONa ONa

LCMS of the di-sodium salt of compound 7c

¹H NMR of the di-sodium salt of compound **7d** in DMSO-d6

³¹P NMR (proton decoupled) of the di-sodium salt of compound **7d** in DMSO-d6

1H NMR spectrum of Ap₄A sodium salt, **3a** in D₂O

τ<u></u>

					1.033 1.118 1.118 1.220 1.220 1.262 1.262 1.262 1.341 2.553 2.553 2.553	2.658 2.695 2.785 2.785			
Current I NAME EXPNO PROCNO	Data Parameters 070420_Ap4A 30 1						9.081 3.629 6.507	6.628 1.617 9.344 3.889	
F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG TD	20070531 12.50 5 mm BBO BB-1H 2g 126514	ers					-134	-274 -274 -274 -274	
SOLVENT NS DS SWH FIDRES AQ	D20 94 4 48661.801 0.384636 1.2999814 1.2999814	Hz Hz sec					<i>}</i>]]{	ЛЦ	
RG DW DE TE D1 TD0	23170.5 10.275 6.50 298.2 0.20000000 1	usec usec K sec							
NUC1 P1 PL1 SF01	CHANNEL f1 === 31P 5.00 12.70 121.3349571	usec dB MHz							
CPDPRG2 NUC2 PCPD2 PL12 PL13 PL2 SEC2	CHANNEL f2 === waltz16 1H 100.00 29.00 120.00 9.00	usec dB dB dB dB							
SFO2 F2 - Prod SI SF WDW SSB	299.7511990 cessing paramet 32768 121.3410240 EM 0	MHZ MHZ					-mp W Wing	wh h	
LB GB PC	1.00 0 1.40	Hz					-11 ppm	ppm	
							h.c		
Allan an a	udaranan oli bi dari punalikad perinteksentan nan adaptati dari adaptati bir	hlothin lehen nin dirakana pok Anda patroani tairakana poku	d Generaling Inderse Stansen in Angelen in Bergelen setter 19 met Generalisen (verschieften die Angelen setter 19 met Generalisen (verschieften die Angelen die Ange	landalah berditiyo ni anta dara dara di ku di a Indipering pergitikan perang pergitikan dara di seja	saidallyddaraeg an chwall ad ad ad ar llandiad fwyddiad Franciaeg gan ymgaleg yn gwlyddiad fwr an ar y ynas ar	salamanan ang kalapada ang kapada ba ng panang kang kanadaran ng kapapan ng panang kang kanadaran ng kapapan	an ku nan tan tan tan tan tan tan tan tan tan	denne og forstanden at til til Andrene forstande og sammage	hala an tanan in Talapang tanan ing
200	150	e e ir	100	50	0	-50	-100	-150	ppm

1H NMR spectrum of Up₄U sodium salt, **3f** in D₂O

 31 P (proton decoupled) NMR spectrum of Up₄U sodium salt, **3f** in D₂O

 31 P (proton coupled) NMR spectrum of Up₄U sodium salt, **3f** in D₂O

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010 OH OH OH OH OH OH

Up4U_NaSalt_29Apr08_080429155436 #674-691 RT: 5.51-5.63 AV: 18 SB: 39 5.36-5.48 , 5.67-5.84 NL: 1.12E7

F: - c ESI Full ms [250.00-1600.00]

LCMS of Up₄U, **3f**

Simulated fitting of an AA'XX' spin system to the experimental ³¹P NMR spectra of Ap₄A and Up₄U (**3a** and **3f**, resp.):

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

С

Ó۲

ĠН ÓН

 31 P NMR (proton decoupled) of APPCHClPPA sodium salt, **3c** in D₂O:

 31 P NMR (proton coupled) of APPCHClPPA sodium salt, **3c** in D₂O:

b) Positive mode MS of APPCHCIPPA peak at 7.46 min ${}_{\text{APPCHCIPPA,Na}_{\text{1}+0.6580}}$ at 7.46 min ${}_{\text{1}+0.657}$ MU: 3 SB: 77.18-7.37, 7.71-7.94 NL: 1.8866 transformed at 7.46 min for the second sec

c) Negative mode MS of APPCHClPPA peak at 7.46 min

APPCHCIPPA_Na_040830 #231-236 RT: 7.50-7.62 AV: 3 SB: 7 7.20-7.39 , 7.71-7.94 NL: 1.04E6 T: - c ESI Full ms[110.00-1600.00]

¹H NMR of APPCHFPPA, **3e** as the tetrabutylammonium salt in D_2O :

³¹P NMR (proton decoupled) of APPCHFPPA, **3e** as the tetrabutylammonium salt in D_2O :

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010 31P NMR (proton decoupled) of APPCHCFPPA Bu3N salt batch IY040910TBA1 in D20

mdd

 31 P NMR (proton coupled) of APPCHFPPA, **3e** as the tetrabutylammonium salt in D₂O:

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010 31P NMR (proton coupled) of APPCHCFPPA Bu3N salt batch IY040910TBA1 in D20

LCMS of APPCHFPPA sodium salt, 3e:

¹H NMR of AP(S)PPP(S)A sodium salt, **3b** in D₂O:

31 P (proton decoupled) NMR of AP(S)PPP(S)A sodium salt, **3b** in D₂O:

Separation of the three diastereomers of AP(S)PPP(S)A, **3b** by reverse phase ion-pairing chromatography:

¹H NMR spectrum of AP(S)PCHClPP(S)A sodium salt, **3d** in D₂O:

³¹P (proton decoupled) NMR spectrum of AP(S)PCHClPP(S)A sodium salt, **3d** in D₂O:

Separation of the four diastereomers of AP(S)PPCHCIP(S)A, **3d** by reverse phase ion-pairing chromatography:

³⁹