Supporting Information

Polymer supported synthesis of novel benzoxazole linked benzimidazoles under microwave conditions: In vitro evaluation of VEGFR-3 kinase inhibition activity

Kaushik Chanda,[†] Barnali Maiti,[†] Gorakh S. Yellol, [†] Ming-Hsien Chien,[‡] *Min-Liang Kuo*,^{\ddagger} and *Chung-Ming Sun*^{$*^{\dagger}$}

Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300-10, Taiwan, and Institute of Toxicology, National Taiwan University,

Taipei 100, Taiwan

Email: cmsun@mail.nctu.edu.tw

Contents

General Methods	S3
Spectral Data for polymer supported intermediates 9a-14a	S4-S6
Copies of ¹ H NMR and ¹³ C NMR of Compounds 15a- 15p	S7-S38
Copies of HPLC Spectra of Compounds 15a- 15p	S39-S54
Copies of LR and HR Mass Spectra of Compound.15a-15p	S55-S86
Copies of IR Spectra of Compounds 15a- 15p	S87-S102
¹ H, ¹³ C and Mass Data of Intermediate 'a'	S103
Copies of ¹ H NMR and ¹³ C NMR of Intermediate 'a'	S104-105
Elemental Analysis of Compound 15n	S106-S107
X-Ray Crystallographic data of Compound 15n	S108-S119
¹⁹ F NMR Spectra of Compound 15d and 15e	S120-S121
Copies of ¹ H NMR spectrum of Intermediates 9a-14a	S122-S126
Copies of ¹ H NMR spectrum of Intermediates 9f-14f	S127-S131
Copies of ¹ H NMR spectrum of Intermediates 9n-14n	S132-S136
Microwave data (Time vs. pressure, temperature, power graphs) for	
synthesis of compound 11a-14a	S137-S140

General Methods

Dichloromethane was distilled from calcium hydride before use. All reactions were performed under an inert atmosphere with unpurified reagents and dry solvents. Analytical thin-layer chromatography (TLC) was performed using 0.25 mm silica gel-coated Kieselgel 60 F254 plates. All the microwave experiments were conducted in Biotage initiator under optimized reaction condition of power and pressure. Flash chromatography was performed using the indicated solvent and silica gel 60 (Merck, 230-400 mesh). ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded on a Bruker DX-300 spectrometer. Chemical shifts are reported in parts per million (ppm) on the δ scale from an internal standard. High-resolution mass spectra (HRMS) were recorded on a JEOL TMS-HX 110 mass spectrometer. PEG was purchased from SHOWA.

Spectral data of polymer supported intermediates:

Polymer bound 3-amino-(4-isobutylamino) benzene carboxylates 9a.

¹H NMR (300 MHz, CDCl₃) δ 7.58 (d, *J* = 8.5 Hz, 1H), 7.42 (s, 1H), 6.55 (d, *J* = 8.5 Hz, 1H), 4.40 (t, *J* = 6.5 Hz, 2H), 3.89-3.40 (m, PEG), 2.98 (d, *J* = 6.2 Hz, 2H), 1.94 (sext, *J* = 6.2 Hz, 1H), 1.01 (d, *J* = 6.2 Hz, 6H).

Polymer bound 3-(4-Hydroxy-3- nitrobenzamido)-4-(isobutylamino) carboxylates 11a.

¹H NMR (300 MHz, CDCl₃) δ 9.18 (s, NH), 8.79 (s, 1H), 8.22 (d, *J* = 8.4 Hz, 1H), 7.79-7.70 (m, 2H), 7.10 (d, *J* = 8.4 Hz, 1H), 6.56 (d, *J* = 8.7 Hz, 1H), 5.11 (s, NH), 4.26 (t, *J* = 6.9 Hz, 2H), 3.87-3.20 (m, PEG), 1.81 (sext, *J* = 6.5 Hz, 1H), 1.01 (d, *J* = 6.5 Hz, 6H).

2-(4-Hydroxy-3-nitrophenyl)-1-isobutyl-1*H*-benzo[*d*]imidazole carboxylates 12a.

¹H NMR (300 MHz, CDCl₃) δ 8.38 (s, 1H), 8.35 (m, 1H), 7.94 (d, *J* = 8.7 Hz, 1H), 7.86 (d, *J* = 8.6 Hz, 1H), 7.37 (d, *J* = 8.7 Hz, 1H), 7.23 (d, *J* = 8.6 Hz, 1H), 4.36 (d, *J* = 6.2 Hz, 2H), 4.01 (d, *J* = 6.6 Hz, 2H), 3.74-3.25 (m, PEG), 1.99 (m, 1H), 0.69 (d, *J* = 6.6 Hz, 6H).

Polymer bound 2-(3-Amino-4-hydroxyphenyl)-1-isobutyl-1*H*-benzo[*d*]imidazole carboxylates 13a.

¹H NMR (300 MHz, CDCl₃) δ 8.40 (s, 1H), 7.96 (d, *J* = 8.5 Hz, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 6.97 (s, 1H), 6.92 (d, *J* = 8.5 Hz, 1H), 6.80 (m, 1H), 4.47-4.37 (m, 2H), 4.08 (d, *J* = 6.2 Hz, 2H), 3.99-3.39 (m, PEG), 2.01 (m, 1H), 0.70 (d, *J* = 6.5 Hz, 6H).

Polymerbound1-Isobutyl-2-(2-(phenylamino))benzo[d]oxazol-5-yl)-1H-benzo[d]imidazole-carboxylate14a.

¹H NMR (300 MHz, CDCl₃) δ 8.75 (s, NH), 8.50 (d, *J* = 1.5 Hz, 1H), 8.08-7.99 (m, 2H), 7.72-7.60 (m, 2H), 7.55 (d, *J* = 8.3 Hz, 1H), 7.43-7.42 (m, 4H), 7.05 (t, *J* = 7.4 Hz, 1H), 4.54-4.50 (m, 2H), 4.12 (d, *J* = 6.2 Hz, 2H), 3.91-3.36 (m, PEG), 2.19 (m, 1H), 0.77 (d, *J* = 6.5 Hz, 6H).

¹HNMR spectrum (300 MHz) of compound 15a in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 15a in CDCl₃

¹HNMR spectrum (300 MHz) of compound 15b in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 15b in CDCl₃

¹HNMR spectrum (300 MHz) of compound 15c in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 15c in CDCl₃

¹HNMR spectrum (300 MHz) of compound 15d in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 15d in CDCl₃

¹HNMR spectrum (300 MHz) of compound 15e in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 15e in CDCl₃

¹HNMR spectrum (300 MHz) of compound 15f in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 15f in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 15h in CDCl₃

¹HNMR spectrum (300 MHz) of compound 15i in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 15i in CDCl₃

¹HNMR spectrum (300 MHz) of compound 15j in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 15j in CDCl₃

¹HNMR spectrum (300 MHz) of compound 15k in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 15k in CDCl₃

¹HNMR spectrum (300 MHz) of compound 15l in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 15l in CDCl₃

¹HNMR spectrum (300 MHz) of compound 15m in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 15m in CDCl₃

¹HNMR spectrum (300 MHz) of compound 15n in CDCl₃

¹HNMR spectrum (300 MHz) of compound 150 in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 150 in CDCl₃
Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2010

¹HNMR spectrum (300 MHz) of compound 15p in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 15p in CDCl₃

535.355

13054.649

Total

Crude HPLC Spectra of Compound 15a

Crude HPLC Spectra of Compound 15b

Crude HPLC Spectra of Compound 15c

Crude HPLC Spectra of Compound 15d

Crude HPLC Spectra of Compound 15e

Result Table (Unital - D. Inc (AC2000005-1)							
	Reten. Time	Area	Height	Area	Height	W05	
	[min]	[mV.s]	[mV]	[%]	[%]	[min]	
1	6.280	41.406	1.800	0.9	0.7	0.26	
2	7.456	67.098	3.705	1.5	1.5	0.21	
3	7.900	19.332	1.072	0.4	0.4	0.28	
4	8.664	4337.877	242.558	96.2	97.2	0.26	
5	11.148	42.654	0.423	0.9	0.2	0.56	
	Total	4508.367	249.558	100.0	100.0		

Crude HPLC Spectra of Compound 15f

Crude HPLC Spectra of Compound 15g

Result Table (Uncal - M: SCE HPLC DATA KC-8)								
	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]		
1	1.456	282.773	5.362	5.9	2.3	0.78		
2	6.696	297.736	11.159	6.2	4.8	0.44		
3	7.244	69.912	3.476	1.5	1.5	0.23		
4	9.216	3845.604	208.590	80.0	89.8	0.27		
5	13.372	309.267	3.727	6.4	1.6	1.09		
	Total	4805.292	232.315	100.0	100.0			

Crude HPLC Spectra of Compound 15h

1		Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W 05 [min]
	1	7.540	195.148	8.655	5.9	5.3	0.33
	2	9.280	2702.245	146.947	82.0	89.7	0.26
	3	10.244	51.085	3.437	1.6	2.1	0.23
1	4	16.912	347.151	4.744	10.5	2.9	0.67
		Total	3295.629	163.783	100.0	100.0	

Result Table (Uncal - F; |HDAC|HPLC|DATA|KC9A)

Crude HPLC Spectra of Compound 15i

Crude HPLC Spectra of Compound 15j

Crude HPLC Spectra of Compound 15k

		Result Table (U	ncal - M: SCE H	PLC DA TA KC		
	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]
1	6.812	60.139	3.020	3.0	2.7	0.29
2	7.352	25.410	1.006	1.3	0.9	0.42
3	8.460	34.916	1.222	1.8	1.1	0.30
4	9.332	1819.470	107.475	92.0	94.7	0.25
5	21.668	38.463	0.727	1.9	0.6	0.76
	Total	1978.399	113.450	100.0	100.0	

Crude HPLC Spectra of Compound 151

Crude HPLC Spectra of Compound 15m

171.256

100.0

100.0

Total

2655.413

6

22.620

Total

214.426

1338.866

4.128

51.824

Crude HPLC Spectra of Compound 15n

16.0

100.0

8.0

100.0

0.72

Result Table (Uncal - D:\Documents \KAUSHIRK\KCHPLC DATA\KC-15)

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]
1	6.392	170.136	11.846	12.8	15.6	0.21
2	8.276	12.574	0.952	0.9	1.3	0.19
3	9.996	1150.216	63.316	86.3	83.2	0.27
	Total	1332.926	76.114	100.0	100.0	

Crude HPLC Spectra of Compound 150

Result Table (Uncal - D:\Documents \KAUSHIRK\KCHPLC DATA\KC-17)

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]
1	6.420	10.996	0.547	1.6	1.4	0.33
2	8.308	1.326	0.159	0.2	0.4	0.16
3	10.064	666.548	38.359	98.2	98.2	0.25
	Total	678.870	39.066	100.0	100.0	

Crude HPLC Spectra of Compound 15p

LR Mass Spectra of Compound 15a

/d=/Data/yu/KCBO2/1/pdata/1 Administrator Thu Aug 7 15:22:16 2008

HR Mass Spectra of Compound 15a

LR Mass Spectra of Compound 15b

/d=/Data/yu/KCBO1/2/pdata/1 Administrator Thu Aug 7 15:16:20 2008

HR Mass Spectra of Compound 15b

LR Mass Spectra of Compound 15c

/d=/Data/yu/KCBO4/1/pdata/1 Administrator Thu Aug 7 15:28:07 2008

HR Mass Spectra of Compound 15c

LR Mass Spectra of Compound 15d

/d=/Data/yu/KCBO5/1/pdata/1 Administrator Thu Aug 7 15:34:26 2008

HR Mass Spectra of Compound 15d

LR Mass Spectra of Compound 15e

/d=/Data/yu/KCBO6/1/pdata/1 Administrator Thu Aug 7 15:46:33 2008

HR Mass Spectra of Compound 15e

LR Mass Spectra of Compound 15f

/d=/Data/yu/KCBO7/1/pdata/1 Administrator Thu Aug 7 15:40:56 2008

HR Mass Spectra of Compound 15f

LR Mass Spectra of Compound 15g

/d=/Data/yu/KCBO8/2/pdata/1 Administrator Thu Aug 7 16:50:16 2008

HR Mass Spectra of Compound 15g

LR Mass Spectra of Compound 15h

/d=/Data/yu/KCBO9/1/pdata/1 Administrator Thu Aug 7 16:56:26 2008

HR Mass Spectra of Compound 15h

LR Mass Spectra of Compound 15i

/d=/Data/yu/KCBO10/1/pdata/1 Administrator Thu Aug 7 17:15:41 2008

HR Mass Spectra of Compound 15i

LR Mass Spectra of Compound 15j

/d=/Data/yu/KCBO11/1/pdata/1 Administrator Thu Aug 7 17:23:48 2008

HR Mass Spectra of Compound 15j

LR Mass Spectra of Compound 15k

/d=/Data/yu/KCBO12/2/pdata/1 Administrator Fri Aug 8 11:09:35 2008

HR Mass Spectra of Compound 15k

LR Mass Spectra of Compound 151

/d=/Data/yu/KCBO13/2/pdata/1 Administrator Fri Aug 8 11:19:15 2008

HR Mass Spectra of Compound 151

LR Mass Spectra of Compound 15m

/d=/Data/yu/KCBO14/2/pdata/1 Administrator Fri Aug 8 11:28:30 2008

HR Mass Spectra of Compound 15m

LR Mass Spectra of Compound 15n

/d=/Data/yu/KCBO15/1/pdata/1 Administrator Fri Aug 8 11:38:31 2008

HR Mass Spectra of Compound 15n

LR Mass Spectra of Compound 150

/d=/Data/yu/KCBO16/1/pdata/1 Administrator Fri Aug 8 11:59:16 2008

HR Mass Spectra of Compound 150

LR Mass Spectra of Compound 15p

/d=/Data/yu/KCBO17/1/pdata/1 Administrator Fri Aug 8 12:07:11 2008

HR Mass Spectra of Compound 15p

IR Spectra of Compound 15a

IR Spectra of Compound 15b

IR Spectra of Compound 15c

IR Spectra of Compound 15d

IR Spectra of Compound 15e

IR Spectra of Compound 15f

15g

IR Spectra of Compound 15g

IR Spectra of Compound 15h

IR Spectra of Compound 15i

IR Spectra of Compound 15j

IR Spectra of Compound 15k

IR Spectra of Compound 151

IR Spectra of Compound 15m

IR Spectra of Compound 15n

IR Spectra of Compound 150

IR Spectra of Compound 15p

Methyl 2-(3-(3-allylthioureido)-4-hydroxyphenyl)-1-isobutyl-1H-benzo[d]imidazole-5-carboxylate (**a**):

¹H NMR (300 MHz, CDCl₃) δ 8.53 (d, J = 1.3 Hz, 1H), 8.04 (dd, J = 8.5, 1.3 Hz, 1H), 7.68 (s, 1H), 7.46-7.40 (m, 3H), 6.03 (m, 1H), 5.59 (brs, OH), 5.36 (dd, J = 17.2, 1.2 Hz, 1H), 5.26 (dd, J = 10.3, 1.2 Hz, 1H), 4.29-4.04 (m, 4H), 3.93 (s, 3H), 2.10(sept, J = 6.6Hz, 1H), 0.72 (d, J = 6.6 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 168.1, 163.1, 156.5, 149.9, 143.7, 142.9, 139.4, 133.8, 126.7, 124.6, 124.5, 123.4, 123.2, 122.6, 117.8, 110.5, 109.6, 52.5, 52.4, 45.0, 29.1, 20.5; MS (ESI) m/z: 438 (M⁺), 439 (M+H);

LR Mass Spectral Data of Intermediate 'a'

Elemental Analysis of Compound 15n

Name : 1				
使用者姓名:	arnal ³ 馬娜莉	中心编號:		
服務單位:	交大應化所	名稱或代號:	Kr-B0-15	[15n]
主管姓名:_	孫仲銘			
收件日期: 99	争年11月4日 穷	C成日期: <u>99</u> 年	1月_4日	
分析結果:				
樣品重量:1) <u>3.566 mg</u> 2) <u>3.</u>	516 mg 3)	mg	
Weight	N % C %	Н %	S % 0 %	6
實驗值:1)_	11.81 72.05	5.68		_
Value 2)	11.81 72.00	5.77		
3) _	2 6			_
推测值: Calculated Value	12.01 72.09	5. 62		_
本日所用之 Star	udard:			
★□ Ac	etanilid □ 4	-Nitroaniline	Benzoic aci	d
🗆 Sulfanili	c acid	1-Chloro-2, 4-dini	trobenzene	
	N % C %	H % S 9	6 0 %	6
理論值: 1	0.36 71.09	6. 71		_
测出值: _1	0.29 71.07	6.63		_
				-
建議:				
建議: 費用核算: C	H N: 1000			
建議: 費用核算: C	H N: <u>1000</u> 0:			

Name: Bornali ϕ while ϕ while ϕ while B # # dz : $\underline{c} \pm \underline{m} + \underline{a}$ $\overline{c} \pm \underline{m} + \underline{a}$ $\overline{c} \pm \underline{m} + \underline{a}$ $\pm \overline{m} \pm 2z$: $\underline{k} + \underline{m} \pm \underline{a}$ $\underline{k} + \underline{m} \pm \underline{a}$ $\underline{m} + \underline{a}$ $\underline{m} + \underline{a}$ $\pm \overline{m} \pm 2z$: $\underline{k} + \underline{m} \pm \underline{a}$ $\underline{m} + \underline{a}$ $\underline{m} + \underline{a}$ $\underline{m} + \underline{a}$ ϕ Af $\overline{a} \pm \underline{a}$: $11 - \underline{a}$ $2.105 \text{ mg} = 3$ \underline{mg} \underline{mg} ϕ Af $\overline{a} \pm \underline{a}$: $11 - \underline{a}$ $\underline{a} = 2$ $\underline{a} = 2$ $\underline{a} = 2$ ϕ Af $\overline{a} \pm \underline{a}$: $10.215 \text{ mg} = 2$ $2.105 \text{ mg} = 3$ \underline{mg} \underline{mg} ϕ Af $\overline{a} \pm \underline{a}$: $11 - \underline{a} = 2$ $\underline{a} = 2$	元素分析儀 Elementar vario EL III CHN-OS Rapid 服務報告書 NO.1						
服務單位: 支大應化所 名稱或代號: Kr-BO-15 [15 m] 主管姓名: 孫仲銘 收件日期: 99年11月4日 完成日期: 99年11月5日 分析結果: 樣品重量: 1) 2.115 mg 2) 2.105 mg 3) mg 小常做估: 10.45 10.45 文alue 10.45 2) 10.41 3) 10.29 推測值: 10.29 本目所用之Standard: 10.29 本目所用之Standard: 10.29 N% C% H% S% N% C% H% S% 0% 理論估: 26.20 26.14 26.14 建議: 0: 1000 5: 6計台幣: 1000	Name: Bornali 使用者姓名: 馬娜	莉 中	,心编號	:			
主管姓名: 孫仲銘 收件日期: 99年11月 4日 完成日期: 99年 11月5日 分析結果: 樣品重量: 1) 2.115 mg 2) 2.105 mg 3) mg Weight N% C% H% S% 0% 實驗值: 1) 10.45 reprimental 2) 10.41 3) 10.41 3) 10.42 rateatable yalae 10.29 本日所用之Standard: 10.29 本日所用之Standard: 10.29 本日所用之Standard: 26.20 网	服務單位: 交大應(上所	名稱或代號	Kr	-BO-15 [15 n]		
收件日期: 99年11月 4日 完成日期: 99年 11月5日 分析结果: 株品重量: 1) 2.115 mg 2) 2.105 mg 3) mg /// N% C% H% S% 0% 實驗值: 1) 10.45 reperimental value_2) 10.41 3) 10.41 3) 10.41 3) 10.41 3) 10.41 3) 10.41 3) 10.29 本日所用之Standard: □ Acetanilid □ 4-Nitroaniline ★□ Benzoic acid □ Sulfanilic acid □ 1-Chloro-2, 4-dinitrobenzene N% C% H% S% 0% 理 論 值: 26.20 26.14 建議: 費用核算: CHN: 0: 1000 S: 6+6* 1000	主管姓名: 孫仲	銘					
分析结果: 様品重量: 1) 2.115 mg 2) 2.105 mg 3) mg /// ght N% C% H% S% 0% 實驗值: 1)	收件日期: 99年 11	月 4日 完成	日期: 99	年 _11月	5日		
様 品 重 量: 1) 2.115 mg 2) 2.105 mg 3) mg Weight N% C% H% S% 0% 實 驗 值: 1)	分析結果:						
Weight N% C% H% S% 0% 實驗值:1)	様品重量:1) 2.11	5 mg 2) 2.105	mg 3)	mg			
實 驗 值: 1)	Weight N %	С %	Н %	S %	0 %		
tripermental value 2)	實驗值:1)			_	10.45		
3)	value 2)			_	10.41		
推测值:	3)						
本日所用之 Standard: □ Acetanilid □ 4-Nitroaniline ★□ Benzoic acid □ Sulfanilic acid □ 1-Chloro-2, 4-dinitrobenzene N% C% H% S% 0% 理論值:	推测值: Calculated yalue				10.29		
□ Acetanilid □ 4-Nitroaniline ★□ Benzoic acid □ Sulfanilic acid □ 1-Chloro-2, 4-dinitrobenzene N% C% H% S% 0% 理論值: 26.20 测出值: 26.14 建議: 費用核算: CHN: 0: 1000 S: 合計台幣: 1000	本日所用之 Standard:						
□ Sulfanilic acid □ 1-Chloro-2, 4-dinitrobenzene N% C% H% S% 0% 理論值: 26.20 26.14 建議: 費用核算: CHN: 0: 1000 S: 合計台幣: 1000	□ Acetanilid	□ 4-Nitroar	iline	★□ Benz	bic acid		
N% C% H% S% 0% 理論值:	□ Sulfanilic acid	□ 1-C	nloro-2, 4-d	nitrobenze	ne		
理論值:	N %	С % Н	[%	S %	0 %		
测出值:	理論值:			-	26.20		
建議: 費用核算: CHN: 0:0: S:合計台幣:000	测出值:				26.14		
費用核算: CHN: 0: <u>1000</u> S: 合計台幣: <u>1000</u> 集技	建議:	1					
0: <u>1000</u> S: <u></u> 合計台幣: <u>1000</u> 集技	費用核算: CHN:						
S: 合計台幣: 1000 費技	0:	1000					
	S:	-	合計台幣:	1000	黄枝		

X ray crystallographic data of compound 15n

ORTEP diagram of Compound 15n
Identification code	100220_0m
Empirical formula	C28 H26 N4 O3
Formula weight	466.53
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	$a = 11.2213(3) \text{ Å}, \alpha = 90^{\circ}.$
	$b = 11.0837(2)$ Å, $\beta = 100.1810(10)^{\circ}$.
	$c = 18.7917(5) \text{ Å}, \gamma = 90^{\circ}.$
Volume	2300.39(10) Å ³
Ζ	4
Density (calculated)	1.347 Mg/m ³
Absorption coefficient	0.089 mm ⁻¹
F(000)	984
Crystal size	0.30 x 0.10 x 0.10 mm ³
Theta range for data collection	2.14 to 26.38°.
Index ranges	-11<=h<=14, -13<=k<=13, -
	23<=1<=22
Reflections collected	17349
Independent reflections	4699 [R(int) = 0.0355]
Completeness to theta = 26.38°	99.8 %
Absorption correction	Empirical
Max. and min. transmission	0.7454 and 0.6978
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4699 / 12 / 336
Goodness-of-fit on F ²	1.032
Final R indices [I>2sigma(I)]	R1 = 0.0473, $wR2 = 0.1126$
R indices (all data)	R1 = 0.0844, wR2 = 0.1300
Largest diff. peak and hole	0.268 and -0.299 e.Å ⁻³

Table 1. Crystal data and structure refinement for 100220_0m.

	x	у	Z	U(eq)
C(1)	3423(2)	3441(2)	479(1)	37(1)
C(2)	2816(2)	5347(2)	440(1)	38(1)
C(3)	2606(2)	6576(2)	522(1)	47(1)
C(4)	1644(2)	7076(2)	67(1)	49(1)
C(5)	895(2)	6397(2)	-460(1)	43(1)
C(6)	1107(2)	5175(2)	-532(1)	44(1)
C(7)	2070(2)	4654(2)	-75(1)	38(1)
C(8)	-123(2)	7014(2)	-929(1)	47(1)
C(9)	-1688(2)	6808(2)	-1939(1)	64(1)
C(10)	4641(2)	4848(2)	1417(1)	42(1)
C(11)	4190(2)	5479(2)	2048(1)	57(1)
C(12)	4965(3)	6613(2)	2214(2)	79(1)
C(13)	6076(3)	6382(2)	1901(2)	75(1)
C(14)	5614(2)	5679(2)	1216(1)	59(1)
C(15)	4107(2)	2317(2)	684(1)	37(1)
C(16)	5363(2)	2254(2)	739(1)	39(1)
C(17)	5905(2)	1123(2)	846(1)	37(1)
C(18)	7063(2)	-399(2)	926(1)	42(1)
C(19)	5187(2)	113(2)	882(1)	38(1)
C(20)	3961(2)	145(2)	848(1)	44(1)
C(21)	3426(2)	1277(2)	748(1)	41(1)
C(22)	9181(2)	-827(2)	916(1)	52(1)
C(23)	10128(16)	-1440(5)	1491(10)	44(1)
C(24)	11199(4)	-864(4)	1724(3)	78(2)
C(25)	12073(5)	-1408(4)	2235(3)	104(2)
C(26)	11885(5)	-2508(5)	2512(3)	79(2)
C(27)	10809(5)	-3080(5)	2303(3)	74(2)
C(28)	9937(4)	-2562(4)	1776(3)	54(1)
C(23')	10070(50)	-1262(17)	1510(30)	44(1)
C(24')	10817(12)	-596(12)	2003(8)	78(2)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for100220_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(25')	11603(13)	-1115(12)	2565(9)	104(2)
C(26')	11595(16)	-2297(14)	2671(9)	79(2)
C(27')	11028(18)	-3033(17)	2112(9)	74(2)
C(28')	10222(13)	-2501(14)	1550(7)	54(1)
N(1)	2469(1)	3463(1)	-42(1)	41(1)
N(2)	3686(1)	4556(1)	799(1)	38(1)
O(1)	5933(1)	-886(1)	941(1)	44(1)
N(4)	7952(1)	-1210(1)	963(1)	49(1)
N(3)	7112(1)	770(1)	884(1)	42(1)
O(2)	-405(1)	8053(1)	-869(1)	63(1)
O(3)	-716(1)	6278(1)	-1437(1)	59(1)

Table 3. Bond lengths [Å] and angles $[\circ]$ for 100220_0m.

C(1)-N(1)1.317(2) $C(1)$ -N(2)1.383(2) $C(1)$ -C(15)1.479(2) $C(2)$ -N(2)1.394(2) $C(2)$ -C(7)1.395(3) $C(2)$ -C(3)1.396(3) $C(3)$ -C(4)1.370(3) $C(3)$ -R(4)1.370(3) $C(3)$ -H(3)0.9300 $C(4)$ -C(5)1.399(3) $C(4)$ -R(4)0.9300 $C(5)$ -C(6)1.386(2) $C(5)$ -C(6)1.482(3) $C(6)$ -C(7)1.382(2) $C(6)$ -H(6)0.9300 $C(7)$ -N(1)1.392(2) $C(8)$ -O(2)1.204(2) $C(8)$ -O(3)1.435(2) $C(9)$ -H(9A)0.9600 $C(9)$ -H(9B)0.9600		
C(1)-N(2) $1.383(2)$ C(1)-C(15) $1.479(2)$ C(2)-N(2) $1.394(2)$ C(2)-C(7) $1.395(3)$ C(2)-C(3) $1.396(3)$ C(3)-C(4) $1.370(3)$ C(3)-H(3) 0.9300 C(4)-C(5) $1.399(3)$ C(4)-H(4) 0.9300 C(5)-C(6) $1.386(2)$ C(5)-C(7) $1.382(2)$ C(6)-C(7) $1.382(2)$ C(6)-H(6) 0.9300 C(7)-N(1) $1.392(2)$ C(8)-O(2) $1.204(2)$ C(8)-O(3) $1.435(2)$ C(9)-H(9A) 0.9600	C(1)-N(1)	1.317(2)
C(1)-C(15) $1.479(2)$ $C(2)-N(2)$ $1.394(2)$ $C(2)-C(7)$ $1.395(3)$ $C(2)-C(3)$ $1.396(3)$ $C(3)-C(4)$ $1.370(3)$ $C(3)-R(4)$ 0.9300 $C(4)-C(5)$ $1.399(3)$ $C(4)-C(5)$ $1.399(3)$ $C(4)-R(4)$ 0.9300 $C(5)-C(6)$ $1.386(2)$ $C(5)-C(6)$ $1.482(3)$ $C(6)-C(7)$ $1.382(2)$ $C(6)-R(6)$ 0.9300 $C(7)-N(1)$ $1.392(2)$ $C(8)-O(2)$ $1.204(2)$ $C(8)-O(3)$ $1.435(2)$ $C(9)-R(9A)$ 0.9600 $C(9)-H(9B)$ 0.9600	C(1)-N(2)	1.383(2)
C(2)-N(2) $1.394(2)$ $C(2)-C(7)$ $1.395(3)$ $C(2)-C(3)$ $1.396(3)$ $C(3)-C(4)$ $1.370(3)$ $C(3)-H(3)$ 0.9300 $C(4)-C(5)$ $1.399(3)$ $C(4)-C(5)$ $1.399(3)$ $C(4)-H(4)$ 0.9300 $C(5)-C(6)$ $1.386(2)$ $C(5)-C(8)$ $1.482(3)$ $C(6)-C(7)$ $1.382(2)$ $C(6)-H(6)$ 0.9300 $C(7)-N(1)$ $1.392(2)$ $C(8)-O(2)$ $1.204(2)$ $C(8)-O(3)$ $1.435(2)$ $C(9)-H(9A)$ 0.9600 $C(9)-H(9B)$ 0.9600	C(1)-C(15)	1.479(2)
C(2)-C(7) $1.395(3)$ $C(2)-C(3)$ $1.396(3)$ $C(3)-C(4)$ $1.370(3)$ $C(3)-H(3)$ 0.9300 $C(4)-C(5)$ $1.399(3)$ $C(4)-H(4)$ 0.9300 $C(5)-C(6)$ $1.386(2)$ $C(5)-C(6)$ $1.482(3)$ $C(6)-C(7)$ $1.382(2)$ $C(6)-H(6)$ 0.9300 $C(7)-N(1)$ $1.392(2)$ $C(8)-O(2)$ $1.204(2)$ $C(8)-O(3)$ $1.435(2)$ $C(9)-H(9A)$ 0.9600	C(2)-N(2)	1.394(2)
C(2)-C(3) $1.396(3)$ $C(3)-C(4)$ $1.370(3)$ $C(3)-H(3)$ 0.9300 $C(4)-C(5)$ $1.399(3)$ $C(4)-H(4)$ 0.9300 $C(5)-C(6)$ $1.386(2)$ $C(5)-C(6)$ $1.482(3)$ $C(6)-C(7)$ $1.382(2)$ $C(6)-C(7)$ $1.382(2)$ $C(6)-H(6)$ 0.9300 $C(7)-N(1)$ $1.392(2)$ $C(8)-O(2)$ $1.204(2)$ $C(8)-O(3)$ $1.340(2)$ $C(9)-O(3)$ $1.435(2)$ $C(9)-H(9A)$ 0.9600 $C(9)-H(9B)$ 0.9600	C(2)-C(7)	1.395(3)
C(3)-C(4) $1.370(3)$ $C(3)-H(3)$ 0.9300 $C(4)-C(5)$ $1.399(3)$ $C(4)-H(4)$ 0.9300 $C(5)-C(6)$ $1.386(2)$ $C(5)-C(8)$ $1.482(3)$ $C(6)-C(7)$ $1.382(2)$ $C(6)-H(6)$ 0.9300 $C(7)-N(1)$ $1.392(2)$ $C(8)-O(2)$ $1.204(2)$ $C(8)-O(3)$ $1.435(2)$ $C(9)-O(3)$ $1.435(2)$ $C(9)-H(9A)$ 0.9600	C(2)-C(3)	1.396(3)
C(3)-H(3) 0.9300 $C(4)$ -C(5) $1.399(3)$ $C(4)$ -H(4) 0.9300 $C(5)$ -C(6) $1.386(2)$ $C(5)$ -C(8) $1.482(3)$ $C(6)$ -C(7) $1.382(2)$ $C(6)$ -H(6) 0.9300 $C(7)$ -N(1) $1.392(2)$ $C(8)$ -O(2) $1.204(2)$ $C(8)$ -O(3) $1.340(2)$ $C(9)$ -H(9A) 0.9600 $C(9)$ -H(9B) 0.9600	C(3)-C(4)	1.370(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)-H(3)	0.9300
$\begin{array}{c cccc} C(4)-H(4) & 0.9300 \\ \hline C(5)-C(6) & 1.386(2) \\ \hline C(5)-C(8) & 1.482(3) \\ \hline C(6)-C(7) & 1.382(2) \\ \hline C(6)-H(6) & 0.9300 \\ \hline C(7)-N(1) & 1.392(2) \\ \hline C(8)-O(2) & 1.204(2) \\ \hline C(8)-O(3) & 1.340(2) \\ \hline C(9)-O(3) & 1.435(2) \\ \hline C(9)-H(9A) & 0.9600 \\ \hline \end{array}$	C(4)-C(5)	1.399(3)
$\begin{array}{c cccc} C(5)-C(6) & 1.386(2) \\ \hline C(5)-C(8) & 1.482(3) \\ \hline C(6)-C(7) & 1.382(2) \\ \hline C(6)-H(6) & 0.9300 \\ \hline C(7)-N(1) & 1.392(2) \\ \hline C(8)-O(2) & 1.204(2) \\ \hline C(8)-O(3) & 1.340(2) \\ \hline C(9)-O(3) & 1.435(2) \\ \hline C(9)-H(9A) & 0.9600 \\ \hline C(9)-H(9B) & 0.9600 \\ \hline \end{array}$	C(4)-H(4)	0.9300
$\begin{array}{c cccc} C(5)-C(8) & 1.482(3) \\ \hline C(6)-C(7) & 1.382(2) \\ \hline C(6)-H(6) & 0.9300 \\ \hline C(7)-N(1) & 1.392(2) \\ \hline C(8)-O(2) & 1.204(2) \\ \hline C(8)-O(3) & 1.340(2) \\ \hline C(9)-O(3) & 1.435(2) \\ \hline C(9)-H(9A) & 0.9600 \\ \hline C(9)-H(9B) & 0.9600 \\ \hline \end{array}$	C(5)-C(6)	1.386(2)
C(6)-C(7) $1.382(2)$ $C(6)-H(6)$ 0.9300 $C(7)-N(1)$ $1.392(2)$ $C(8)-O(2)$ $1.204(2)$ $C(8)-O(3)$ $1.340(2)$ $C(9)-O(3)$ $1.435(2)$ $C(9)-H(9A)$ 0.9600	C(5)-C(8)	1.482(3)
C(6)-H(6) 0.9300 C(7)-N(1) 1.392(2) C(8)-O(2) 1.204(2) C(8)-O(3) 1.340(2) C(9)-O(3) 1.435(2) C(9)-H(9A) 0.9600 C(9)-H(9B) 0.9600	C(6)-C(7)	1.382(2)
C(7)-N(1) 1.392(2) C(8)-O(2) 1.204(2) C(8)-O(3) 1.340(2) C(9)-O(3) 1.435(2) C(9)-H(9A) 0.9600 C(9)-H(9B) 0.9600	C(6)-H(6)	0.9300
C(8)-O(2) 1.204(2) C(8)-O(3) 1.340(2) C(9)-O(3) 1.435(2) C(9)-H(9A) 0.9600 C(9)-H(9B) 0.9600	C(7)-N(1)	1.392(2)
C(8)-O(3) 1.340(2) C(9)-O(3) 1.435(2) C(9)-H(9A) 0.9600 C(9)-H(9B) 0.9600	C(8)-O(2)	1.204(2)
C(9)-O(3) 1.435(2) C(9)-H(9A) 0.9600 C(9)-H(9B) 0.9600	C(8)-O(3)	1.340(2)
C(9)-H(9A) 0.9600 C(9)-H(9B) 0.9600	C(9)-O(3)	1.435(2)
C(9)-H(9B) 0.9600	С(9)-Н(9А)	0.9600
	С(9)-Н(9В)	0.9600

C(9)-H(9C)	0.9600
C(10)-N(2)	1.469(2)
C(10)-C(14)	1.525(3)
C(10)-C(11)	1.538(3)
С(10)-Н(10)	0.9800
C(11)-C(12)	1.529(3)
С(11)-Н(11А)	0.9700
С(11)-Н(11В)	0.9700
C(12)-C(13)	1.491(4)
C(12)-H(12A)	0.9700
C(12)-H(12B)	0.9700
C(13)-C(14)	1.516(3)
С(13)-Н(13А)	0.9700
C(13)-H(13B)	0.9700
C(14)-H(14A)	0.9700
C(14)-H(14B)	0.9700
C(15)-C(16)	1.397(3)
C(15)-C(21)	1.400(3)
C(16)-C(17)	1.393(2)
С(16)-Н(16)	0.9300
C(17)-C(19)	1.387(3)
C(17)-N(3)	1.400(2)
C(18)-N(3)	1.300(2)
C(18)-N(4)	1.336(2)
C(18)-O(1)	1.383(2)
C(19)-C(20)	1.366(3)
C(19)-O(1)	1.381(2)
C(20)-C(21)	1.390(2)
С(20)-Н(20)	0.9300
С(21)-Н(21)	0.9300
C(22)-C(23')	1.44(2)
C(22)-N(4)	1.460(3)
C(22)-C(23)	1.534(7)
C(22)-H(22A)	0.9699
C(22)-H(22B)	0.9697

C(23)-C(24)	1.363(12)
C(23)-C(28)	1.385(12)
C(24)-C(25)	1.383(5)
C(24)-H(24)	0.9300
C(25)-C(26)	1.357(6)
C(25)-H(25)	0.9300
C(26)-C(27)	1.359(6)
C(26)-H(26)	0.9300
C(27)-C(28)	1.387(5)
С(27)-Н(27)	0.9300
C(28)-H(28)	0.9300
C(23')-C(24')	1.357(17)
C(23')-C(28')	1.384(17)
C(24')-C(25')	1.376(13)
С(24')-Н(24')	0.9300
C(25')-C(26')	1.326(14)
C(25')-H(25')	0.9300
C(26')-C(27')	1.392(15)
С(26')-Н(26')	0.9300
C(27')-C(28')	1.395(14)
С(27')-Н(27')	0.9300
C(28')-H(28')	0.9300
N(4)-H(4A)	0.8600
N(1)-C(1)-N(2)	112.98(14)
N(1)-C(1)-C(15)	121.68(15)
N(2)-C(1)-C(15)	125.33(15)
N(2)-C(2)-C(7)	105.81(15)
N(2)-C(2)-C(3)	132.71(17)
C(7)-C(2)-C(3)	121.48(16)
C(4)-C(3)-C(2)	117.09(18)
C(4)-C(3)-H(3)	121.5
C(2)-C(3)-H(3)	121.5
C(3)-C(4)-C(5)	122.19(17)
C(3)-C(4)-H(4)	118.9
C(5)-C(4)-H(4)	118.9

C(6)-C(5)-C(4)	120.24(17)
C(6)-C(5)-C(8)	121.35(18)
C(4)-C(5)-C(8)	118.41(17)
C(7)-C(6)-C(5)	118.39(18)
C(7)-C(6)-H(6)	120.8
C(5)-C(6)-H(6)	120.8
C(6)-C(7)-N(1)	129.33(17)
C(6)-C(7)-C(2)	120.61(16)
N(1)-C(7)-C(2)	110.05(15)
O(2)-C(8)-O(3)	122.90(18)
O(2)-C(8)-C(5)	125.0(2)
O(3)-C(8)-C(5)	112.09(17)
O(3)-C(9)-H(9A)	109.5
O(3)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
O(3)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
N(2)-C(10)-C(14)	113.10(17)
N(2)-C(10)-C(11)	114.57(17)
C(14)-C(10)-C(11)	105.25(16)
N(2)-C(10)-H(10)	107.9
С(14)-С(10)-Н(10)	107.9
С(11)-С(10)-Н(10)	107.9
C(12)-C(11)-C(10)	106.2(2)
С(12)-С(11)-Н(11А)	110.5
С(10)-С(11)-Н(11А)	110.5
С(12)-С(11)-Н(11В)	110.5
С(10)-С(11)-Н(11В)	110.5
H(11A)-C(11)-H(11B)	108.7
C(13)-C(12)-C(11)	105.3(2)
С(13)-С(12)-Н(12А)	110.7
С(11)-С(12)-Н(12А)	110.7
С(13)-С(12)-Н(12В)	110.7
С(11)-С(12)-Н(12В)	110.7

	100.0
H(12A)-C(12)-H(12B)	108.8
C(12)-C(13)-C(14)	103.8(2)
С(12)-С(13)-Н(13А)	111.0
С(14)-С(13)-Н(13А)	111.0
С(12)-С(13)-Н(13В)	111.0
С(14)-С(13)-Н(13В)	111.0
H(13A)-C(13)-H(13B)	109.0
C(13)-C(14)-C(10)	104.7(2)
C(13)-C(14)-H(14A)	110.8
C(10)-C(14)-H(14A)	110.8
C(13)-C(14)-H(14B)	110.8
C(10)-C(14)-H(14B)	110.8
H(14A)-C(14)-H(14B)	108.9
C(16)-C(15)-C(21)	120.83(16)
C(16)-C(15)-C(1)	122.14(16)
C(21)-C(15)-C(1)	116.69(17)
C(17)-C(16)-C(15)	117.65(17)
С(17)-С(16)-Н(16)	121.2
С(15)-С(16)-Н(16)	121.2
C(19)-C(17)-C(16)	119.43(17)
C(19)-C(17)-N(3)	109.71(15)
C(16)-C(17)-N(3)	130.74(17)
N(3)-C(18)-N(4)	129.38(19)
N(3)-C(18)-O(1)	116.08(16)
N(4)-C(18)-O(1)	114.54(16)
C(20)-C(19)-O(1)	127.96(16)
C(20)-C(19)-C(17)	124.42(16)
O(1)-C(19)-C(17)	107.60(16)
C(19)-C(20)-C(21)	115.94(17)
С(19)-С(20)-Н(20)	122.0
С(21)-С(20)-Н(20)	122.0
C(20)-C(21)-C(15)	121.67(18)
С(20)-С(21)-Н(21)	119.2
С(15)-С(21)-Н(21)	119.2
C(23')-C(22)-N(4)	113(3)

C(23')-C(22)-C(23)	7(2)
N(4)-C(22)-C(23)	111.9(8)
C(23')-C(22)-H(22A)	104.0
N(4)-C(22)-H(22A)	109.2
C(23)-C(22)-H(22A)	110.8
C(23')-C(22)-H(22B)	113.3
N(4)-C(22)-H(22B)	109.2
C(23)-C(22)-H(22B)	107.9
H(22A)-C(22)-H(22B)	107.9
C(24)-C(23)-C(28)	118.9(5)
C(24)-C(23)-C(22)	118.7(8)
C(28)-C(23)-C(22)	122.3(8)
C(23)-C(24)-C(25)	119.7(5)
С(23)-С(24)-Н(24)	120.1
С(25)-С(24)-Н(24)	120.1
C(26)-C(25)-C(24)	121.3(4)
С(26)-С(25)-Н(25)	119.4
С(24)-С(25)-Н(25)	119.4
C(25)-C(26)-C(27)	119.9(4)
С(25)-С(26)-Н(26)	120.0
С(27)-С(26)-Н(26)	120.1
C(26)-C(27)-C(28)	119.4(5)
С(26)-С(27)-Н(27)	120.3
С(28)-С(27)-Н(27)	120.3
C(23)-C(28)-C(27)	120.7(5)
С(23)-С(28)-Н(28)	119.7
С(27)-С(28)-Н(28)	119.7
C(24')-C(23')-C(28')	116.3(15)
C(24')-C(23')-C(22)	127.5(15)
C(28')-C(23')-C(22)	116.1(15)
C(23')-C(24')-C(25')	122.3(13)
С(23')-С(24')-Н(24')	118.8
С(25')-С(24')-Н(24')	118.8
C(26')-C(25')-C(24')	120.5(12)
С(26')-С(25')-Н(25')	119.7

С(24')-С(25')-Н(25')	119.7
C(25')-C(26')-C(27')	118.7(14)
С(25')-С(26')-Н(26')	120.7
С(27')-С(26')-Н(26')	120.7
C(26')-C(27')-C(28')	118.2(14)
С(26')-С(27')-Н(27')	120.9
С(28')-С(27')-Н(27')	120.9
C(23')-C(28')-C(27')	121.4(15)
С(23')-С(28')-Н(28')	119.3
C(27')-C(28')-H(28')	119.3
C(1)-N(1)-C(7)	105.25(14)
C(1)-N(2)-C(2)	105.91(14)
C(1)-N(2)-C(10)	127.60(14)
C(2)-N(2)-C(10)	126.41(14)
C(19)-O(1)-C(18)	103.26(13)
C(18)-N(4)-C(22)	120.43(16)
C(18)-N(4)-H(4A)	119.8
C(22)-N(4)-H(4A)	119.8
C(18)-N(3)-C(17)	103.31(16)
C(8)-O(3)-C(9)	116.28(17)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³) for 100220_0m. The anisotropic displacementfactor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	40(1)	31(1)	40(1)	0(1)	6(1)	4(1)
C(2)	39(1)	33(1)	42(1)	3(1)	8(1)	6(1)
C(3)	54(1)	30(1)	53(1)	-4(1)	1(1)	4(1)
C(4)	52(1)	31(1)	62(1)	3(1)	9(1)	9(1)
C(5)	40(1)	38(1)	52(1)	8(1)	11(1)	8(1)
C(6)	42(1)	40(1)	48(1)	-1(1)	1(1)	6(1)
C(7)	40(1)	31(1)	43(1)	0(1)	7(1)	5(1)

C(8)	42(1)	44(1)	56(1)	10(1)	11(1)	5(1)
C(9)	49(1)	80(2)	60(2)	16(1)	-1(1)	13(1)
C(10)	44(1)	37(1)	41(1)	-1(1)	-1(1)	4(1)
C(11)	71(2)	56(1)	42(1)	-6(1)	7(1)	0(1)
C(12)	104(2)	61(2)	64(2)	-19(1)	-5(2)	-5(2)
C(13)	76(2)	56(1)	83(2)	-1(1)	-15(2)	-15(1)
C(14)	50(1)	62(1)	62(2)	0(1)	4(1)	-5(1)
C(15)	41(1)	32(1)	36(1)	-2(1)	3(1)	7(1)
C(16)	43(1)	31(1)	42(1)	-2(1)	4(1)	2(1)
C(17)	39(1)	34(1)	37(1)	-4(1)	1(1)	4(1)
C(18)	39(1)	39(1)	42(1)	-4(1)	-5(1)	5(1)
C(19)	42(1)	30(1)	38(1)	0(1)	-1(1)	8(1)
C(20)	43(1)	32(1)	53(1)	2(1)	4(1)	0(1)
C(21)	38(1)	38(1)	46(1)	1(1)	2(1)	4(1)
C(22)	43(1)	52(1)	60(1)	6(1)	4(1)	9(1)
C(23)	38(2)	38(2)	53(2)	-6(3)	6(2)	13(3)
C(24)	58(3)	53(2)	112(4)	-1(2)	-16(3)	3(2)
C(25)	69(3)	75(3)	145(5)	-18(3)	-44(3)	15(2)
C(26)	68(3)	94(3)	68(3)	-1(2)	-5(2)	44(2)
C(27)	72(3)	77(2)	77(4)	28(2)	27(2)	33(2)
C(28)	52(3)	55(2)	57(3)	8(2)	13(2)	12(2)
C(23')	38(2)	38(2)	53(2)	-6(3)	6(2)	13(3)
C(24')	58(3)	53(2)	112(4)	-1(2)	-16(3)	3(2)
C(25')	69(3)	75(3)	145(5)	-18(3)	-44(3)	15(2)
C(26')	68(3)	94(3)	68(3)	-1(2)	-5(2)	44(2)
C(27')	72(3)	77(2)	77(4)	28(2)	27(2)	33(2)
C(28')	52(3)	55(2)	57(3)	8(2)	13(2)	12(2)
N(1)	43(1)	33(1)	46(1)	-2(1)	0(1)	7(1)
N(2)	42(1)	30(1)	40(1)	-1(1)	2(1)	4(1)
O(1)	43(1)	30(1)	56(1)	1(1)	0(1)	7(1)
N(4)	42(1)	37(1)	65(1)	1(1)	-1(1)	10(1)
N(3)	39(1)	34(1)	50(1)	-4(1)	1(1)	7(1)
O(2)	54(1)	42(1)	90(1)	10(1)	3(1)	15(1)
O(3)	58(1)	57(1)	57(1)	6(1)	-6(1)	15(1)

	X	у	Z	U(eq)
H(3)	3098	7036	871	56
H(4)	1483	7893	110	58
H(6)	613	4716	-880	53
H(9A)	-2371	6935	-1704	97
H(9B)	-1914	6277	-2344	97
H(9C)	-1429	7567	-2104	97
H(10)	5033	4091	1599	50
H(11A)	3342	5691	1913	68
H(11B)	4285	4954	2467	68
H(12A)	4538	7317	1993	95
H(12B)	5171	6743	2732	95
H(13A)	6661	5913	2231	91
H(13B)	6450	7133	1793	91
H(14A)	6261	5215	1068	70
H(14B)	5274	6218	826	70
H(16)	5822	2944	705	47
H(20)	3512	-549	889	52
H(21)	2593	1346	722	50
H(22A)	9235	44	961	63
H(22B)	9356	-1045	445	63
H(24)	11342	-109	1540	94
H(25)	12802	-1011	2392	124
H(26)	12492	-2869	2845	95
H(27)	10659	-3813	2511	88
H(28)	9217	-2971	1614	65
H(24')	10797	240	1963	94
H(25')	12144	-632	2872	124
H(26')	11961	-2628	3110	95
H(27')	11182	-3858	2114	88
H(28')	9777	-2988	1197	65
H(4A)	7800	-1962	1014	59

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 100220_0m.

¹⁹F Spctra of Compound 15e

¹H NMR Spectrum (300 MHz) of compound 9a in CDCI₃

¹H NMR Spectrum (300 MHz) of compound 11a in CDCl₃

¹H NMR Spectrum (300 MHz) of compound 12a in $CDCI_3$

¹H NMR Spectrum (300 MHz) of compound 13a in CDCl₃

¹H NMR Spectrum (300 MHz) of compound 14a in CDCl₃

¹H NMR Spectrum (300 MHz) of compound 9f in CDCl₃

¹H NMR Spectrum (300 MHz) of compound 11f in CDCl₃

¹H NMR Spectrum (300 MHz) of compound 12f in CDCl₃

¹H NMR Spectrum (300 MHz) of compound 13f in CDCl₃

¹H NMR Spectrum (300 MHz) of compound 14f in CDCl₃

¹H NMR Spectrum (300 MHz) of compound 9n in CDCI₃

¹H NMR Spectrum (300 MHz) of compound 11n in CDCl₃

¹H NMR Spectrum (300 MHz) of compound 12n in CDCl₃

¹H NMR Spectrum (300 MHz) of compound 13n in CDCl₃

¹H NMR Spectrum (300 MHz) of compound 14n in CDCl₃

Synthesis of Polymer bound 3-(4-Hydroxy-3- nitrobenzamido)-4-(isobutylamino) carboxylates 11a.

Status: OK Absorption level: Normal Vial type: 10-20 ml Pre-stirring: 0

Initial power: 0

Dynamic deflector optimization:Off

Step Time ?C bar W FHT Cooling Stir Rate

1 00:25:00 90 Off Off On On 600

Synthesis of 2-(4-Hydroxy-3-nitrophenyl)-1-isobutyl-1*H*-benzo[*d*]imidazole carboxylates 12a.

Status: OK Absorption level: Normal Vial type: 10-20 ml

Pre-stirring: 0

Initial power: 0

Dynamic deflector optimization:Off

Step Time ?C bar W FHT Cooling Stir Rate

1 00:08:00 100 8 Off On On 600

Synthesis of Polymer bound 2-(3-Amino-4-hydroxyphenyl)-1-isobutyl-1*H*-benzo[*d*]imidazole carboxylates 13a.

Status: OK Absorption level: Normal Vial type: 10-20 ml Pre-stirring: 10 Initial power: 0 Dynamic deflector optimization:Off

Step Time ?C bar W FHT Cooling Stir Rate

1 00:10:00 80 Off Off On On 600

Synthesis of Polymer bound 1-Isobutyl-2-(2-(phenylamino) benzo[d]oxazol-5-yl)-1H-benzo[d]imidazole-carboxylate 14a.

Status: OK Absorption level: Normal Vial type: 10-20 ml Pre-stirring: 0 Initial power: 0 Dynamic deflector optimization:Off

Step Time ?C bar W FHT Cooling Stir Rate

1 00:10:00 100 5 Off On On 600

