Electronic Supplementary Information

3-Phosphono-L-alanine as Pyrophosphate Mimic for DNA Synthesis Using HIV-1 Reverse Transcriptase

Shiqiong Yang^a, Mathy Froeyen^a, Eveline Lescrinier^a, Philippe Marlière^b, Piet Herdewijn^{*a}

^aLaboratory for Medicinal Chemistry, Rega Institute for Medical Research,

Catholic University of Leuven, Minderbroederstraat 10, B-3000, Leuven, Belgium

^bIsthmus Sarl, 31 rue de Saint Amand, F-75015 Paris, France

Table of Contents

2'-Deoxyadenosine-5'-taurine phosphoramidate (1) ³¹ P NMR	Page S3
2'-Deoxyadenosine-5'-taurine phosphoramidate (1) ¹ H NMR	Page S3
2'-Deoxyadenosine-5'-(L-cysteic acid) phosphoramidate (2) ³¹ P NMR	Page S4
2'-Deoxyadenosine-5'-(L-cysteic acid) phosphoramidate (2) ¹ H NMR	Page S4
2'-Deoxyadenosine-5'-(3-phosphono-L-alanine) phosphoramidate (3) ³¹ P NMR	Page S5
2'-Deoxyadenosine-5'-(3-phosphono-L-alanine) phosphoramidate (3) $^{1}HNMR^{\#}$	Page S5
2'-Deoxyadenosine-5'-(O-sulfonato-L-serine) phosphoramidate (4) ³¹ P NMR	Page S6
2'-Deoxyadenosine-5'-(O-sulfonato-L-serine) phosphoramidate (4) ¹ H NMR	Page S6
2'-Deoxyadenosine-5'-(O-phospho-L-serine) phosphoramidate (5) ³¹ P NMR	Page S7
2'-Deoxyadenosine-5'-(O -phospho-L-serine) phosphoramidate (5) ¹ H NMR [#]	Page S7
2'-Deoxyguanosine-5'-(3-phosphono-L-alanine) phosphoramidate (6) ³¹ P NMR	Page S8
2'-Deoxyguanosine-5'-(3-phosphono-L-alanine) phosphoramidate (6) H NMR $^{\#}$	Page S8
2'-Deoxycytidine-5'-(3-phosphono-L-alanine) phosphoramidate (7) ³¹ P NMR	Page S9
2'-Deoxycytidine-5'-(3-phosphono-L-alanine) phosphoramidate (7) H NMR [#]	Page S9
2'-Deoxythymidine-5'-(3-phosphono-L-alanine) phosphoramidate (8) ³¹ P NMR	Page S10
2'-Deoxythymidine-5'-(3-phosphono-L-alanine) phosphoramidate (8) H NMR ^{$\#$}	Page S10
3-Phosphono-L-Ala-dAMP (3) steady-state kinetics of single nucleotide incorporation	by HIV-1
RT	Page S11
dATP steady-state kinetics of single nucleotide incorporation by HIV-1 RT	Page S11
Figure 1s. Product inhibition experiment for compound 3 by HIV-1 RT	Page S12
Figure 2s. Control experiments for compounds 3 , 6 and 8 by HIV-1 RT	Page S13
Figure 3s. Model structures of compounds 6 and 8	Page S14

[#] The compound is labile. Complete removal of Et_3N by preparative chromatography was not possible without disturb the compound. Therefore, the ¹H NMR was analyzed after Et_3N suppress.

8.5 6.5 8.0 7.5 7.0 6.0 5.5 5.0 3.5 3.0 2.5 4.5 4.0 ppm 1.00 0.97 1:13 1.00 1.02 2.05 2.08 1.07 1.01 2.01

2'-Deoxyadenosine-5'-(3-phosphono-L-alanine) phosphoramidate (3) ³¹P NMR

2'-Deoxyadenosine-5'-(3-phosphono-L-alanine) phosphoramidate (3) ¹H NMR[#]

2'-Deoxyadenosine-5'-(O-sulfonato-L-serine) phosphoramidate (4) ³¹P NMR

2'-Deoxyadenosine-5'-(O-sulfonato-L-serine) phosphoramidate (4) ¹H NMR

2'-Deoxyadenosine-5'-(O-phospho-L-serine) phosphoramidate (5) ¹H NMR[#]

2'-Deoxyguanosine-5'-(3-phosphono-L-alanine) phosphoramidate (6) ³¹P NMR

2'-Deoxyguanosine-5'-(3-phosphono-L-alanine) phosphoramidate (6) ¹H NMR[#]

2'-Deoxycytidine-5'-(3-phosphono-L-alanine) phosphoramidate (7) ³¹P NMR

2'-Deoxycytidine-5'-(3-phosphono-L-alanine) phosphoramidate (7) ${}^{1}H$ NMR[#]

2'-Deoxythymidine-5'-(3-phosphono-L-alanine) phosphoramidate (8) ³¹P NMR

2'-Deoxythymidine-5'-(3-phosphono-L-alanine) phosphoramidate (8) ¹H NMR[#]

3-Phosphono-L-Ala-dAMP (**3**) steady-state kinetics of single nucleotide incorporation by HIV-1 RT

dATP steady-state kinetics of single nucleotide incorporation by HIV-1 RT:

Product inhibition experiment for compound **3** by HIV-1 RT:

Primer (P₁) 5'-CAGGAAACAGCTATGAC-3'

Template (T1) 5'-CCCTGTCATAGCTGTTTCCTG-3'

Figure 1S. Single incorporation of the primer of P_1T_1 (125 nM) by HIV-1 RT with phosphoramidate substrate concentrations and time intervals (min) as indicated, [HIV-1 RT] = 0.025 U/µL; incorporation of **3** (50 µM) and (0.1 mM, 0.5 mM, 1 mM) 3-phosphono-L-alanine (S), respectively; Blank: 125 nM primer/template (P_1T_1), [HIV-1 RT] = 0.025 U/µL and no substrate; dATP (10 µM) is used as reference.

Figure 2S. Control experiments for compounds **3**, **6** and **8** by HIV-1 RT with phosphoramidate substrate concentrations and time intervals (min) as indicated, [HIV-1 RT] = $0.025 \text{ U/}\mu\text{L}$; 10 μM dATP, 10 μM dGTP and 50 μM dCTP are used as reference.

Figure 3S. Model structures of 3-phosphono-L-Ala-dNMP (N = G and T, respectively) in the RT dNTP pocket. The primer strand is drawn with a green ribbon; the template strand has a blue ribbon. The residues Asp 110, 185 and 186 anchor the 2 Mg²⁺ ions (purple balls). Some distances between charged atoms are indicated. The first nucleic acid of the primer strand (yellow carbons) and the complementary residue to 3-phosphono-L-Ala-dNMP is shown in stick representation. Possible stabilization of the carboxyl function and the phosphonate function in the leaving group by Arg 72 and Lys 65 is indicated. Figures are generated using Chimera.¹⁶