Title: Synthesis of Electron Deficient Acene Derivatives via Bidirectional Iterative Elongation Reaction

Authors: Yi-Chun Lin, Chih-Hsiu Lin, Chan-Yu Chen, Shih-Sheng Sun, Bikash Pal

Supporting Information: Syntheses of intermediates 5, 8, 11 and spectroscopic characterization of new compounds

Index

Synthetic procedures and spectroscopic characterization	of starting
compound 5	3-5
Synthetic procedures and spectroscopic characterization	of starting
compound 9	5-7
Synthetic procedures and spectroscopic characterization	of starting
compound 11	7-9
¹ H and ¹³ C spectrum of compound 2	10-11
¹ H and ¹³ C spectrum of compound 3	12-13
¹ H spectrum of compound 4	14
¹ H and ¹³ C spectrum of compound 5	15-16
¹ H and ¹³ C spectrum of crude compound 6	17-18
¹ H and ¹³ C spectrum of crude compound 7	19-20

21-22
ethylene)
23-24
25-26
27-28
29-30
31-32
34
35-36
37-38
39-40

41-42
45-46
51-52
53-54
55-56
61
62-63
64-65

General Procedure

All reactions are performed under 1 atmosphere of dried nitrogen or argon and well mixed with magnetic stirring devices. Reagent grade chemicals and solvents were used in all reactions. Reaction vessels were dried in oven before use. Diethyl ether and tetrahydrofuran were distilled over metallic sodium with benzophenone radical anion as the indicator. Dichloromethane were distilled from CaH₂. Flash column chromatography was performed with Merck silica gel 60 (1.11567.9025, 0.040-0.063 mm) as the stationary phase. All reported ratios of mixed eluents are based on volume.

1,4-diiodo-2,5-dimethylbenzene: *p*-Xylene (8 g, 0.075 mol) was mixed with potassium iodate (6.5 g, 30 mmol), iodine (21 g, 83 mmol) and 250 mL of acetic acid, 7.5 mL of sulfuric acid and 25 mL of water were added to make a heterogeneous mixture. The reaction was refluxed for 6 hrs. The cooled reaction mixture was slowly poured into ice water. The excess iodine was quenched by adding a saturated solution of sodium thiosulfate. The product was filtered as a crystalline solid in 74%. ¹H NMR (400 MHz, CDCl₃): δ 2.32 (s, 6H), 7.63 (s, 2H).

1,4-bis(bromomethyl)-2,5-diiodobenzene: 2,5-diiodo-p-xylene (10 g, 28 mmol) was dissolved in 100 ml 1,2-dibromoethane. Bromine

(2.88 ml, 56 mmol) was added and it was heated to 135 °C for 6 hours. Another equivalent of Bromine (1.44 ml, 28 mmol) was added. The mixture was stirred over night at 135 °C, cooled to room temperature, poured into a saturated solution of sodium thiosulfate and extracted. In the organic phase a precipitate was formed that was filtered of and recrystallized from chloroform to give the product (3.3 g, 23%). ¹H NMR (500 MHz, CDCl₃): δ 4.46 (s, 4H), 7.87 (s, 2H).

5, (2,5-diiodo-1,4-phenylene)bis(methylene)bis(4-methylbenzoate): Potassium carbonate (0.14 g, 1.02 mmol) was added to a DMF (15mL) solution of and *p*-toluic acid (0.14 g, 1.02 mmol) and 1,4-bis(bromomethyl)-2,5-diiodobenzene (0.24 g, 0.47 mmol). After the mixture was stirred for overnight, CH₂Cl₂ was added and the mixture was washed with water to remove DMF. The organic layer was dried over MgSO₄ and concentrated, then purified with flash chromatography (CH₂Cl₂/hexane = 2/1) to give pure product (0.23 g, 79%). IR (KBr) v (cm⁻¹): 749, 1110, 1178, 1170, 1609, 1715, 2926, 3034; ¹H NMR (400 MHz, DMSO-d₆): δ 2.38 (s, 6H), 5.27 (s, 4H), 1.39-1.45 (m, 8H), 7.35 (d, J = 8.0 Hz, 4H), 7.88 (d, J = 8.0 Hz, 4H), 8.04 (s, 2H); ¹³C NMR (125 MHz, CDCl3): δ 21.64, 68.92, 97.75, 126.83, 129.18, 129.81, 139.76, 140.37, 144.03, 165.96; HRMS. (MALDI, [M+Na]⁺), C₂₄H₂₀I₂O₄Na, Found: 648.9355.

(4,6-dibromo-1,3-phenylene)bis(methylene) bis(4-methylbenzoate): DCC (8.13 g, 39.4 mmol) was added to a ice-cooled CH₂Cl₂ solution of 1,5-dibromo-2,4-bis-hydroxymethyl-benzene (3 g, 10.1 mmol), *p*-toluic acid (3.59 g, 26.3 mmol) and DMAP (0.32 g, 2.6 mmol). After stirred for 1 hr at 0 °C, the mixture was warmed back to room temperature and then stirred for overnight. The solvent was removed in vacuo and the residual was extracted with CH₂Cl₂. Organic layer was dried over MgSO₄ and concentrated, then purified with flash chromatography (CH₂Cl₂/hexane = 2/1) to give product (3.85 g, 72%, with minor impurities). IR (KBr) v (cm⁻¹): 749, 1046, 1109, 1176, 1610, 1723, 2851, 2926; ¹H NMR (400 MHz, CDCl₃): δ 2.39 (s, 6H), 5.35 (s, 4H), 7.16 (d, *J* = 8.0 Hz, 4H), 7.60 (s, 1H), 7.84(s, 1H), 7.91 (d, *J* = 8.0 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 21.66, 65.24, 122.82, 126.83, 129.16, 129.72, 130.59, 135.22, 136.16, 143.87, 165.98; HRMS. (MALDI, [M+Na]⁺), C₂₄H₂₀Br₂O₄Na, Calc: 552.9626, Found: 552.9625.

9, (4,6-diiodo-1,3-phenylene)bis(methylene)bis(4-methylbenzoate): N,N'-dimethylethylenediamine (0.02 mL, 0.19 mmol) was added to a dioxane solution (15.0 ml) of (4,6-dibromo-1,3-phenylene)bis(methylene) bis(4-methylbenzoate) (0.50 g, 0.94 mmol), CuI (36 mg, 0.19 mmol) and NaI (0.82 g, 4.69 mmol) under N₂ atmosphere. The solution was stirred at 110 °C for 24 hours. Then the second batch of CuI (36 mg, 0.19 mmol), NaI (0.82 g, 4.69 mmol), N,N'-dmethylethylenediamine (0.02 mL, 0.19 mmol) was added to the solution and the solution was stirred at 110 °C for 66 hours. Dichloromethane (20 mL) was added to the reaction mixture and the solution was washed by 3 % aqueous NH₃ (2×30 mL) and H₂O (30mL). The organic solvent was dried over anhydrous MgSO₄. The insoluble materials were filtered off and the filtrate was evaporated. The residue was purified by flash chromatography (CH₂Cl₂/hexane = 2/1) to give pure product (0.4g, 68%). IR (KBr) v (cm^{-1}) : 1068, 1171, 1302, 1422, 1598, 1695, 2872, 2936, 2957; ¹H NMR (400 MHz, CDCl₃): δ 2.39 (s, 6H), 5.27 (s, 4H), 7.17 (d, J = 8.0 Hz, 4H), 7.50 (s, 1H), 7.92 (d, J = 8.0 Hz, 4H), 8.36(s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 21.68, 69.42, 97.79, 126.86, 129.06, 129.19, 129.79,

139.22, 143.92, 148.60, 166.00.

Methyl 3,5-dioctyloxybenzoate: A mixture of K₂CO₃ (14.80 g, 108 mmol) and methyl 3,5-dihydroxybenzoate (3 g, 18 mmol) in MeCN (60 mL) was refluxed for 30 min under N₂ atmosphere. 1-Bomooctane (8.69 g, 0.045 mol) was added dropwise to the mixture, and then refluxed for 24 h. The reaction was cooled to room temperature and filtered. The inorganic residue was washed with CH₂Cl₂ (2×50 mL). The filtrate was concentrated under vacuum, the residue dissolved in CH₂Cl₂ (75 mL) and washed with a 0.5 M NaOH solution and water, dried over MgSO₄ and concentrated in vacuo to give the product (6.25 g, 88%). ¹H NMR (500 MHz, CDCl₃): δ 0.87 (t, *J* = 7.0 Hz, 6H), 1.26-1.30 (m, 16H), 1.40-1.45 (m, 4H), 1.72-1.78 (m, 4H), 3.87(s, 3H), 3.94 (t, *J* = 6.5 Hz, 4H), 6.61 (t, *J* = 2.5 Hz, 1H), 7.13 (d, *J* = 2.5 Hz, 2H).

3,5-Dioctyloxybenzoic acid: Methyl 3,5-dioctyloxybenzoate (2.4 g, 6 mmol) was added to a solution of KOH (4.8 g, 84 mmol) in ethyl alcohol (60 mL) and the mixture was refluxed for 5 hrs. The solvent was removed in vacuo. The mixture was then poured into 20 mL of water and acidified with HCl. The mixture was extracted with CH_2Cl_2 , the combined organic phase was dried over MgSO₄ and concentrated to

give the product (1.90 g, 82%). ¹H NMR (400 MHz, CDCl₃): δ 0.87 (t, J = 6.8 Hz, 6H), 1.27-1.32 (m, 16H), 1.41-1.45 (m, 4H), 1.73-1.80 (m, 16H), 1.41-1.45 (m,

4H), 3.96 (t, *J* = 6.8 Hz, 4H), 6.66 (t, *J* = 2.4 Hz, 1H), 7.18 (d, *J* = 2.4 Hz, 2H).

(2,5-diiodo-1,4-phenylene)bis(methylene) bis(3,5-bis(octyloxy)benzoate): Potassium carbonate (0.37 g, 2.68 mmol) was added to a DMF (40mL) solution of and methyl 3,5-dioctyloxybenzoate (1.00 g, 2.68 mmol) and 1,4-bis(bromomethyl)-2,5-diiodobenzene (0.60 g, 1.16 mmol). After the mixture was stirred for overnight, CH₂Cl₂ was added and the mixture was washed with water to remove DMF. The organic layer was dried over MgSO₄ and concentrated, then purified with flash chromatography (CH₂Cl₂/hexane = 1/1) to give pure product (0.94 g, 73%). IR (KBr) v (cm⁻¹): 1108, 1170, 1226, 1445, 1608, 1727, 2853, 2921; ¹H NMR (400 MHz, CDCl₃): δ 0.87 (t, *J* = 6.6 Hz, 12H), 1.25-1.32 (m, 32H), 1.39-1.45 (m, 8H), 1.74-1.78 (m, 8H), 3.96 (t, *J* = 6.5 Hz, 8H), 5.28 (s, 4H), 6.64 (t, *J* = 2.2 Hz, 2H), 7.19 (d, *J* = 2.2 Hz, 4H); ¹³C

NMR (100 MHz, CDCl₃): δ 14.07, 22.62, 25.99, 29.14, 29.20, 29.30, 31.78, 68.29, 69.07, 97.72, 106.83, 107.78, 131.15, 139.74, 140.27, 160.18,

165.73; HRMS. (FAB, M⁺), C₅₄H₈₀I₂O₈, Calc: 1110.3943, Found: 1110.3949.

18

-

-

-

** *

25

.

-

х.,

28

-

-

-

39

•

40

-

48

-

50

.

60

-

