Electronic Supplementary Information

Mutanobactin A from the human oral pathogen *Streptococcus mutans* is a cross-kingdom regulator of the veast-mycelium transition

P. Matthew Joyner,^{*a*} Jinman Liu,^{*b*} Zhijun Zhang,^{*b*} Justin Merritt,^{*b*} Fengxia Qi,^{*b*} and Robert H. Cichewicz^{*,*a*,*c*}

^aNatural Products Discovery Group, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, University of Oklahoma, Norman, OK 73019 U.S.A.

^bCollege of Dentistry, 975 NE 10th Street, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014 U.S.A.

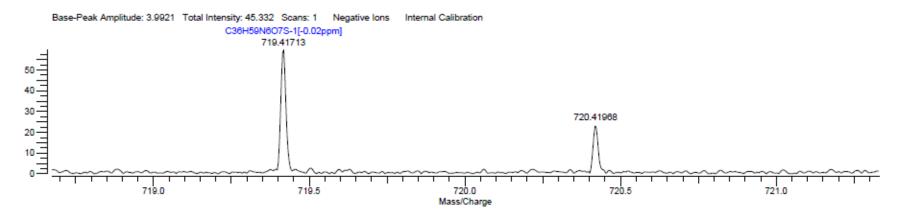
^cGraduate Program in Ecology and Evolutionary Biology, University of Oklahoma, Norman, OK, USA 73019 U.S.A.

*To whom correspondence should be addressed. Tel: +1 (405) 325-6969. E-mail: rhcichewicz@ou.edu.

Contents

- General experimental procedures
- Preparation and extraction of bacterial culture
- Mutanobactin A (1) chemical and physical data
- Table S1 ¹H and ¹³C NMR data for mutanobactin A (1)
- Fig. S1 HRESIMS (FT-ICR) data for mutanobactin A (1)
- Fig. S2 ESI MS/MS data for mutanobactin A (1)
- Fig. S3 ¹H NMR spectrum for mutanobactin A (1)
- Fig. S4 ¹³C NMR spectrum for mutanobactin A (1)
- Fig. S5 ¹H–¹H COSY NMR spectrum for mutanobactin A (1)
- Fig. S6 ¹H–¹³C HSQC NMR spectrum for mutanobactin A (1)
- Fig. S7 ¹H-¹³C HMBC NMR spectrum for mutanobactin A (1)
- Fig. S8 ¹H–¹H NOESY NMR spectrum for mutanobactin A (1)
- Fig. S9 ¹H–¹⁵N HMBC NMR spectrum for mutanobactin A (1)
- Fig. S10 1D ¹H–¹H TOCSY NMR spectra for mutanobactin A (1)

General Experimental Procedures. NMR data were obtained on a Varian VNMR spectrometer (500 MHz for ¹H, 125 MHz for ¹³C) with a triple resonance probe at 22 \pm 0.5 °C. Electrospray-ionization mass spectrometry data were collected on an IonSpec (Varian, Inc.) 9.4 T FT-ICR instrument. ESI MS/MS analyses were performed on a LCT premier (Waters Corp.) time-of-flight instrument. Flash chromatography was performed on a Biotage Isolera One using a 100 g C₁₈ column with a flow rate of 50 mL/min. HPLC separations were carried out on a Shimadzu system using a SCL-10A VP controller and Gemini 5µm C₁₈ column (110Å, 250 x 21.2 mm) with a flow rate of 10 mL/min. All solvents were of ACS grade or better. Optical rotation measurement were performed on a Rudolph Research Autopol III automatic polarimeter; $[\alpha]_D$ values are given in deg·cm²·g⁻¹.


Preparation and extraction of bacterial culture. A culture of *Streptococcus mutans* UA159 was prepared by inoculating 15 L of brain-heart infusion (BHI) broth with 100 mL of a stationary phase *S. mutans* UA159 culture. The culture was incubated under microaerobic conditions at 37 °C for 36 h. The culture was extracted three times with equal volumes of ethyl acetate, which was then evaporated *in vacuo* to generate the *S. mutans* UA159 extract.

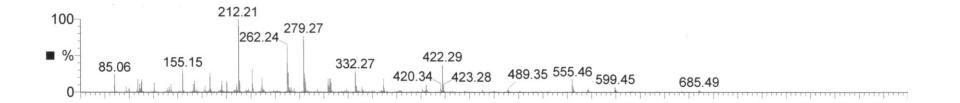
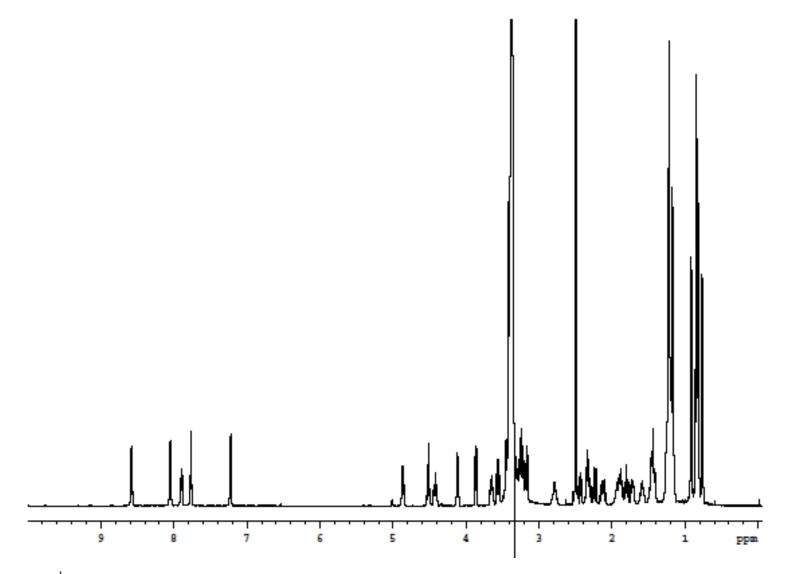
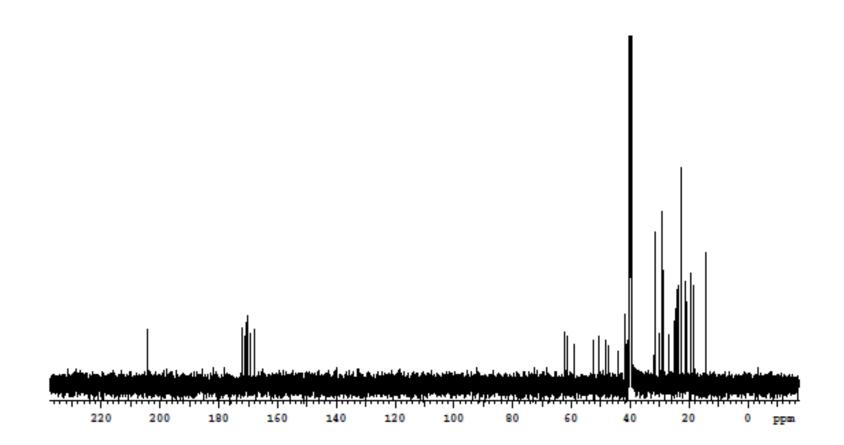
Mutanobactin A (1): white solid; $[\alpha]_D^{25} = -8.0$ (*c* 0.001 in MeOH); λ_{max} (MeOH) 221 nm (ε /dm³ mol⁻¹ cm⁻¹ 38 900); ¹H, ¹³C, and ¹⁵N NMR data, see Table S1; HRESIMS (FT-ICR) *m*/*z* [M-H]⁻ 719.41713 (calcd. for C₃₆H₅₉N₆O₇S, 719.41714).

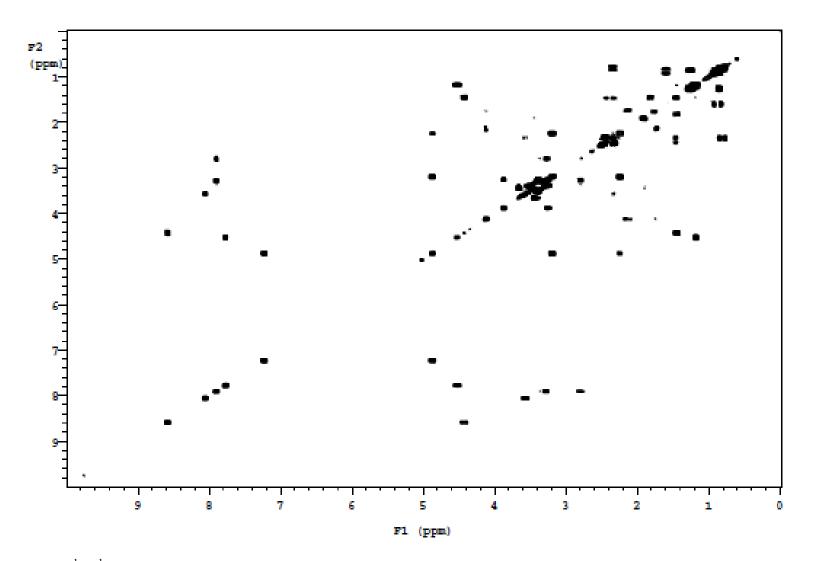
position	$\delta_{\rm C}$, mult. ^{<i>a</i>}	$\delta_{ m H}$ (J in Hz)	${\delta_{\mathrm{N}}}^b$
1	50.4, CH	4.43, ddd (3.7, 9.0, 11.0)	
2a	$40.4, CH_2$	1.44, m	
2b	, 2	1.81, ddd (3.9, 10.5, 13.8)	
3	24.2, CH	1.59, m	
4	20.9, CH ₃	0.82, d (6.6)	
5	$23.5, CH_3$	0.92, d (6.7)	
6	170.5, C	0.92, a (0.7)	
7	48.0, CH	4.52, quintet (6.8)	
8	17.7, CH ₃	1.17, d (6.7)	
9	169.7, C	1.17, d (0.7)	
10	61.0, CH	4.12, dd (3.7, 8.9)	
10 11a	29.6, CH ₂	4.12, dd (3.7, 8.9) 1.72, m	
11a 11b	$29.0, CH_2$	2.13, m	
110	24.5 CH		
	24.5, CH_2	1.90, m	
13a	$46.8, CH_2$	3.43, m	
13b	171 6 C	3.65, ddd (4.5, 7.5, 9.8)	
14	171.6, C	257 44(92100)	
15	58.8, CH	3.57, dd (8.3, 10.0)	
16	26.2, CH	2.33, m	
17	20.4, CH ₃	0.84, d (6.6)	
18	18.8, CH ₃	0.77, d (6.8)	
19	168.8, C		
20	52.2, CH	4.87 ddd (2.6, 8.0, 9.0)	
21a	$28.5, CH_2$	2.23, dd (2.6, 16.0)	
21b 22	170 4 C	3.19, dd (9.0, 16.0)	
	170.4, C	2.70 m	
23a	43.7, CH ₂	2.79, m	
23b	41.0. CU	3.28, m	
24	41.0, CH	3.25, m	
25 26	61.7, CH	3.87, d (9.8)	
26 27	167.7, C		
27	203.8, C	2.22	
28a	41.4, CH ₂	2.33, m	
28b	22 1 CH	2.44, dd (6.0, 16.6)	
29 20	23.1, CH ₂	1.44, m	
30	28.7, CH ₂	1.20, m	
31	22.1, CH ₂	1.25, m	
32	28.8, CH_2	1.23, m	
33	22.1, CH ₂	1.25, m	
34	31.3, CH ₂	1.23, m	
35	28.9, CH ₂	1.27, m	
36	14.0, CH ₃	0.85, t (6.8)	100.0
C1-NH		8.59, d (9.0)	120.0
C7-NH		7.77, d (6.5)	112.0
C10-NH			nd ^c
C15-NH		8.05, d (8.5)	107.5
C20-NH		7.23, d (8.0)	116.0
C23-NH		7.90, dd (5.3, 9.0)	105.5

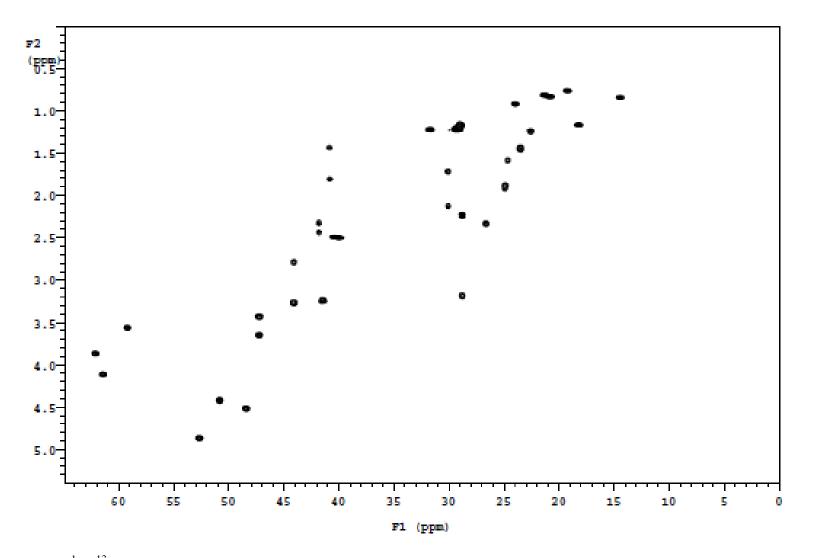
	NMR Spectroscopic Data (DMSO- <i>d</i> ₆ , 500
MHz for	¹ H, 125 MHZ for 13 C) for mutanobactin A (1)

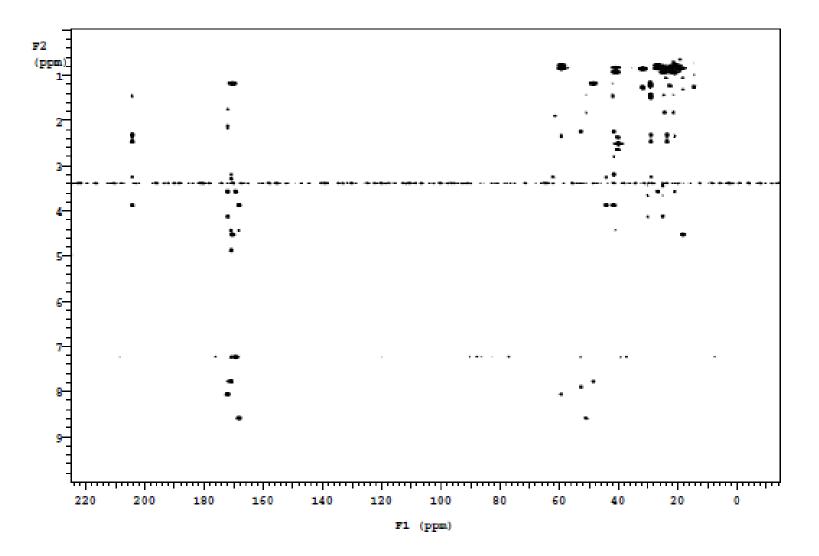
^{*a*}Determined by HSQC experiment at 500 MHz. ^{*b*}Determined by HMBC experiment at 500 MHz. ^{*c*} nd: not detected

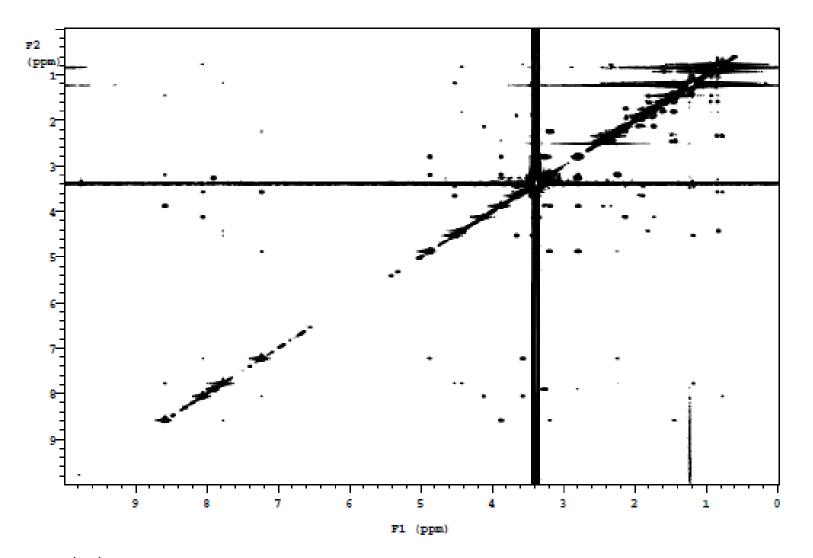
Fig. S1 HRESIMS (FT-ICR) data for mutanobactin A (1)

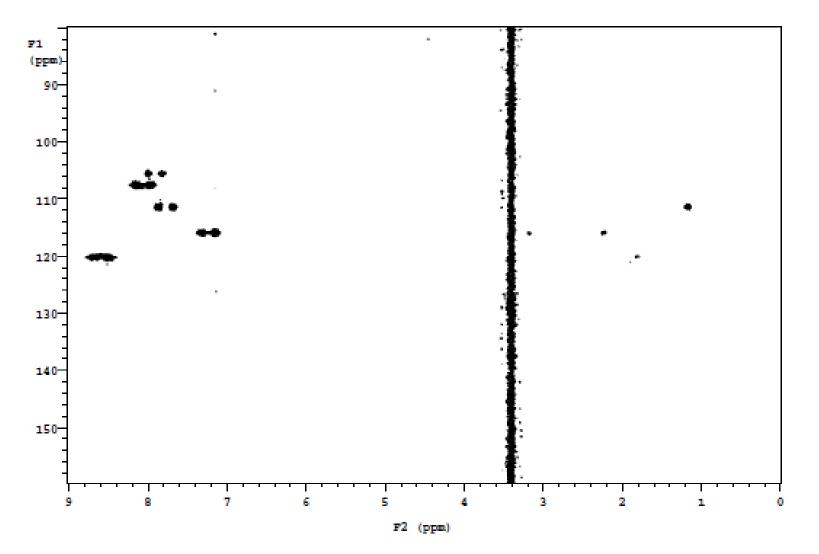




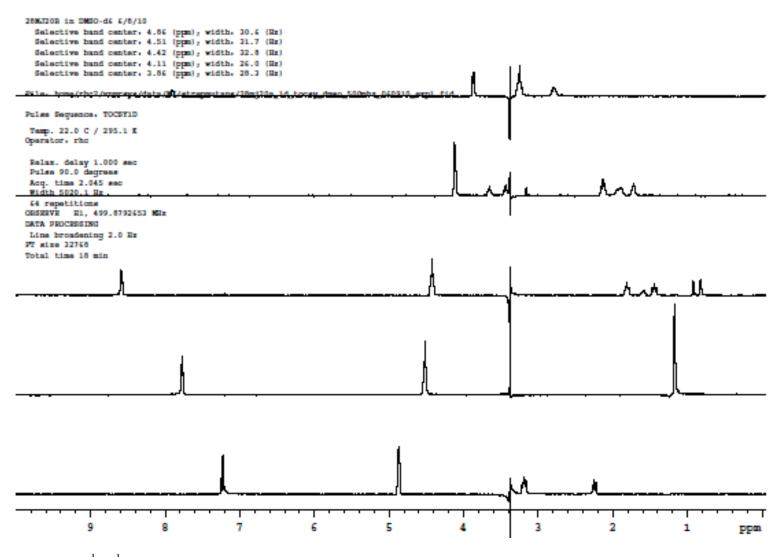

Fig. S2 ESI MS/MS data for mutanobactin A (1)

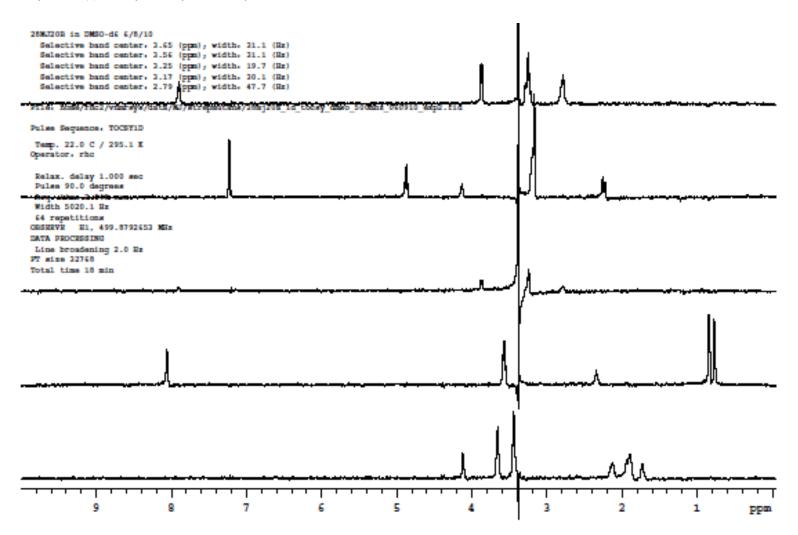

Fig. S3 ¹H NMR spectrum for mutanobactin A (1)


Fig. S4 13 C NMR spectrum for mutanobactin A (1)


Fig. S5 1 H $^{-1}$ H COSY NMR spectrum for mutanobactin A (1)


Fig. S6 1 H 13 C HSQC NMR spectrum for mutanobactin A (1)


Fig. S7 1 H $^{-13}$ C HMBC NMR spectrum for mutanobactin A (1)


Fig. S8 ¹H–¹H NOESY NMR spectrum for mutanobactin A (1)

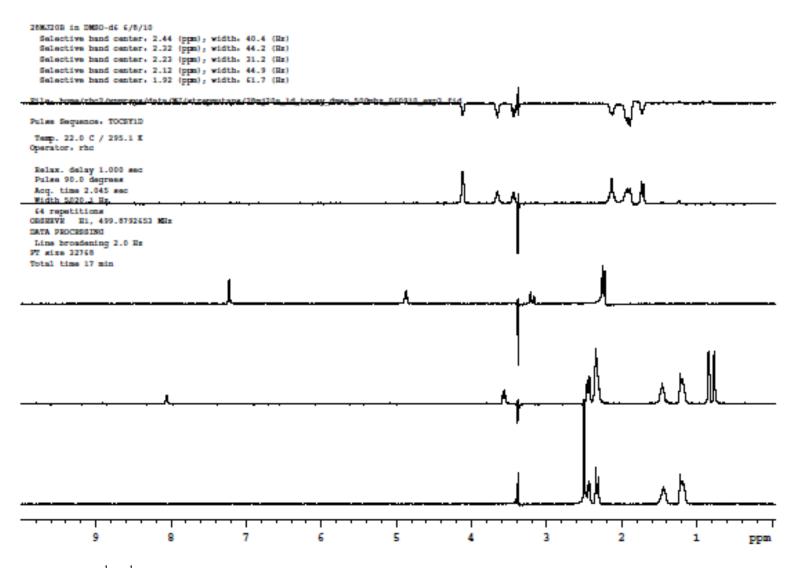

Fig. S9 1 H 15 N HMBC NMR spectrum for mutanobactin A (1)

Fig. S10 1D ${}^{1}H{}^{-1}H$ TOCSY NMR spectra for mutanobactin A (1) (panel 1 of 3)

Fig. S10 1D 1 H $^{-1}$ H TOCSY NMR spectra for mutanobactin A (1) (panel 2 of 3)

Fig. S10 1D ${}^{1}H-{}^{1}H$ TOCSY NMR spectra for mutanobactin A (1) (panel 3 of 3)