Supporting Information

A facile process for the asymmetric synthesis of $\beta\text{-trifluoromethylated }\beta\text{-amino ketones via addition of ketone}$ enolates to sulfinylimine

Haibo Mei, a Yiwen Xiong, a Jianlin Han and Yi Pan and Yi Pan

^a School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China. E-mail: hanjl@nju.edu.cn

^b State of Key Laboratory of Coordination, Nanjing University, Nanjing, 210093, China. E-mail: yipan@nju.edu.cn

Table of Contents

	Page
1. General information	2
2. Procedure for asymmetric addition of sulfinylimine	2
3. Reaction of large scale application study	9
4. X-ray crystallography for 3a	10
5. Conversion of 3a affording free β-amino ketone 4	11
6. ¹ H and ¹³ C NMR spectra for compound 3 and 4	12

1. General information

All imine addition reactions were performed in oven-dried vials under N₂ atmosphere. Solvent THF was dried and distilled prior to use. Sulfinylimine 1 was obtained from TOSOH F-TECH, INC.. LDA (2 M in THF) was from Aldrich. These and other chemicals were used as obtained from commercial sources without further purification. Flash chromatography was performed using silica gel 60 (200-300 mesh). Thin layer chromatography was carried out on silica gel 60 F-254 TLC plates of 20 cm × 20 cm. Melting points are uncorrected. IR spectra were collected on Bruker Vector 22 in KBr pellets. Values of optical rotation were measured on Rudolph Automatic Polarimeter A21101. ¹H and ¹³C NMR (TMS used as internal standard) spectra were recorded with a Bruker ARX 300 spectrometer and a Bruker ARX 500 spectrometer. ¹⁹F NMR spectra (referenced to external CF₃COOH) were recorded wirh a Bruker ARX 400 spectrometer. High resolution mass spectra for all the new compounds were done by Micromass Q-Tof instrument (ESI).

2. Typical procedure for asymmetric addition of sulfinylimine

Into an oven-dried reaction vial flushed with N_2 were taken ketone (0.85 mmol) and anhydrous THF (3.0 mL). The reaction vial was cooled to -78 °C and LDA (2 M in THF, 0.47 mL) was added dropwise with stirring. After 40 min at -78 °C, sulfinylimine 1 (0.5 mmol) dissolved in anhydrous THF (2.0 mL) was added dropwise. Stirring was continued at -78 °C for 2 h, then the reaction was quenched with saturated NH₄Cl (3.0 mL), followed by H₂O (5.0 mL) and the mixture was brought to room temperature. The organic layer was taken and the aqueous layer was extracted with EtOAc (2 × 20 mL). The combined organic layers were dried with anhydrous Na₂SO₄, filtered and the solvent was removed to give the crude product, which was purified by TLC plate (hexane/EtOAc, 2:1).

(*S*)-2-methyl-*N*-((*S*)-1,1,1-trifluoro-4-oxo-4-phenylbutan-2-yl)propane-2-sulfinamide (**3a**): colorless solid, yield 84%, mp 146-148 °C, $[\alpha]_D^{25}$ +47.2 (c = 0.46, CHCl₃). 1 H NMR (CDCl₃, 300 MHz): δ = 7.93-7.97 (m, 2 H), 7.56-7.62 (m, 1 H), 7.45-7.50 (m, 2 H), 4.49-4.63 (m, 1 H), 4.25 (d, J = 8.7 Hz, 1 H), 3.75 (dd, J = 9.6, 17.7 Hz, 1 H), 3.31 (dd, J = 3.3, 17.7 Hz, 1 H), 1.15 (s, 9 H). 13 C NMR (CDCl₃, 75 MHz): δ = 194.9, 136.2, 133.8, 128.8, 128.2, 123.5 (q, J = 280.0 Hz), 56.9, 53.8 (q, J = 30.2 Hz), 38.0, 22.3. 19 F NMR (CDCl₃, 376 MHz): δ = -74.5. IR (KBr): ν = 3277, 2966, 2925, 1685, 1292, 1269, 1168, 1121, 1060, 690, 753 cm $^{-1}$. HRMS [M+Na $^{+}$]: calcd for $C_{14}H_{18}O_2SNF_3Na$: 344.0903, found: 344.0893.

(*S*)-2-methyl-*N*-((*S*)-1,1,1-trifluoro-4-oxo-4-p-tolylbutan-2-yl)propane-2-sulfinamide (*3b*): colorless solid, yield 81%, mp 148-150 °C, $[\alpha]_D^{25}$ +36.1 (c = 0.17, CHCl₃). ¹H NMR (CDCl₃, 300 MHz): δ = 7.87 (d, J = 6.9 Hz, 2 H), 7.30 (d, J = 5.7 Hz, 2 H), 4.51-4.60 (m, 1 H), 4.07 (d, J = 26.7 Hz, 1 H), 3.71 (dd, J = 9.3, 17.4 Hz, 1 H), 3.29 (dd, J = 2.7, 17.7 Hz, 1 H), 2.43 (d, J = 1.2 Hz, 3 H), 1.16 (d, J = 2.4 Hz, 9 H). ¹³C NMR (CDCl₃, 75 MHz): δ = 194.4, 144.8, 133.8, 129.5, 128.3, 123.5 (q, J = 280.0 Hz), 56.9, 53.9 (q, J = 30.8 Hz), 37.9, 22.3, 21.7. ¹⁹F NMR (CDCl₃, 376 MHz): δ = -74.5. IR (KBr): ν = 3265, 2962, 2924, 1683, 1610, 1345, 1292, 1270, 1167, 1118, 1060, 804 cm⁻¹. HRMS [M+Na⁺]: calcd for C₁₅H₂₀O₂SNF₃Na: 358.1059, found: 358.1048.

(S) - 2 - methyl - N - ((S) - 1, 1, 1 - trifluoro - 4 - (4 - methoxyphenyl) - 4 - oxobutan - 2 - yl) propane - yl) p

sulfinamide (**3c**): white solid, yield 84%, mp 99-100 °C, $[\alpha]_D^{25}$ +87.5 (c = 0.17, CHCl₃). ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.92$ -7.97 (m, 2 H), 6.94-6.98 (m, 2 H), 4.50-4.60 (m, 1 H), 4.12 (d, J = 6.3 Hz, 1 H), 3.88 (s, 3 H), 3.69 (dd, J = 9.6, 17.4 Hz, 1 H), 3.26 (dd, J = 3.3, 17.4 Hz, 1 H), 1.16 (s, 9 H). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 193.3$, 164.1, 130.5, 129.3, 123.5 (q, J = 279.6 Hz), 114.0, 56.9, 55.5, 54.0 (q, J = 30.9 Hz), 37.6, 22.3. ¹⁹F NMR (CDCl₃, 376 MHz): $\delta = -74.5$. IR (KBr): δ

(*S*)-2-methyl-*N*-((*S*)-1,1,1-trifluoro-4-(4-fluorophenyl)-4-oxobutan-2-yl)propane-2-sul finamide (**3d**): colorless solid, yield 74%, mp 149-151 °C, $[\alpha]_D^{25}$ +99.0 (c = 0.19, CHCl₃). ¹H NMR (CDCl₃, 300 MHz): δ = 7.96-8.03 (m, 2 H), 7.11-7.19 (m, 2 H), 4.49-4.59 (m, 1 H), 4.15 (d, J = 7.5 Hz, 1 H), 3.76 (dd, J = 9.3, 17.7 Hz, 1 H), 3.29 (dd, J = 3.3, 17.7 Hz, 1 H), 1.16 (s, 9 H). ¹³C NMR (CDCl₃, 75 MHz): δ = 193.3, 167.8, 164.5, 131.0 (d, J = 9.5 Hz), 123.4 (q, J = 280.1 Hz), 116.1 (d, J = 21.9 Hz), 56.9, 53.6 (q, J = 30.5 Hz), 37.9, 22.3. ¹⁹F NMR (CDCl₃, 376 MHz): δ = -74.4, -103.8. IR (KBr): ν = 3271, 2966, 2926, 2871, 1687, 1599, 1293, 1271, 1233, 1169, 1121, 1061, 821 cm⁻¹. HRMS [M+Na⁺]: calcd for C₁₄H₁₇O₂SNF₄Na: 362.0808, found: 362.0810.

(*S*)-*N*-((*S*)-4-(4-chlorophenyl)-1,1,1-trifluoro-4-oxobutan-2-yl)-2-methylpropane-2-sul finamide (**3e**): colorless solid, yield 70%, mp 147-148 °C, $[\alpha]_D^{25}$ +95.8 (c = 0.14, CHCl₃). ¹H NMR (CDCl₃, 300 MHz): δ = 7.89-7.93 (m, 2 H), 7.44-7.49 (m, 2 H), 4.49-4.59 (m, 1 H), 4.06 (d, J = 8.4 Hz, 1 H), 3.77 (dd, J = 9.9, 17.7 Hz, 1 H), 3.30

(dd, J = 3.0, 18 Hz, 1 H), 1.17 (s, 9 H). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 193.7$, 140.4, 134.5, 129.6, 129.2, 123.4 (q, J = 279.0 Hz), 56.9, 53.5 (q, J = 30.8 Hz), 38.0, 22.3. ¹⁹F NMR (CDCl₃, 376 MHz): $\delta = -74.3$. IR (KBr): v = 3267, 2964, 2923, 1686, 1592, 1290, 1270, 1176, 1120, 1095, 1060, 813 cm⁻¹. HRMS [M+Na⁺]: calcd for C₁₄H₁₇O₂SNF₃ClNa: 378.0513, found: 378.0498.

(*S*)-*N*-((*S*)-4-(4-bromophenyl)-1,1,1-trifluoro-4-oxobutan-2-yl)-2-methylpropane-2-su lfinamide (**3f**): white solid, yield 66%, mp 142-144 °C, $[\alpha]_D^{25}$ +61.1 (c = 0.55, CHCl₃). ¹H NMR (CDCl₃, 300 MHz): δ = 7.84 (d, J = 8.7 Hz, 2 H), 7.65 (d, J = 8.7 Hz, 2 H), 4.49-4.59 (m, 1 H), 4.06 (d, J = 8.1 Hz, 1 H), 3.77 (dd, J = 9.6, 17.4 Hz, 1 H), 3.29 (dd, J = 3.3, 17.7 Hz, 1 H), 1.17 (s, 9 H). ¹³C NMR (CDCl₃, 75 MHz): δ = 193.9, 134.9, 132.2, 129.7, 129.2, 123.3 (q, J = 280.2 Hz), 56.9, 53.5 (q, J = 30.5 Hz), 38.0, 22.3. ¹⁹F NMR (CDCl₃, 376 MHz): δ = -74.3. IR (KBr): ν = 3202, 2964, 2923, 1688, 1586, 1397, 1348, 1287, 1175, 1112, 1056, 835 cm⁻¹. HRMS [M+Na⁺]: calcd for C₁₄H₁₇O₂SNF₃BrNa: 423.9988, found: 424.0010.

(*S*)-*N*-((*S*)-4-(biphenyl-4-yl)-1,1,1-trifluoro-4-oxobutan-2-yl)-2-methylpropane-2-sulfi namide (**3g**): white solid, yield 73%, mp 147-148 °C, $[\alpha]_D^{25}$ +91.2 (c = 0.19, CHCl₃). ¹H NMR (CDCl₃, 300 MHz): δ = 8.06 (d, J = 7.8 Hz, 2 H), 7.70-7.73 (m, 2 H), 7.62-7.65 (m, 2 H), 7.40-7.52 (m, 3 H), 4.54-4.68 (m, 1 H), 4.29 (d, J = 2.1 Hz, 1 H), 3.83 (dd, J = 9.6, 17.4 Hz, 1 H), 3.37 (dd, J = 2.7, 17.4 Hz, 1 H), 1.19 (s, 9 H). ¹³C NMR (CDCl₃, 75 MHz): δ = 194.5, 146.5, 139.6, 135.0, 129.0, 128.8, 128.4, 127.5, 127.3, 123.5 (d, J = 278.4 Hz), 56.9, 53.8 (q, J = 31.3 Hz), 38.1, 22.4. ¹⁹F NMR (CDCl₃, 376 MHz): δ = -74.4. IR (KBr): ν = 3163, 2960, 2922, 1685, 1604, 1273,

1158, 1122, 1061, 765 cm $^{-1}$. HRMS [M+Na $^{+}$]: calcd for $C_{20}H_{22}O_2SNF_3Na$: 420.1216, found: 420.1199.

(*S*)-*N*-((*S*)-4-(4-ethylphenyl)-1,1,1-trifluoro-4-oxobutan-2-yl)-2-methylpropane-2-sulf inamide (**3h**): colorless solid, yield 68%, mp 97-98 °C, $[\alpha]_D^{25}$ +100.0 (c = 0.07, CHCl₃). ¹H NMR (CDCl₃, 300 MHz): δ = 7.88-7.91 (m, 2 H), 7.28-7.33 (m, 2 H), 4.51-4.61 (m, 1 H), 3.95 (d, J = 8.4 Hz, 1 H), 3.73 (dd, J = 9.6, 17.4 Hz, 1 H), 3.31 (dd, J = 3.0, 17.4 Hz, 1 H), 2.76 (q, J = 7.2 Hz, 2 H), 1.30 (t, J = 7.8 Hz, 3 H), 1.17 (s, 9 H). ¹³C NMR (CDCl₃, 75 MHz): δ = 194.4, 151.0, 134.0, 128.4, 128.3, 123.5 (q, J = 279.8 Hz), 56.9, 53.9 (q, J = 30.5 Hz), 37.9, 29.0, 22.3, 15.1. ¹⁹F NMR (CDCl₃, 376 MHz): δ = -74.4. IR (KBr): ν = 3262, 2975, 2875, 1685, 1609, 1293, 1269, 1169, 1117, 1060, 819 cm⁻¹. HRMS [M+Na⁺]: calcd for C₁₆H₂₂O₂SNF₃Na: 372.1216, found: 372.1206.

(*S*)-*N*-((*S*)-4-(4-ethoxyphenyl)-1,1,1-trifluoro-4-oxobutan-2-yl)-2-methylpropane-2-su lfinamide (**3i**): white solid, yield 87%, mp 114-115 °C, $[\alpha]_D^{25}$ +78.8 (c = 0.21, CHCl₃). ¹H NMR (CDCl₃, 300 MHz): δ = 7.90-7.95 (m, 2 H), 6.90-6.96 (m, 2 H), 4.50-4.56 (m, 1 H), 4.15 (q, J = 7.2 Hz, 2 H), 4.03 (d, J = 8.7 Hz, 1 H), 3.68 (dd, J = 9.3, 17.4 Hz, 1 H), 3.26 (dd, J = 3.0, 17.4 Hz, 1 H), 1.47 (t, J = 6.9 Hz, 3 H), 1.16 (s, 9 H). ¹³C NMR (CDCl₃, 75 MHz): δ = 193.2, 163.5, 130.5, 129.1, 123.5 (q, J = 279.8 Hz), 114.4, 63.9, 56.9, 54.0 (q, J = 29.7 Hz), 37.6, 22.3, 14.6. ¹⁹F NMR (CDCl₃, 376 MHz): δ = -74.5. IR (KBr): ν = 3167, 2980, 1682, 1602, 1366, 1287, 1261, 1231, 1171, 1117, 1061, 833 cm⁻¹. HRMS [M+Na⁺]: calcd for C₁₆H₂₂O₃SNF₃Na: 388.1165, found: 388.1169.

(*S*)-2-methyl-*N*-((*S*)-1,1,1-trifluoro-4-(naphthalen-2-yl)-4-oxobutan-2-yl)propane-2-su lfinamide (**3j**): colorless solid, yield 76%, mp 140-143 °C, $[\alpha]_D^{25}$ +34.2 (c = 0.08, CHCl₃). ¹H NMR (CDCl₃, 300 MHz): δ = 8.49 (s, 1 H), 7.98-8.05 (m, 2 H), 7.94 (t, J = 8.7 Hz, 2 H), 7.56-7.67 (m, 2 H), 4.56-4.72 (m, 1 H), 4.01 (s, 1 H), 3.92 (dd, J = 9.6, 17.7 Hz, 1 H), 3.48 (dd, J = 3.3, 17.7 Hz, 1 H), 1.18 (s, 9 H). ¹³C NMR (CDCl₃, 75 MHz): δ = 194.7, 135.9, 133.6, 132.5, 130.1, 129.7, 128.9, 128.8, 127.8, 127.0, 123.6, 123.5 (d, J = 280.7 Hz), 56.9, 53.9 (q, J = 31.5 Hz), 38.2, 22.3. ¹⁹F NMR (CDCl₃, 376 MHz): δ = -74.3. IR (KBr): ν = 3260, 2970, 2936, 1674, 1286, 1171, 1119, 1058, 1046, 822 cm⁻¹. HRMS [M+Na⁺]: calcd for C₁₈H₂₀O₂SNF₃Na: 394.1059, found: 394.1050.

(*S*)-2-methyl-*N*-((*S*)-1,1,1-trifluoro-4-(furan-2-yl)-4-oxobutan-2-yl)propane-2-sulfina mide (**3k**): colorless solid, yield 42%, mp 110-111 °C, $[\alpha]_D^{25}$ +48.8 (c = 0.08, CHCl₃). ¹H NMR (CDCl₃, 300 MHz): δ = 7.64 (dd, J = 0.6, 1.5 Hz, 1 H), 7.31 (dd, J = 0.6, 3.3 Hz, 1 H), 6.61 (q, J = 1.8 Hz, 1 H), 4.45-4.55 (m, 1 H), 3.88 (d, J = 9.0 Hz, 1 H), 3.59 (dd, J = 9.9, 17.4 Hz, 1 H), 3.21 (dd, J = 3.3, 17.1 Hz, 1 H), 1.17 (s, 9 H). ¹³C NMR (CDCl₃, 75 MHz): δ = 183.8, 152.2, 147.1, 123.2 (q, J = 280.3 Hz), 118.1, 112.8, 57.0, 53.8 (q, J = 31.1 Hz), 37.9 (d, J = 1.3 Hz), 22.3. ¹⁹F NMR (CDCl₃, 376 MHz): δ = -74.7. IR (KBr): ν = 3283, 3129, 3091, 2967, 1666, 1468, 1304, 1267, 1172, 1125, 1075, 767 cm⁻¹. HRMS [M+Na⁺]: calcd for C₁₂H₁₆O₃SNF₃Na: 334.0695, found: 334.0699.

(*S*)-2-methyl-N-((*S*)-1,1,1-trifluoro-5,5-dimethyl-4-oxohexan-2-yl)propane-2-sulfina mide (**31**): colorless solid, yield 61%, mp 85-86 °C, $[\alpha]_D^{25}$ +32.3 (c = 0.76, CHCl₃). 1 H NMR (CDCl₃, 500 MHz): δ = 4.33-4.39 (m, 1 H), 3.83 (d, J = 8.5 Hz, 1 H), 3.25 (dd, J = 9.5, 18.5 Hz, 1 H), 2.88 (dd, J = 3.5, 18.5 Hz, 1 H), 1.20 (s, 18 H). 13 C NMR (CDCl₃, 125 MHz): δ = 210.5, 124.2 (d, J = 279.9 Hz), 56.8, 53.5 (q, J = 30.8 Hz), 44.2, 36.3, 26.3, 22.3. 19 F NMR (CDCl₃, 376 MHz): δ = -74.2. IR (KBr): ν = 3244, 2967, 2928, 1712, 1473, 1365, 1281, 1222, 1168, 1125, 1061 cm $^{-1}$. HRMS [M+Na $^{+}$]: calcd for C₁₂H₂₂O₂SNF₃Na: 324.1216, found: 324.1209.

3. Reaction of large scale application study

Into an oven-dried round-bottom flask flushed with N_2 were taken acetophenone (8.5 mmol) and anhydrous THF (20.0 mL). The reaction flask was cooled to -78 °C and LDA (2 M in THF, 4.7 mL) was added dropwise with stirring. After 45 min at -78 °C, sulfinylimine 1 (5 mmol) dissolved in anhydrous THF (10.0 mL) was added dropwise. Stirring was continued at -78 °C for 2.5 h, then the reaction was quenched with saturated NH₄Cl (10.0 mL), followed by H₂O (15.0 mL) and the mixture was brought to room temperature. The organic layer was taken and the aqueous layer was extracted with EtOAc (2 × 30 mL). The combined organic layers were dried with anhydrous Na₂SO₄, filtered and the solvent was removed to give the crude product, which was purified by column chromatography (hexane/EtOAc, 4:1).

4. X-ray crystallography for 3a

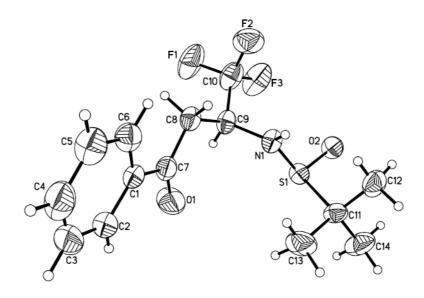
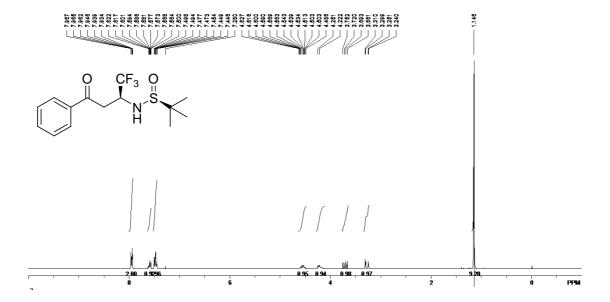


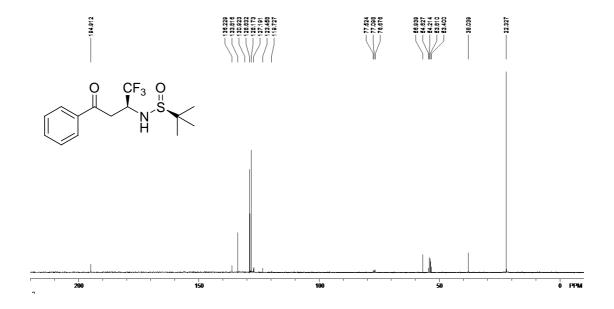
Figure 1 ORTEP structure of compound 3a. (CCDC number 787957)

5. Conversion of 3a affording free β-amino ketone 4

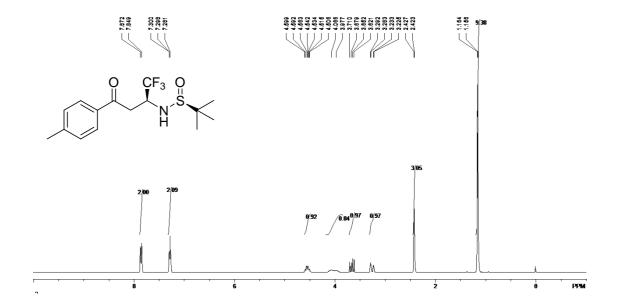
3a (0.5 mmol) and MeOH (5.0 mL) were placed in a 25 mL round-bottom flask and aq HCl (36%, 1 mL) was added. The reaction was stirred at r.t. for 8 h, during which time the cleavage was monitored by TLC. Volatiles were removed under reduced pressure. The residue was dissolved in CH_2Cl_2 (10.0 mL) and Et_3N (15 mmol) was added. The reaction was stirred at r.t. for 1 h then H_2O (10.0 mL) was added. The organic layer was taken, washed with H_2O (2 × 10 mL), dried with anhydrous Na_2SO_4 , filtered and the solvent was removed to give the crude product, which was purified by TLC plate (hexane/EtOAc, 2:1).

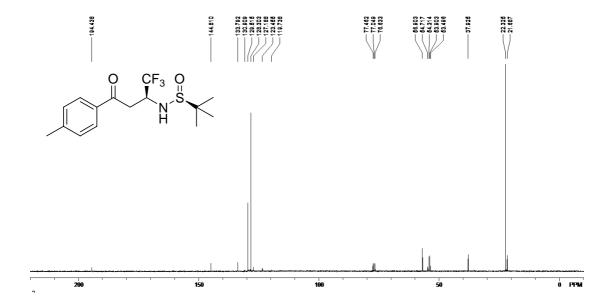

(*S*)-3-amino-4,4,4-trifluoro-1-phenylbutan-1-one (4)¹: white solid, yield 90%, mp 31-32 °C, $[\alpha]_D^{25}$ -57.2 (c = 0.25, CHCl₃). ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.97-8.00$ (m, 2 H), 7.60-7.66 (m, 1 H), 7.49-7.54 (m, 2 H), 3.98-4.10 (m, 1 H), 3.38 (dd, J = 2.7, 17.7 Hz, 1 H), 3.25 (dd, J = 9.6, 17.1 Hz, 1 H), 1.66 (s, 2 H). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 196.2$, 136.3, 133.8, 128.8, 128.1, 124.6 (q, J = 278.8 Hz), 50.0 (q, J = 29.6 Hz), 39.3 (q, J = 1.4 Hz). ¹⁹F NMR (CDCl₃, 376 MHz): $\delta = -78.3$. IR (KBr): $\delta = 3391$, 3332, 2937, 1684, 1596, 1333, 1257, 1221, 1177, 1106, 754, 687 cm⁻¹. HRMS [M+H⁺]: calcd for C₁₀H₁₁ONF₃: 218.0787, found: 218.0796.

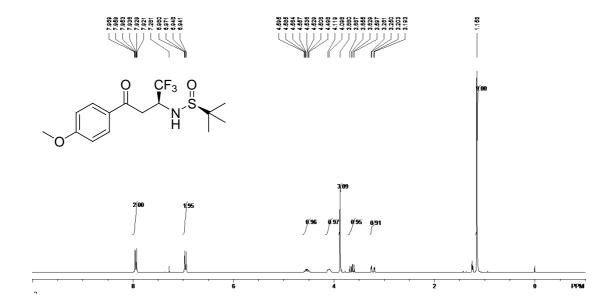
Reference

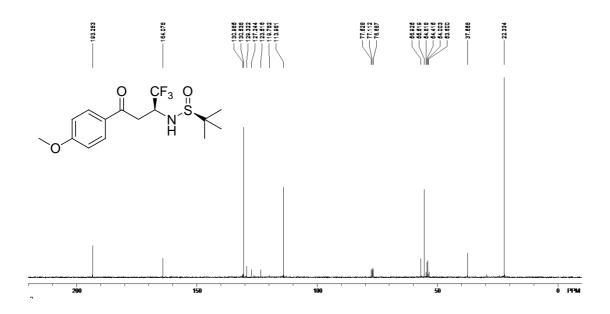

1 F. Huguenot and T. Brigaud, J. Org. Chem., 2006, 71, 2159–2162.

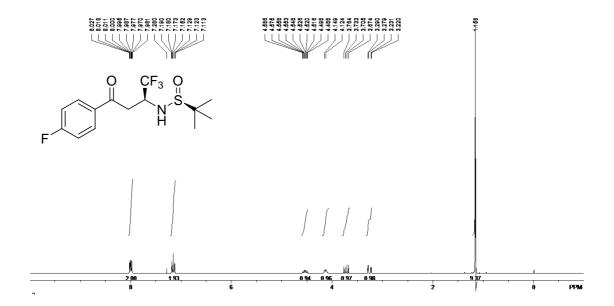
6. ¹H and ¹³C NMR spectra for compound 3 and 4

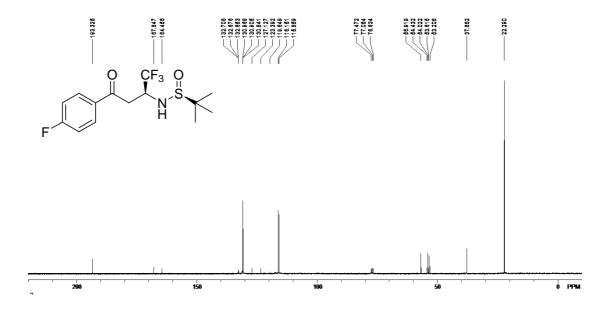

¹H NMR of **3a**


¹³C NMR of **3a**

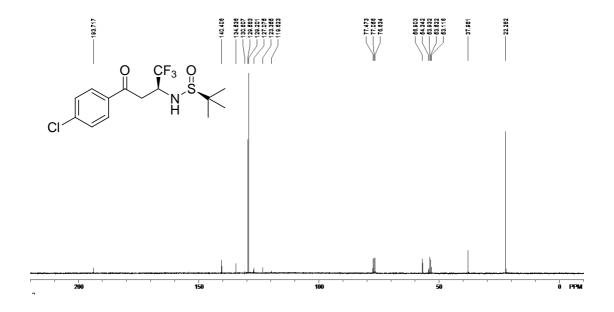

¹H NMR of **3b**

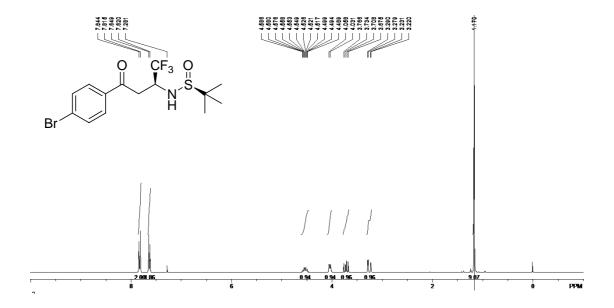

¹³C NMR of **3b**

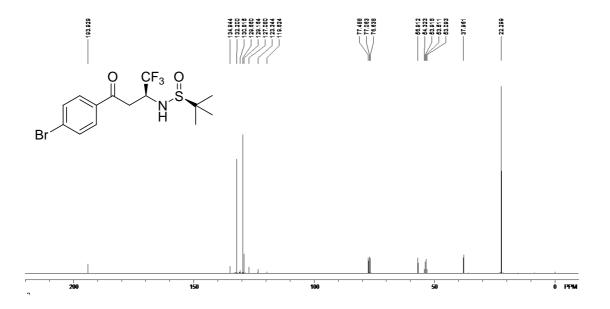

¹H NMR of **3c**

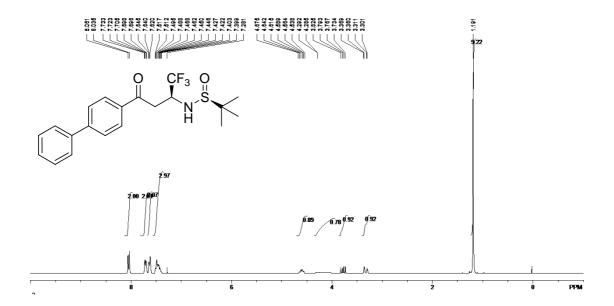

13 C NMR of 3c

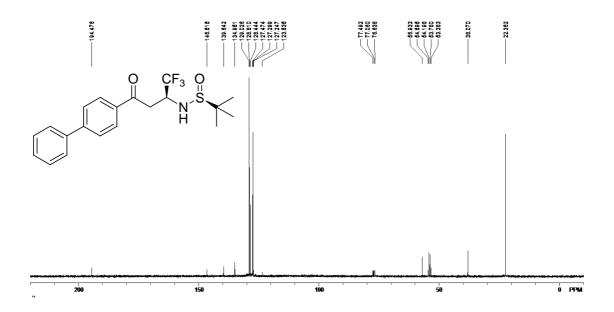
¹H NMR of **3d**

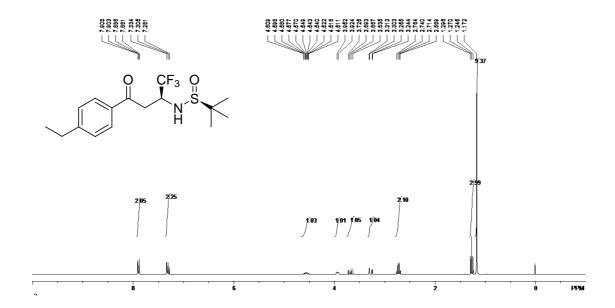

¹³C NMR of **3d**

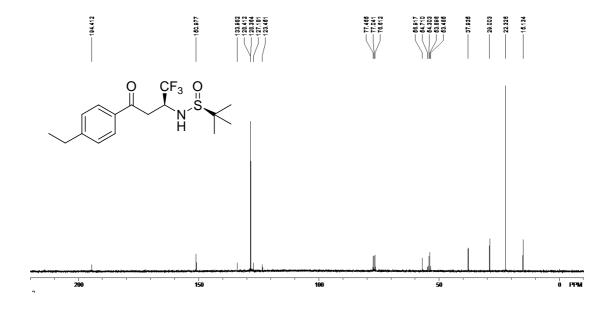

¹H NMR of **3e**

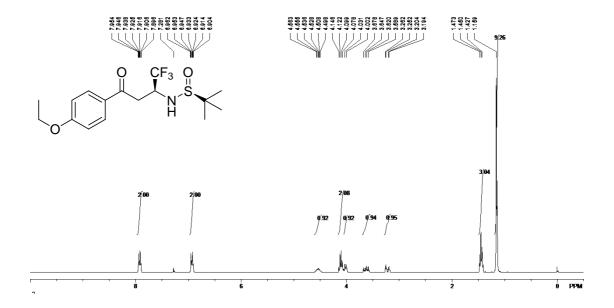

¹³C NMR of **3e**

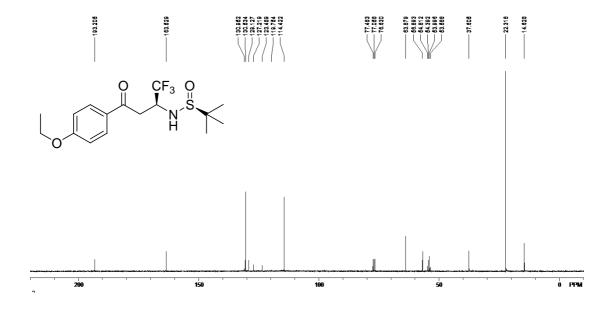

¹H NMR of **3f**

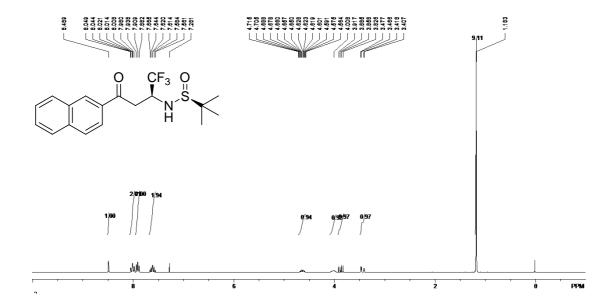

¹³C NMR of **3f**

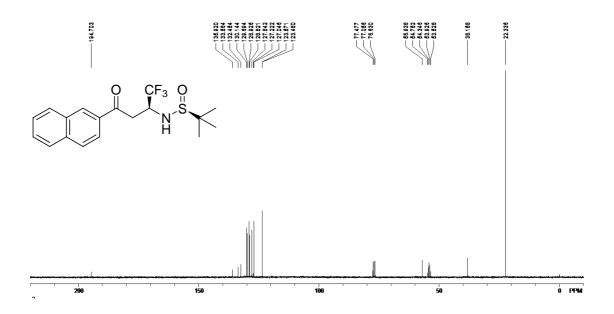

¹H NMR of **3g**

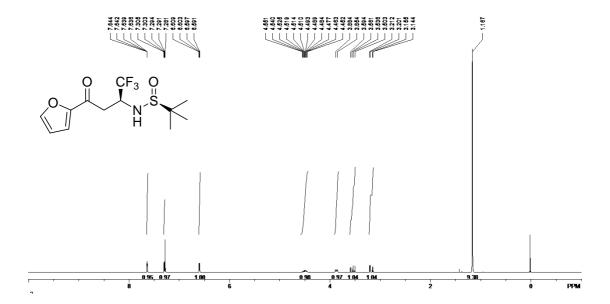

¹³C NMR of **3g**

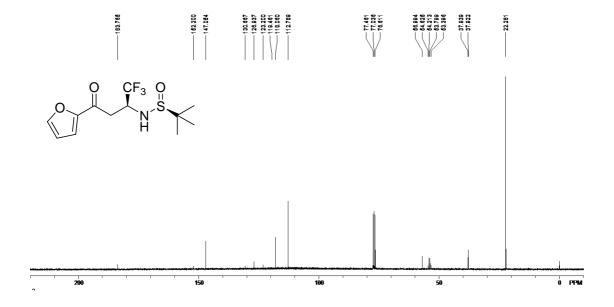

¹H NMR of **3h**

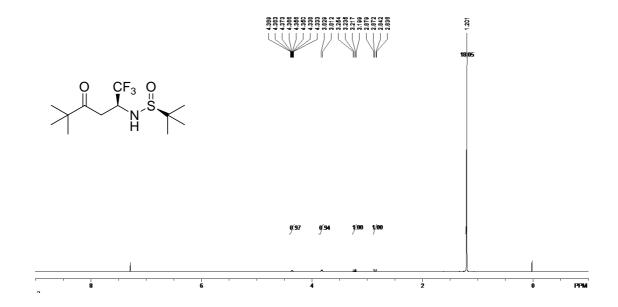

¹³C NMR of **3h**

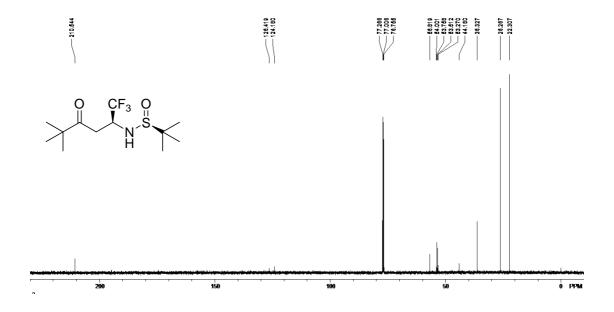

¹H NMR of **3i**

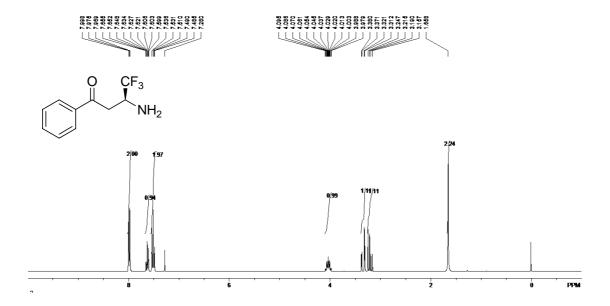

¹³C NMR of **3i**

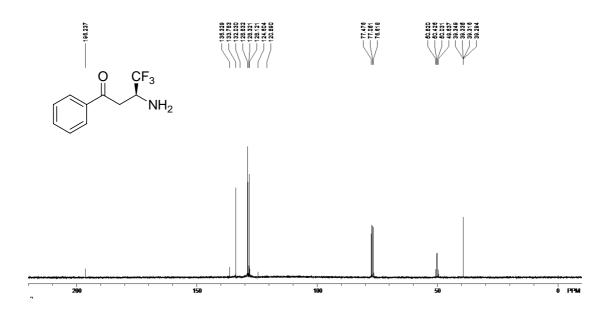

¹H NMR of **3j**


¹³C NMR of **3j**


¹H NMR of **3k**


13 C NMR of 3k


¹H NMR of **31**


¹³C NMR of **31**

¹H NMR of **4**

¹³C NMR of 4

