Stereoselective palladium-catalyzed allylic alkylations of peptide amide enolates

Swarup Datta and Uli Kazmaier*

Institut für Organische Chemie, Universität des Saarlandes, D-66123 Saarbrücken, Germany. Fax: +49 681 302 2409; Tel: +49 681 302 3409; E-mail: u.kazmaier@mx.uni-saarland.de

Supplementary Information

Table of Content

General Remarks	S2
Experimental procedures and analytical Data of Compounds 1 to 16	S2-S14
¹ H and ¹³ C spectra of compounds 1 to 16	S15-S61

General remarks

All reactions were carried out in oven-dried glassware (70 °C) under an atmosphere of nitrogen. THF and Et₂O were dried with sodium and benzophenone and distilled before use. Dichloromethane was dried over CaH₂ and distilled before use. The products were purified by column chromatography on silica gel columns (Macherey-Nagel 60, 0.063-0.2 mm). Mixtures of ethyl acetate and hexanes were generally used as eluents. Analytical TLC was performed on precoated silica gel plates (Macherey-Nagel, Polygram® SIL G/UV254). Visualization was accomplished with UV-light, KMnO₄ solution or Iodine. ¹H and ¹³C NMR spectra were recorded with a Bruker AC-400 [400 MHz (¹H) and 100 MHz (¹³C)] spectrometer in CDCl₃. Compound which shows mixture of rotamers at room temperature were recorded with Brucker DRX-500 [500 Mz (¹H) and 125 MHz (¹³C)] spectrometer at 80 °C (353 K) in DMSO-d₆. Mass spectra were recorded with a Finnigan MAT 95 spectrometer using the CI technique. Elemental analyses were performed at the Saarland University.

Experimental procedures and analytical data:

Benzyl 2-oxo-2-(piperidin-1-yl)ethylcarbamate (1). TBTU (2.76 g, 8.7 mmol) was added to a solution of Z-glycine (1.50 g, 7.2 mmol) in dichloromethane (15 mL) at 0 °C. To this solution diisopropylethylamine (3.6 mL, 21.5 mmol) was slowly added at 0 °C and stirred for 15 min before piperidine (0.85 mL, 8.6 mmol) was added at 0 °C. After stirring for 10 min the cooling bath was removed and stirred for overnight at room temperature. Water (10 mL) was added to the reaction mixture, the aqueous layer was extracted twice with dichloromethane and the combined organic layer were successively washed with 1M KHSO₄, saturated NaHCO₃ solution and water. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (hexanes/EtOAc 85 : 15) to give **1** in 72% yield (1.42 mg, 5.2 mmol) as white solid. m.p. 105-107 °C; ¹H-NMR (400 MHz, CDCl₃): δ 7.35-7.29 (m, 5H), 5.87 (bs, 1H), 5.11 (s, 2H), 3.99 (d, *J* = 4.4 Hz, 1H), 3.54 (t, *J* = 5.2 Hz, 2H), 3.29 (t, *J* = 5.2 Hz, 2H), 1.64-1.61 (m, 2H), 1.56-1.51 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): δ 165.8, 156.1, 136.4, 128.4 (2 C), 128.0, 127.9 (2 C), 66.6, 45.3, 43.1, 42.5, 26.1, 25.3, 24.3. HRMS (CI) *m/z* calcd for C₁₅H₂₁N₂O₃ [M+H]⁺ 277.1552. Found 277.1523. Elemental analysis calcd (%) for C₁₅H₂₀N₂O₃: C 65.20, H 7.30, N 10.15 and found: C 65.29, H 6.88, N 10.08.

Benzyl 1-oxo-1-(piperidin-1-yl)propan-2-ylcarbamate (2). According to the general procedure for methylation of dipeptides (see main text) **2** (102 mg, 0.35 mmol, 98%) was obtained from **1** (100 mg, 0.36 mmol) as a white foam after column chromatography (hexanes/EtOAc 85 : 15). ¹H-NMR (400 MHz, CDCl₃): δ 7.35-7.28 (m, 5H), 5.92 (d, *J* = 6.8 Hz, 1H), 5.09 (s, 2H), 4.65 (quin, *J* = 6.8 Hz, 1H), 3.62-3.39 (m, 4H), 1.66-1.54 (m, 6H), 1.32 (d, *J* = 6.8 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 170.3, 155.4, 136.4, 128.3 (2 C), 127.9, 127.8 (2 C), 66.4, 46.6, 46.3, 43.1, 26.2, 25.3, 24.3, 19.3. HRMS (CI) *m*/*z* calcd for C₁₆H₂₃N₂O₃ [M+H]⁺ 291.1709. Found 291.1703. Elemental analysis calcd (%) for C₁₆H₂₂N₂O₃: C 66.18, H 7.64, N 9.65 and found: C 65.69, H 7.28, N 9.37.

Benzyl 3-ethyl-3-hydroxy-1-oxo-1-(piperidin-1-yl)pentan-2-ylcarbamate (3). According to the general procedure for aldol reactions of dipeptides (see main text) **3** (123.8 mg, 0.34 mmol, 95%) was obtained from **1** (100 mg, 0.36 mmol) as a white foam after column chromatography (hexanes/EtOAc 9 : 1). ¹H-NMR (400 MHz, CDCl₃): δ 7.37-7.30 (m, 5H), 5.74 (d, *J* = 9.6 Hz, 1H), 5.12 (d, *J* = 12.0 Hz, 1H), 5.08 (d, *J* = 12.0 Hz, 1H), 4.62 (d, *J* = 9.6 Hz, 1H), 3.73-3.49 (m, 4H), 1.68-1.37 (m, 10H), 0.88 (t, *J* = 7.6 Hz, 3H), 0.83 (t, *J* = 7.6 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 171.1, 156.1, 136.2, 128.3 (2 C), 127.9, 127.8 (2 C), 76.3, 66.9, 50.9, 47.4, 42.9, 27.8, 26.6, 25.5, 24.3, 7.5, 7.4. HRMS (CI) *m/z* calcd for C₂₀H₃₁N₂O₄ [M+H]⁺ 363.2284. Found 363.2268.

Benzyl (15,25)-1-[2-oxo-2-(piperidin-1-yl)ethylcarbamoyl]-2-methylbutylcarbamate (4a). Pd/C (300 mg, 10% w/w)) was dried in *vacuo* before MeOH (3 mL) was added. The vessel was purged with H_2 and charged with a solution of 1 (3.0 g, 10.8 mmol) in MeOH (30 mL). The reaction mixture was stirred overnight under H_2 atmosphere. The solution was filtered through a plug of celite and concentrated to afford 2-amino-1-(piperidin-1-yl)ethanone (1.44 g, 10.1 mmol, 93%) as a viscous oil.

TBTU (3.24 g, 10.1 mmol) was added to a solution of Cbz-L-Isoleucine (2.23 g, 8.4 mmol) in dichloromethane (10 mL) at 0 °C. To this solution diisopropylethylamine (4.3 mL, 25.2 mmol) was slowly added at 0 °C and stirred for 15 min before 2-amino-1-(piperidin-1-yl)ethanone (1.44 g, 10.1 mmol) in dichloromethane (7 mL) was added at 0 °C. After stirring for 10 min the cooling bath was removed and the mixture was stirred overnight at room temperature. Water (10 mL) was added to the reaction mixture and the aqueous layer was extracted twice with dichloromethane. The combined organic layers were washed with 1M KHSO₄, saturated NaHCO₃ solution and water. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (hexanes/EtOAc 4 : 1) to give 4a in 73% yield (2.38 g, 6.1 mmol) as white solid. $[\alpha]_{D}^{20} = -3.0^{\circ}$ (c = 1.0, CHCl₃);m.p. 127-129 °C. ¹H-NMR (400 MHz, CDCl₃): δ 7.34-7.27 (m, 5H), 7.05 (bs, 1H), 5.52 (d, J = 8.4 Hz, 1H), 5.12 (d, J = 12.0 Hz, 1H), 5.06 (d, J = 12.0 Hz, 1H), 4.18-4.15 (m, 1H), 4.03-4.01 (m, 2H), 3.55 (t, J = 5.6 Hz, 2H), 3.29 (t, J = 5.6 Hz, 2H), 1.96-1.81 (m, 1H), 1.66-1.62 (m, 2H), 1.55-1.44 (m, 5H), 1.17-1.09 (m, 1H), 0.93-0.87 (m, 6H).¹³C-NMR (100 MHz, CDCl₃): δ 170.9, 165.6, 156.1, 136.3, 128.4 (2 C), 128.0, 127.9 (2 C), 66.8, 59.5, 45.3, 43.1, 41.1, 37.7, 26.1, 25.3, 24.7, 24.2, 15.4, 11.4. HRMS (CI) m/z calcd for $C_{21}H_{32}N_3O_4$ [M+H]⁺ 390.2393. Found 390.2394. Elemental analysis calcd (%) for C₂₁H₃₁N₃O₄: C 64.76, H 8.02, N 10.79. Found C 64.61 H 7.69, N 10.82.

(2S,3S)-2-(2,2,2-Trifluoroacetamido)-3-methyl-N-[2-oxo-2-(piperidin-1-yl)ethyl]pentanamide

(4b). Pd/C (70 mg, 10% w/w)) was dried in *vacuo* before MeOH (2 mL) was added. The vessel was purged with H_2 and charged with a solution of 4a (0.70 g, 1.8 mmol) in MeOH (30 mL). The reaction mixture was stirred overnight under H_2 atmosphere. The solution was filtered through a plug of celite and concentrated to afford afford (2*S*,3*S*)-2-amino-3-methyl-*N*-(2-oxo-2-(piperidin-1-yl)ethyl)pentanamide (0.42 g, 1.64 mmol, 91%) as a viscous oil.

Triethylamine (0.3 mL, 2.3 mmol) was added to a solution of (2S,3S)-2-amino-3-methyl-N-[2-oxo-2-(piperidin-1-yl)ethyl]pentanamide (300 mg, 1.2 mmol) in methanol and the reaction mixture was cooled to 0 ° C before trifloroacetic acid ethyl ester (0.27 ml, 2.3 mmol) was slowly added. The ice bath was removed and the reaction mixture was stirred for 6h. Methanol was removed under reduced pressure and the crude product was dissolved in ethyl acetate before the addition of 1M KHSO₄. The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with water, dried over Na₂SO₄. The solvent was removed in vacuo and the crude product was purified by flash chromatography (hexanes/EtOAc 7 : 3) to afford 4b (0.37 g, 1.07 mmol, 91%) as a white solid. $[\alpha]_D^{20} = -0.7^{\circ}$ (c = 1.0, CHCl₃); m.p. 205-207 °C. ¹H-NMR (400 MHz, CDCl₃): δ 7.23 (bs, 1H), 7.04 (bs, 1H), 4.47 (dd, J = 8.4 Hz, J = 6.0 Hz, 1H), 4.10 (dd, J = 17.2 Hz, J = 4.0Hz, 1H), 4.04 (dd, J = 17.2 Hz, J = 3.6 Hz, 1H), 3.60-3.56 (m, 2H), 3.35-3.32 (m, 2H), 1.94-1.86 (m, 1H), 1.70-1.49 (m, 7H), 1.25-1.15 (m, 1H), 0.95-0.92 (m, 6H) ¹³C-NMR (100 MHz, CDCl₃): δ 169.7, 165.4, 156.8 (q, ²J_{C,F} = 36.9 Hz), 115.8 (q, ¹J_{C,F} = 286.0 Hz), 57.6, 45.4, 43.1, 41.4, 37.9, 26.0, 25.3, 24.8, 24.2, 15.1, 11.1. HRMS (CI) *m/z* calcd for C₁₅H₂₅F₃N₃O₃ [M+H]⁺ 352.1848. Found 352.1852. Elemental analysis calcd (%) for C₁₅H₂₄F₃N₃O₃: C 51.27, H 6.28, N 11.96. Found: C 51.93 H 6.54, N 11.67.

Benzyl (1*S*,2*S*)-1-[1-oxo-1-(piperidin-1-yl)propan-2-ylcarbamoyl]-2-methylbutylcarbamate (5a). According to the general procedure for methylation of dipeptides (see main text) 5a (93.1 mg, 0.23 mmol, 90%) was obtained from 4a (100 mg, 0.26 mmol) as a mixture of two diastereomers after column chromatography (hexanes/EtOAc 4 : 1). HPLC (Silicagel, hexanes/EtOAc 50 : 50,

1mL/min, 260 nm): t_R (60%) = 12.02 min, t_R (40%) = 14.05 min. Major diastereomer: ¹H-NMR (400 MHz, CDCl₃): δ 7.32-7.27 (m, 5H), 7.20 (d, J = 6.4 Hz, 1H), 5.59 (d, J = 8.8 Hz, 1H), 5.09 (d, J = 12.0 Hz, 1H), 5.05 (d, J = 12.0 Hz, 1H), 4.88-4.80 (m, 1H), 4.13-4.08 (m, 1H), 3.57-3.47 (m, 2H), 3.42-3.34 (m, 2H), 1.92-1.77 (m, 1H), 1.64-1.44 (m, 7H), 1.28 (d, J = 6.4 Hz, 3H), 1.65-1.06 (m, 1H), 0.92-0.87 (m, 6H). ¹³C-NMR (100 MHz, CDCl₃): δ 170.0, 169.9, 156.0, 136.3, 128.3 (2 C), 127.9, 127.9 (2 C), 66.7, 59.3, 46.2, 45.1, 43.1, 37.9, 26.2, 25.3, 24.7, 24.3, 18.7, 15.3, 11.3. Minor diastereomer (selected peaks): ¹H-NMR (400 MHz, CDCl₃): δ 5.60 (d, J = 8.8 Hz, 1H), 5.10 (d, J = 12.0 Hz, 1H), 5.04 (d, J = 12.0 Hz, 1H). ¹³C-NMR (400 MHz, CDCl₃): δ 170.2, 169.9,156.1, 66.7, 59.5, 46.3, 45.2, 37.7, 26.3, 24.5, 18.8, 15.4, 11.4. HRMS (CI) *m/z* calcd for C₂₂H₃₄N₃O₄ [M+H]⁺ 404.2549. Found 404.2549. Elemental analysis calcd (%) for C₁₅H₂₄F₃N₃O₃: C 51.27, H 6.28, N 11.96. Found: C 51.93 H 6.54, N 11.67.

(2*S*,3*S*)-2-(2,2,2-Trifluoroacetamido)-3-methyl-N-[1-oxo-1-(piperidin-1-yl)propan-2-yl]pentanamide (5b). According to the general procedure for methylation of dipeptides (see main text) 5b (85.2 mg, 0.23 mmol, 90%) was obtained from 4b (100 mg, 0.28 mmol) as a mixture of two diastereomers after column chromatography (hexanes/EtOAc 7 : 3). Peaks of two diastereomers are overlapped; ¹H-NMR (400 MHz, CDCl₃) (two diastereomers): δ 7.68 (d, *J* = 8.8 Hz, 1H), 7.64 (d, *J* = 7.2 Hz, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.56 (d, *J* = 6.8 Hz, 1H), 4.96-4.86 (m, 1H), 4.51-4.43 (m, 1H), 3.61-3.51 (m, 2H), 3.46-3.40 (m, 2H), 1.93-1.83 (m, 1H), 1.67-1.49 (m, 7H), 1.32 (d, *J* = 6.4 Hz, 3H), 1.30 (d, *J* = 6.8 Hz, 3H), 1.18-1.11 (m, 1H), 0.94-0.85 (m, 6H). ¹³C-NMR (100 MHz, CDCl₃), diastereomer 1 : δ 169.7, 168.7, 156.8 (q, *J* = 37.1 Hz), 115.8 (q, *J* = 286.0 Hz), 57.6, 46.4, 45.6, 43.4, 38.0, 26.2, 25.3, 24.9, 24.2, 18.6, 14.9, 11.2; diastereomer 2: δ 169.7, 168.9, 156.8 (q, ²*J*_{C,F} = 37.1 Hz), 115.8 (q, ¹*J*_{C,F} = 286.2 Hz), 57.8, 46.5, 45.3, 43.3, 37.8, 26.3, 25.4, 24.7, 24.3, 18.9, 15.1, 11.1. HRMS (CI) *m*/*z* calcd for C₁₆H₂₇F₃N₃O₃ [M+H]⁺ 336.2005. Found 336.1994.

Benzyl (1*S*,2*S*)-1-[3-ethyl-3-hydroxy-1-oxo-1-(piperidin-1-yl)pentan-2-ylcarbamoyl]-2-methylbutylcarbamate (6a). According to the general procedure for methylation of dipeptides (see main text) 6a (103.6 mg, 0.22 mmol, 85%) was obtained from 4a (100 mg, 0.26 mmol) as a mixture of two diastereomers after column chromatography (hexanes/EtOAc 85 : 15). HPLC (Silicagel, hexanes/EtOAc 80 : 20, 1mL/min): t_R (55%) = 21.80 min, t_R (45%) = 24.67 min. Peaks of two diastereomers are overlapped; ¹H-NMR (400 MHz, CDCl₃) (two diastereomers): δ 7.34-7.26 (m, 5H), 7.95 (d, *J* = 8.4 Hz, 1H), 5.48 (d, *J* = 9.2 Hz, 1H), 5.12-5.03 (m, 2H), 4.89 (d, *J* = 9.2 Hz, 1H), 4.20-4.13 (m, 1H), 3.76-3.36 (m, 4H), 1.91-1.78 (m, 1H), 1.69-1.36 (m, 11H), 1.13-1.05 (m, 1H), 0.94-0.76 (m, 12H). ¹³C-NMR (100 MHz, CDCl₃), major diastereomer: δ 170.7, 170.6, 156.1, 136.2, 128.4 (2 C), 128.0, 127.9 (2 C), 76.2, 66.9, 59.6, 49.2, 47.5, 43.1, 38.1, 27.8, 26.7, 25.7, 25.6, 24.3 (2 C), 15.4, 11.4, 7.4 (2 C). Minor diastereomer (selected peaks): δ 170.9, 170.6, 76.3, 59.3, 43.0, 37.9, 27.8, 26.6, 25.7, 25.6, 24.7, 24.3, 15.6, 11.4, 7.5,7.3. HRMS (CI) *m/z* calcd for C₂₆H₄₂N₃O₅ [M+H]⁺ 476.3124. Found 476.3109.

(2*S*,3*S*)-2-(2,2,2-Trifluoroacetamido)-N-(3-ethyl-3-hydroxy-1-oxo-1-(piperidin-1-yl)pentan-2-yl)-3-methylpentanamide (6b). According to the general procedure for aldol reactions of dipeptides (see main text) 6b (91.7 mg, 0.21 mmol, 85%) was obtained from 4b (100 mg, 0.28 mmol) as a mixture of two diastereomers after column chromatography (hexanes/EtOAc 7:3).White solid; m.p.149-151°C; Major diastereomer: ¹H-NMR (400 MHz, CDCl₃): δ 7.05 (d, *J* = 8.0 Hz, 1H), 6.67 (d, *J* = 9.2 Hz, 1H), 4.91 (d, *J* = 9.2 Hz, 1H), 4.63 (s, 1H), 4.43 (dd, *J* = 8.0 Hz, *J* = 4.8 Hz, 1H), 3.81-3.41 (m, 4H), 1.95-1.84 (m, 1H), 1.67-1.55 (m, 7H), 1.47-1.39 (m, 4H), 1.23-1.14 (m, 1H), 0.98-0.88 (m, 9H), 0.82 (d, *J* = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 170.2, 169.3, 156.7 (q, ²*J*_{C,F} = 37.2 Hz), 115.7 (q, ¹*J*_{C,F} = 286.1 Hz), 76.4, 57.7, 49.5, 47.5, 43.2, 38.5, 27.7, 26.6, 25.8, 25.5, 24.3, 24.2, 15.3, 11.2, 7.5, 7.2. Minor diastereomer (selected peaks): ¹H-NMR (400 MHz, CDCl₃): δ 7.09 (d, *J* = 8.4 Hz, 1H), 6.71 (d, *J* = 8.8 Hz, 1H), 4.88 (d, *J* = 8.0 Hz, 1H), 4.64 (s, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ 170.4, 169.5, 156.8 (q, ²*J*_{C,F} = 36.9 Hz), 76.3, 57.3, 43.0, 38.1,

27.8, 26.7, 25.7, 25.6, 24.3, 15.0, 11.1, 7.4, 7.3. HRMS (CI) m/z calcd for C₂₀H₃₅F₃N₃O₄ [M+H]⁺ 438.2580. Found 438.2509

General procedure for synthesis of dipeptide amides:

Scheme 1: Synthesis of dipeptide amides

Step 1: *N*-Methylmorpholine (11.8 mL, 107.6 mmol) was added to a solution of Z-glycine (15 g, 71.7 mmol) in THF (120 mL) at room temperature. The reaction mixture was cooled to -20 °C before ethylchloroformate (9.5 mL, 100.4 mmol) was slowly added and the solution was stirred for 10 min at -20 °C. To this reaction mixture 1,2,3,4-tetrahydroquinoline (9.9 mL, 78.8 mmol) was added and stirring was continued for 15 min at -20 °C before the cooling bath was removed and the mixture was stirred overnight at room temperature. H₂O (50 mL) was added and the aqueous layer was extracted three times with ethyl acetate (3 x 25 mL). The combined organic layers were washed with 1M HCl, saturated Na₂HCO₃ solution and H₂O. The solvent was dried over Na₂SO₄, evaporated in vacuo and the crude product was purified by column chromatography (hexane/EtOAc 4 : 1) to afford benzyl 2-(3,4-dihydroquinolin-1(2*H*)-yl)-2-oxoethylcarbamate (**S-1**) in 79% yield (18.3 g, 56.6 mmol).

Step 2: Pd/C (1.83 g, 10% w/w) was dried in vacuo before MeOH (7 mL) was added. This vessel was purged with H₂ and charged with a solution of **S-1** (18.3 g, 56.6 mmol) in MeOH (150 mL). The reaction mixture was stirred overnight under H₂ atmosphere. The solution was filtered through a plug of celite, and concentrated to afford 2-amino-1-(3,4-dihydroquinolin-1(2*H*)-yl)ethanone (**S-2**) (10.7 g, 51.5 mmol, 91%) as a viscous oil.

Step 3: TBTU (1.15 g, 3.6 mmol) was added to a solution of Z-protected amino acid (3.0 mmol) in dichloromethane (10 mL) at 0 °C. To this solution diisopropylethylamine (1.5 mL, 9.0 mmol) was slowly added at 0 °C and the mixture was stirred for 15 min before 2-amino-1-(3,4-dihydroquinolin-1(2H)-yl)ethanone (S-2) (0.68 g, 3.6 mmol) in dichloromethane (5 mL) was added at 0 °C. After stirring for 10 min the cooling bath was removed and the mixture was stirred overnight at room temperature. H₂O (10 mL) was added to the reaction mixture, the aqueous layer was extracted twice with dichloromethane and the combined organic layers were successively washed with 1M KHSO₄, saturated NaHCO₃ solution and water. The solvent was removed under reduced pressure and the crude product was purified by column chromatography to give Z-protected dipeptide amide S-3.

Step 4: Pd/C (100 mg, 10% w/w) was dried in vacuo before MeOH (2 mL) was added. This vessel was purged with H_2 and charged with a solution of S-3 (1.0 g) in MeOH (7 mL). The reaction mixture was stirred overnight under H_2 atmosphere. The solution was filtered through a plug of celite, and concentrated to afford S-4.

Step 5: Triethylamine (3.0 mmol) was added to a solution of **S-4** (1.5 mmol) in MeOH (7mL) and the reaction mixture was cooled 0 ° C before trifloroacetic acid ethyl ester (3.0 mmol) was slowly added. The ice bath was removed and the reaction mixture was stirred for 6h. The methanol was removed under reduced pressure and the crude product was dissolved in ethyl acetate before the addition of 1M KHSO₄. The aqueous layer was extracted twice with ethyl acetate and the combined organic layers were washed with water and dried over Na₂SO₄. The solvent was removed in vacuo and the crude product was purified by flash chromatography to afford TFA-protected dipeptide amide **S-5**.

Benzyl (1*S*,2*S*)-1-[2-(3,4-dihydroquinolin-1(2*H*)-yl)-2-oxoethylcarbamoyl]-2-methylbutylcarbamate (7a). Following the general procedure for the synthesis of dipeptide amides (scheme 1, step 3) 7a (1.0 g, 2.28 mmol, 76%) was obtained from Z-L-Isoleucine (0.79 g, 3.0 mmol) as a white solid after column chromatography (hexanes/EtOAc 4 : 1). $[\alpha]_D^{20} = -8.7^\circ$ (c = 1.0, CHCl₃): m.p. 123-125 °C; ¹H-NMR (500 MHz, DMSO-d₆, 353K): § 7.77 (bs, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.35-7.34 (m, 4H), 7.31-7.27 (m, 1H), 7.19-7.16 (m, 2H), 7.11 (td, *J* = 7.5 Hz, *J* = 1.0 Hz, 1H), 6.84 (bs, 1H), 5.07 (d, *J* = 13.0 Hz, 1H), 5.04 (d, *J* = 13.0 Hz, 1H), 4.11 (dd, *J* = 16.5 Hz, *J* = 5.5 Hz, 1H), 4.05 (dd, *J* = 16.5 Hz, *J* = 5.0 Hz, 1H), 3.98 (dd, *J* = 8.5 Hz, *J* = 7.0 Hz, 1H), 3.70 (t, *J* = 6.5 Hz, 2H), 2.72 (t, *J* = 6.5 Hz, 2H), 1.91 (quin, *J* = 6.5 Hz, 2H), 1.83-1.75 (m, 1H), 1.52-1.44 (m, 1H), 1.20-1.11 (m, 1H), 0.88 (d, *J* = 7.0 Hz, 3H), 0.84 (t, *J* = 7.5 Hz, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): § 170.6, 167.4, 155.3, 137.8, 136.6, 131.7, 127.9, 127.6 (2 C), 127.0, 126.9 (2 C), 125.2, 124.2, 123.6, 65.0, 59.0, 42.6, 41.1, 36.2, 25.6, 23.9, 22.8, 14.8, 10.3. HRMS (CI) *m/z* calcd for C₂₅H₃₂N₃O₄ [M+H]⁺ 338.2393. Found 338.2402

(2S,3S)-2-(2,2,2-Trifluoroacetamido)-N-[2-(3,4-dihydroquinolin-1(2H)-yl)-2-oxoethyl]-3-

methylpentanamide (7b). Following the general procedure for the synthesis of dipeptide amides (scheme 1, step 4 and step 5) **7b** (0.75 g, 1.87 mmol) was obtained from **7a** (1.0 g, 2.28 mmol) as a white solid in 82% yield over two steps after column chromatography (hexane/EtOAc 7 : 3). $[\alpha]_D^{20}$ = -5.1° (c = 1.0, CHCl₃); m.p. 152-154 °C; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 8.98 (bs, 1H), 8.05 (bs, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.19-7.16 (m, 2H), 7.10 (td, *J* = 7.5 Hz, *J* = 1.0 Hz, 1H), 4.29 (d, *J* = 7.5 Hz, 1H), 4.14 (dd, *J* = 16.5 Hz, *J* = 5.5 Hz, 1H), 4.08 (dd, *J* = 16.5 Hz, *J* = 5.5 Hz, 1H), 3.70 (td, *J* = 6.0 Hz, *J* = 1.5 Hz, 1H), 2.72 (t, *J* = 6.5 Hz, 2H), 1.97-1.89 (m, 3H), 1.52-1.44 (m, 1H), 1.21-1.12 (m, 1H), 0.92 (d, *J* = 6.5 Hz, 3H), 0.85 (t, *J* = 7.5 Hz, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 169.0, 167.2, 155.7 (q, ²*J*_{C-F} = 36.2), 137.8, 131.7, 127.9, 125.2, 124.3, 123.6, 115.4 (q, ¹*J*_{C-F} = 286.3), 57.3, 42.6, 41.2, 35.4, 25.6, 23.9, 22.8, 14.5, 9.8. HRMS (CI) *m/z* calcd for C₁₉H₂₅F₃N₃O₃ [M+H]⁺ 400.1848. Found 400.1853

Benzyl (S)-1-(2-(3,4-dihydroquinolin-1(2*H*)-yl)-2-oxoethylcarbamoyl)-2 phenylethylcarbamate (8a). Following the general procedure for the synthesis of dipeptide amides (scheme 1, step 3) 8a (1.0 g, 2.13 mmol, 71%) was obtained from Z-L-Phenylalanine (0.79 g, 3.0 mmol) as a white solid after column chromatography (hexanes/EtOAc 4 : 1). $[\alpha]_D^{20} = -9.8^{\circ}$ (c = 1.0, CHCl₃); m.p. 120-122 °C; ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 7.85 (bs, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.29-7.19 (m, 9H), 7.17-7.14 (m, 3H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.03 (bs, 1H), 4.96 (d, *J* = 16.5 Hz, 1H), 4.93 (d, *J* = 16.5 Hz, 1H), 4.34-4.29 (m, 1H), 4.09 (dd, *J* = 16.5 Hz, *J* = 5.5 Hz, 1H), 4.05 (dd, *J* = 16.5 Hz, *J* = 5.5 Hz, 1H), 3.69-3.66 (m, 2H), 3.05 (dd, *J* = 14.0 Hz, *J* = 4.5 Hz, 1H), 2.80 (dd, *J* = 14.0 Hz, *J* = 10.0 Hz, 1H), 2.69 (t, *J* = 6.5 Hz, 2H), 1.87 (quintet, *J* = 6.5 Hz, 2H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 170.8, 167.4, 155.1, 137.7, 137.5, 136.5, 131.7, 128.5 (2 C), 127.9, 127.6, 127.4 (2 C), 126.9 (2 C), 126.7 (2 C), 125.6, 125.2, 124.3, 123.6, 64.9, 55.7, 42.7, 41.4, 37.1, 25.6, 22.8. HRMS (CI) *m*/*z* calcd for C₂₈H₃₀N₃O₄ [M+H]⁺: 472.2236. Found 472.2258. Elemental analysis calcd (%) for C₂₈H₂₉N₃O₄: C 71.32, H 6.20, N 8.91. Found: C 71.18, H 6.16, N 8.94.

(S)-2-(2,2,2-Trifluoroacetamido)-N-[2-(3,4-dihydroquinolin-1(2H)-yl)-2-oxoethyl]-3-phenyl-propanamide (8b). Following the general procedure for the synthesis of dipeptide amides (scheme

1, step 4 and step 5) **8b** (0.78 g, 1.80 mmol) was obtained from **8a** (1.0 g, 2.28 mmol) as a white solid in 79% yield over two steps after column chromatography (hexane/EtOAc 7 : 3). $[\alpha]_D^{20} = +15.5^\circ$ (c = 1.0, CHCl₃); m.p. 124-126 °C; ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 9.23 (d, J = 6.0 Hz, 1H), 8.14 (bs, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.29-7.24 (m, 4H), 7.21-7.17 (m, 3H), 7.11 (t, J = 7.0 Hz, 1H), 4.70-4.66 (m, 1H), 4.15 (dd, J = 16.5 Hz, J = 5.0 Hz, 1H), 4.11 (dd, J = 16.5 Hz, J = 5.0 Hz, 1H), 3.76-3.67 (m, 2H), 3.18 (dd, J = 14.0 Hz, J = 4.5 Hz, 1H), 2.98 (dd, J = 14.0 Hz, J = 10.0 Hz, 1H), 2.73 (t, J = 6.5 Hz, 2H), 1.93 (quintet, J = 6.5 Hz, 2H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 169.1, 167.3, 155.6 (q, ² $_{JC,F} = 36.5$ Hz), 137.8, 136.8, 131.7, 128.4 (2 C), 127.9, 127.4 (2 C), 125.8, 125.2, 124.3, 123.6, 115.1 (q, ¹ $_{JC,F} = 286.6$ Hz), 54.2, 42.7, 41.4, 36.3, 25.7, 22.8. HRMS (CI) *m*/*z* calcd for C₂₂H₂₃F₃N₃O₃ [M+H]⁺: 434.1692. Found 434.1615. Elemental analysis calcd (%) for C₂₂H₂₂F₃N₃O₃: C 60.96, H 5.12, N 9.69. Found: C 61.13, H 5.06, N 9.47.

tert-Butyl (*S*)-1-[2-(3,4-dihydroquinolin-1(2*H*)-yl)-2-oxoethylcarbamoyl]-2-phenylethylcarbamate (8c). Following the general procedure for the synthesis of dipeptide amides (scheme 1, step 4) S-4 (R=Bn) was obtained from 8a (1.0 g, 2.28 mmol) as a viscous oil in 92% yield (0.71 g, 2.1 mmol).

Triethylamine (0.6 mL, 4.2 mmol) was added to a THF solution (7mL) of S-4 (0.71 g, 2.1 mmol) and the reaction mixture was cooled 0 ° C before di-tert-butyl dicarbonate (687 mg, 3.1 mmol) was slowly added. The ice bath was removed and the reaction mixture was stirred overnight. A 1M KHSO₄ was added and the aqueous layer was extracted twice with ethyl acetate and the combined organic layers were washed with water and dried over Na₂SO₄. The solvent was removed in vacuo and the crude product was purified by flash chromatography (hexane/EtOAc 85 : 15) to afford 8c (0.735 g, 1.7 mmol, 80%) as a white solid. $[\alpha]_D^{20} = -12.3^\circ$ (c = 1.0, CHCl₃); m.p. 149-151 °C; ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 7.77 (bs, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.25-7.24 (m, 4H), 7.20-7.17 (m, 3H), 7.11 (dt, J = 7.5 Hz, 1.0 Hz, 1H), 6.44 (bs, 1H), 4.28-4.23 (m, 1H), 4.13 (dd, J =16.5 Hz, J = 5.0 Hz, 1H), 4.08 (dd, J = 16.5 Hz, J = 5.0 Hz, 1H), 3.71-3.69 (m, 2H), 3.06 (dd, J =14.0 Hz, J = 4.5 Hz, 1H), 2.80 (dd, J = 14.0 Hz, J = 9.5 Hz, 1H), 2.74-2.72 (m, 2H), 1.92 (quintet, J = 6.5 Hz, 2H), 1.26 (s, 9H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 170.9, 167.4, 154.4, 137.8, 137.6, 131.7, 128.6 (2 C), 127.9, 127.3 (2 C), 125.5, 125.3, 124.3, 123.6, 77.7, 55.3, 42.6, 41.3, 37.2, 27.6 (3 C), 25.6, 22.8. HRMS (CI) m/z calcd for $C_{25}H_{32}N_3O_4$ [M+H]⁺: 438.2393. Found 438.2397. Elemental analysis calcd (%) for C₂₅H₃₁N₃O₄: C 68.03, H 7.14, N 9.60. Found: C 67.66, H 7.03, N 9.37.

(S)-N-[2-(3,4-Dihydroquinolin-1(2*H*)-yl)-2-oxoethyl]-3-phenyl-2-(tosylamino)propanamide

(8d). *p*-Toluenesulfonyl chloride (520 mg, 2.7 mmol) was added to a solution of S-4 (0.71 g, 2.1 mmol) in CH₂Cl₂ (7 mL) and the reaction mixture was cooled 0 ° C before triethylamine (0.4 mL, 2.7 mmol) was slowly added. The ice bath was removed and the reaction mixture was stirred for overnight at room temperature. 1M KHSO₄ solution was added and the aqueous layer was extracted twice with ethyl acetate and the combined organic layers were washed with water and dried over Na₂SO₄. The solvent was removed in vacuo and the crude product was purified by flash chromatography (hexane/EtOAc 3 : 2) to afford **8d** (0.835 g, 1.7 mmol, 82%) as a white solid. $[\alpha]_D^{20} = -57.7^\circ$ (c = 1.0, CHCl₃); m.p. 144-146 °C; ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 7.84 (bs, 1H), 7.52-7.47 (m, 4H), 7.21-7.10 (m, 10H), 4.05 (bs, 1H), 3.93 (d, *J* = 5.5 Hz, 2H), 3.65 (d, *J* = 6.5 Hz, 2H), 2.93 (dd, *J* = 14.0 Hz, *J* = 5.0 Hz, 1H), 2.73-2.69 (m, 3H), 2.32 (s, 3H) 1.91 (quintet, *J* = 6.5 Hz, 2H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 169.8, 167.1, 141.6, 137.8, 137.7, 136.6, 131.7, 128.6 (2 C), 128.5 (2 C), 127.9, 127.3 (2 C), 125.8 (2 C), 125.5, 125.2, 124.3, 123.6, 57.4, 42.6, 41.3, 37.9, 25.6, 22.8, 20.2. HRMS (CI) *m/z* calcd for C₂₇H₃₀N₃O₄S [M+H]⁺: 492.1957. Found 492.1967. Elemental analysis calcd (%) for C₂₇H₂₉N₃O₄S: C 64.97, H 5.95, N 8.55. Found: C 65.29, H 5.91, N 8.48.

(S)-2-(2,2,2-Trifluoroacetamido)-N-(2-(3,4-dihydroquinolin-1(2H)-yl)-2-oxoethyl)-4-methylpentanamide (11). Following the general procedure for steps 3 to 5, dipeptide amide 11 was obtained from Z-L-Leucine (0.79 g, 3.0 mmol) as a white solid in 56% overall yield (0.67 g, 1.7 mmol). $[\alpha]_D^{20} = -20.2^{\circ}$ (c = 1.0, CHCl₃); m.p. 68-70 °C; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 9.19 (d, J = 3.0 Hz, 1H), 7.96 (bs, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.19-7.16 (m, 2H), 7.11 (t, J = 8.0 Hz, 1H), 4.46-4.42 (m, 1H), 4.12 (dd, J = 16.5 Hz, J = 5.5 Hz, 1H), 4.05 (dd, J = 16.5 Hz, J = 5.0 Hz, 1H), 3.74-3.69 (m, 2H), 2.72 (t, J = 7.0 Hz, 2H), 1.94-1.89 (m, 2H), 1.70-1.59 (m, 3H), 0.92 (d, J = 6.0 Hz, 3H), 0.88 (d, J = 6.0 Hz, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 169.9, 167.3, 155.7 (q, ² $_{C,F} = 36.4$ Hz), 137.8, 131.7, 127.9, 127.4, 125.2, 124.3, 123.6, 118.3, 115.4 (q, ¹ $_{J_{C,F}} = 286.7$ Hz), 51.6, 42.6, 41.3, 25.6, 23.8, 22.8, 22.1, 20.8. HRMS (CI) *m/z* calcd for C₁₉H₂₅F₃N₃O₃ [M+H]⁺ 400.1848. Found 400.1868. Elemental analysis calcd (%) for C₁₉H₂₄F₃N₃O₃: C 57.14, H 6.06, N 10.52 and found: C 57.37, H 6.02, N 10.48.

(S)-2-(2,2,2-Trifluoroacetamido)-N-[2-(3,4-dihydroquinolin-1(2H)-yl)-2-oxoethyl]-3,3-di-

methylbutanamide (13). Following the general procedure for steps 3 to 5, dipeptide amide **12** was obtained from Z-L-*tert*-Leucine (0.79 g, 3.0 mmol) as a white solid in 60% overall yield (0.72 g, 1.8 mmol). $[\alpha]_D^{20} = -9.6^\circ$ (c = 1.0, CHCl₃); m.p. 138-140 °C; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 8.53 (d, J = 9.0 Hz, 1H), 8.12 (bs, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.19-7.16 (m, 2H), 7.10 (t, J = 7.5 Hz, 1H), 4.41 (d, J = 9.5 Hz, 1H), 4.16 (dd, J = 16.5 Hz, J = 5.5 Hz, 1H), 4.07 (dd, J = 16.5 Hz, J = 5.5 Hz, 1H), 3.72-3.69 (m, 2H), 2.72 (t, J = 6.5 Hz, 2H), 1.92 (quin, J = 6.5, 2H), 1.00 (s, 9H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 168.0, 167.2, 155.7 (q, ²*J*_{C,F} = 36.5 Hz), 137.8, 131.7, 127.9, 125.2, 124.3, 123.6, 115.4 (q, ¹*J*_{C,F} = 287.0 Hz), 60.6, 42.7, 41.2, 33.9, 25.9 (3 C), 25.6, 22.8. HRMS (CI) *m/z* calcd for C₁₉H₂₅F₃N₃O₃ [M+H]⁺ 400.1848. Found 400.1837. Elemental analysis calcd (%) for C₁₉H₂₄F₃N₃O₃: C 57.14, H 6.06, N 10.52. Found: C 57.37, H 6.02, N 10.48.

(*S*)-2-(2,2,2-Trifluoroacetamido)-N-[2-(3,4-dihydroquinolin-1(2*H*)-yl)-2-oxoethyl]-3-(4-meth-oxyphenyl)propanamide (15). Following the general procedure for steps 3 to 5, dipeptide amide 15 was obtained from Z-L-OMe-Tyrosine (0.98 g, 3.0 mmol) as a white solid in 50% overall yield (0.69 g, 1.8 mmol). $[\alpha]_D^{20} = +20.7^\circ$ (c = 1.0, CHCl₃); m.p. 149-151 °C; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 9.14 (d, J = 6.5 Hz, 1H), 8.08 (bs, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.20-7.17 (m, 4H), 7.11 (t, J = 8.0 Hz, 1H), 6.82 (d, J = 8.5 Hz, 2H), 4.64-4.59 (m, 1H), 4.14 (dd, J = 16.5 Hz, J = 5.0 Hz, 1H), 4.10 (dd, J = 16.5 Hz, J = 5.5 Hz, 1H), 3.73 (s, 3H), 3.72-3.68 (m, 2H), 3.10 (dd, J = 14.0 Hz, J = 4.5 Hz, 1H), 2.92 (dd, J = 14.0 Hz, J = 10.0 Hz, 1H), 2.73 (t, J = 6.5 Hz, 2H), 1.92 (quin, J = 6.5, 2H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 169.1, 167.3, 157.6, 155.6 (q, ² $_{C,F}$ = 36.2 Hz), 137.8, 131.7, 129.5 (2 C), 128.7, 127.9, 125.2, 124.3, 123.6, 115.3 (q, ¹ $_{C,F}$ = 286.7 Hz), 113.2 (2 C), 54.5, 54.4, 42.7, 41.4, 35.5, 25.6, 22.8. HRMS (CI) *m/z* calcd for C₂₃H₂₄F₃N₃O₄: C 59.61, H 5.22, N 9.07. Found : C 59.41, H 5.18, N 8.77.

Products 9a, 9b, 10a, 10c and 10d were obtained following the general procedure for methylation of dipeptide amides (see main text). Analytical data of these compounds are given below.

Benzyl (1*S*,2*S*)-1-[1-(3,4-dihydroquinolin-1(2*H*)-yl)-1-oxopropan-2-ylcarbamoyl]-2-methylbutylcarbamate (9a). HPLC (Silicagel, hexane/EtOAc 7 : 3, 1mL/min): t_R (40%) = 16.89 min, t_R (60%) = 20.09 min. Minor diastereomer: $[\alpha]_D^{20} = -72.9^\circ$ (c = 1.0, CHCl₃); m.p. 143-145 °C; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 7.87 (d, *J* = 7.0 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.35-7.34 (m, 4H), 7.31-7.28 (m, 1H), 7.20-7.15 (m, 2H), 7.11 (td, *J* = 7.5 Hz, *J* = 1.5 Hz, 1H), 6.82 (bs, 1H), 5.07 (d, *J* = 13.0 Hz, 1H), 5.04 (d, *J* = 13.0 Hz, 1H), 4.98-4.91 (m, 1H), 3.96 (dd, *J* = 9.0 Hz, *J* = 7.5 Hz, 1H), 3.89-3.84 (m, 1H), 3.54-3.49 (m, 1H), 2.72 (dt, *J* = 16.0 Hz, *J* = 7.0 Hz, 1H), 2.66 (dt, *J* = 16.0 Hz, *J* = 7.0 Hz, 1H), 1.98-1.91 (m, 1H), 1.89-1.81 (m, 1H), 1.78-1.70 (m, 1H), 1.51-1.42 (m, 1H), 1.15 (d, *J* = 7.0 Hz, 3H), 1.13-1.08 (m, 1H), 0.85 (d, *J* = 7.0 Hz, 3H), 0.83 (t, *J* = 7.5 Hz, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 171.2, 170.0, 155.2, 138.2, 136.6, 132.1, 127.9, 127.6 (2 C), 127.0, 126.8 (2 C), 125.2, 124.4, 123.7, 64.9, 58.8, 45.0, 42.7, 36.6, 25.4, 23.9, 22.9, 17.1, 14.7,

10.3. HRMS (CI) *m/z* calcd for C₂₆H₃₄N₃O₄ [M+H]⁺ 452.2549. Found 452.2546. Elemental analysis calcd (%) for C₂₆H₃₃N₃O₄: C 69.16, H 7.37, N 9.31. Found: C 69.11, H 7.22, N 9.10. Major diastereomer: $[\alpha]_D^{20} = +27.3^{\circ}$ (c = 1.0, CHCl₃); m.p. 103-105 °C; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 7.84 (d, *J* = 7.0 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.35-7.33 (m, 4H), 7.30-7.27 (m, 1H), 7.20-7.16 (m, 2H), 7.12 (td, *J* = 7.5 Hz, *J* = 1.0 Hz, 1H), 6.81 (bs, 1H), 5.05 (s, 2H), 4.98-4.92 (m, 1H), 3.96 (dd, *J* = 9.0 Hz, *J* = 7.0 Hz, 1H), 3.86-3.81 (m, 1H), 3.57-3.52 (m, 1H), 2.74 (dt, *J* = 16.0 Hz, *J* = 6.5 Hz, 1H), 2.66 (dt, *J* = 16.0 Hz, *J* = 7.0 Hz, 3H), 1.14-1.11 (m, 1H), 1.89-1.83 (m, 1H), 1.79-1.71 (m, 1H), 1.49-1.41 (m, 1H), 1.17 (d, *J* = 7.0 Hz, 3H), 1.14-1.11 (m, 1H), 0.87 (d, *J* = 6.5 Hz, 3H), 0.83 (t, *J* = 7.5 Hz, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 171.3, 170.0, 155.2, 138.3, 136.6, 132.2, 127.9, 127.6 (2 C), 127.0, 126.8 (2 C), 125.2, 124.5, 123.7, 64.9, 58.7, 45.0, 42.7, 36.3, 25.4, 23.8, 22.9, 17.0, 14.7, 10.3. HRMS (CI) *m/z* calcd for C₂₆H₃₄N₃O₄ [M+H]⁺ 452.2549. Found 452.2557.

(2S,3S)-2-(2,2,2-Trifluoroacetamido)-N-(1-(3,4-dihydroquinolin-1(2H)-yl)-1-oxopropan-2-yl)-**3-methylpentanamide (9b).** Minor diastereomer; $\left[\alpha\right]_{D}^{20} = -99.0^{\circ}$ (c = 1.0, CHCl₃); m.p. 169-171 °C; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 8.96 (d, J = 7.0 Hz, 1H), 8.19 (d, J = 7.5 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.19-7.15 (m, 2H), 7.11 (td, J = 7.5 Hz, J = 1.0 Hz, 1H), 4.98 (quin, J =7.5 Hz, 1H), 4.28 (t, J = 8.0 Hz, 1H), 3.88-3.83 (m, 1H), 3.55-3.50 (m, 1H), 2.74 (dt, J = 16.0 Hz, J= 6.5 Hz, 1H), 2.67 (dt, J = 16.0 Hz, J = 6.5 Hz, 1H), 1.98-1.82 (m, 3H), 1.49-1.41 (m, 1H), 1.18 (d, J = 7.0 Hz, 3H), 1.15-1.09 (m, 1H), 0.87(d, J = 6.5 Hz, 3H), 0.84 (t, J = 7.5 Hz, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 171.0, 168.3, 155.6 (q, ²J_{C,F} = 36.4 Hz), 138.2, 132.1, 127.9, 125.2, 124.5, 123.7, 115.4 (q, ${}^{1}J_{C,F}$ = 286.8 Hz), 57.3, 45.1, 42.7, 35.4, 25.3, 24.0, 22.9, 17.0, 14.5, 9.8. Major diastereomer; $[\alpha]_D^{20} = +46.0^\circ$ (c = 1.0, CHCl₃); m.p. 143-145 °C; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 8.93 (bs, 1H), 8.13 (d, J = 6.5 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.20-7.16 (m, 2H), 7.12 (td, J = 7.5 Hz, J = 1.0 Hz, 1H), 4.98-4.82 (m, 1H), 4.28-4.25 (m, 1H), 3.84-3.79 (m, 1H), 3.61-3.55 (m, 1H), 2.77-2.64 (m, 2H), 1.96-1.87 (m, 3H), 1.49-1.41 (m, 1H), 1.20 (d, J = 7.0 Hz, 3H), 1.13-1.10 (m, 1H), 0.90 (d, J = 7.0 Hz, 3H), 0.84 (t, J = 7.5 Hz, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 172.2, 169.5, 155.7 (q, ²J_{C,F} = 36.2 Hz), 139.3, 133.3, 128.9, 126.3, 125.5, 124.7, 116.4 (q, ${}^{1}J_{CF}$ = 286.8 Hz), 58.2, 46.2, 43.7, 36.5, 26.4, 24.9, 24.0, 17.8, 15.5, 10.9. HRMS (CI) m/z calcd for C₂₀H₂₇F₃N₃O₃ [M+H]⁺ 414.2005. Found 414.2025. HPLC (Silicagel, hexane/EtOAc 7 : 3, 1mL/min): t_R (36%) = 18.06 min, t_R (64%) = 23.18 min.

Benzyl (*S*)-1-[1-(3,4-dihydroquinolin-1(2*H*)-yl)-1-oxopropan-2-ylcarbamoyl]-2-phenylethylcarbamate (10a). HPLC (Silicagel, hexane/EtOAc 6 : 4, 1mL/min): t_R (41%) = 13.01 min, t_R (59%) = 14.84 min. Major diastereomer: ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 7.96 (d, *J* = 7.0 Hz, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.34-7.10 (m, 13H), 6.99 (bs, 1H), 4.98-4.93 (m, 3H), 4.37-4.31 (m, 1H), 3.91-3.82 (m, 1H), 3.57-3.49 (m, 1H), 3.06-2.98 (m, 1H), 2.85-2.63 (m, 3H), 1.99-1.84 (m, 2H), 1.18 (d, *J* = 7.0 Hz, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 171.3, 170.2, 154.9, 138.2, 137.3, 136.5, 132.2, 128.6 (2 C), 127.9, 127.6 (2 C), 127.4 (2 C), 126.9, 126.7 (2 C), 125.5, 125.3, .124.5, 123.7, 64.8, 55.4, 45.2, 42.7, 37.1, 25.3, 23.0. 17.1. Minor diastereomer (selected peaks): ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 7.92 (d, *J* = 7.5 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 1H), 1.11 (d, *J* = 7.0 Hz, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ = 171.2, 170.1, 155.0,138.2, 137.2, 136.6, 132.1, 125.6, 125.2, 124.4, 123.8, 55.6, 45.1, 37.4, 22.9, 17.2. HRMS (CI) *m/z* calcd for C₂₉H₃₂N₃O₄ [M+H]⁺: 486.2393. Found 486.2375. Elemental analysis calcd (%) for C₂₉H₃₁N₃O₄: C 71.73, H 6.43, N 8.65. Found: C 71.20, H 6.63, N 8.15.

tert-Butyl (*S*)-1-[1-(3,4-dihydroquinolin-1(2*H*)-yl)-1-oxopropan-2-ylcarbamoyl]-2-phenylethylcarbamate (10c). HPLC (Silicagel, hexane/EtOAc 7 : 3, 1mL/min): t_R (40%) = 17.79 min, t_R (60%) = 19.85 min. Major diastereomer: ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 7.85 (d, *J* = 7.5 Hz, 1H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.25-7.11 (m, 8H), 6.42 (bs, 1H), 5.00-4.92 (m, 1H), 4.26-4.21 (m, 1H), 3.90-3.82 (m, 1H), 3.57-3.50 (m, 1H), 3.03-2.96 (m, 1H), 2.82-2.50 (m, 3H), 1.98-1.93 (m, 1H), 1.91-1.85 (m, 1H), 1.32 (s, 9H), 1.19 (d, J = 7.0 Hz, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): $\delta = 171.3$, 170.3, 154.3,138.2, 137.4, 132.2, 128.6 (2 C), 127.9, 127.3 (2 C), 125.5, 125.3, .124.5, 123.7, 77.7. 55.1, 45.1, 42.7, 37.1, 27.5 (3 C), 25.4, 22.9, 17.2. Minor diastereomer (selected peaks): ¹H-NMR (500 MHz, DMSO-d₆, 353 K): $\delta = 1.33$ (s, 9H), 1.27 (d, J = 7.0 Hz, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): $\delta = 171.2$, 170.2, 154.4,137.3, 124.5, 55.3, 45.0, 37.4, 17.2. HRMS (CI) *m/z* calcd for C₂₆H₃₄N₃O₄ [M+H]⁺: 452.2549Found 452.2555.

(2S)-N-[1-(3,4-Dihydroquinolin-1(2H)-yl)-1-oxopropan-2-yl]-3-phenyl-2-(tosylamino)propan-

amide (10d). White solid; m.p. 67-70 °C; Major diastereomer: ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 7.88 (d, *J* = 7.0 Hz, 1H),), 7.54-7.46 (m, 3H), 7.37 (t, *J* = 7.0 Hz, 1H), 7.19-7.11 (m, 10H), 4.79 (quintet, *J* = 7.0 Hz, 1H), 4.11-4.03 (m, 1H), 3.89-3.84 (m, 1H), 3.51-3.44 (m, 1H), 2.90-2.85 (m, 1H),), 2.76-2.61 (m, 3H),), 2.28 (s, 3H), 1.87-1.82 (m, 2H), 0.97 (d, *J* = 6.5 Hz, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 170.9, 169.2, 141.6, 138.0, 137.8, 136.4, 132.2, 128.7 (2 C), 128.6 (2 C), 127.9, 127.3 (2 C), 125.8 (2 C), 125.6, 125.3, 124.5, 123.7, 57.4, 44.8, 42.6, 38.3, 25.2, 22.9, 20.2, 17.1. Minor diastereomer (selected peaks): ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 7.95 (d, *J* = 7.0 Hz, 1H), 4.75-4.69 (m, 1H), 3.82-3.77 (m, 1H), 2.31 (s, 3H), 1.04 (d, *J* = 7.0 Hz, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 171.0, 169.1, 138.1, 138.0, 136.5, 132.1, 128.7 (2 C), 128.5 (2 C), 127.8, 127.2 (2 C), 125.9, 125.5, 123.6, 55.8, 45.0, 42.7, 37.9, 25.3, 16.9. HRMS (CI) *m/z* calcd for C₂₈H₃₂N₃O₄S [M+H]⁺: 506.2114. Found 506.2101. Diastereomeric ratio (53:47) was determined from crude nmr.

Products **10e**, **10g-10p**, **12**, **14** and **16** were obtained following the general procedure for palladiumcatalyzed allylic alkylation of dipeptide amide (see main text). Analytical data of these compounds are given below.

(2*S*)-N-[1-(3,4-Dihydroquinolin-1(2*H*)-yl)-4-methyl-1-oxopent-4-en-2-yl]-3-phenyl-2-(tosyl-amino)propanamide (10e). HPLC (Silicagel, hexane/EtOAc 7 : 3, 1mL/min, 254 nm): t_R (24%) = 12.26 min, t_R (76%) = 13.63 min. Major diastereomer: ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 8.02 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.26 (bs, 1H), 7.21-7.11 (m, 11H), 5.04 (q, *J* = 8.0 Hz, 1H), 4.63 (s, 1H), 4.55 (s, 1H), 4.17-4.13 (m, 1H), 4.08-4.03 (m, 1H), 3.35-3.30 (m, 1H), 2.88 (dd, *J* = 14.0 Hz, *J* = 5.0 Hz, 1H), 2.69 (dd, *J* = 14.0 Hz, *J* = 10.0 Hz, 1H), 2.76-2.71 (m, 1H), 2.62-2.57 (m, 1H), 2.25 (s, 3H), 2.18 (dd, *J* = 9.0 Hz, *J* = 6.5 Hz, 1H), 2.00-1.95 (m, 2H), 1.83-1.76 (m, 1H), 1.35 (s, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 170.2, 169.4, 141.5, 140.1, 138.1, 137.9, 136.6, 132.6, 128.8 (2 C), 128.6 (2 C), 127.7, 127.2 (2 C), 125.8 (2 C), 125.6, 125.3, 124.6, 123.9, 112.5, 57.1, 47.9, 42.5, 40.4, 38.4, 25.4, 23.0, 20.9, 20.2. Minor diastereomer (selected peaks): ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 7.99 (d, *J* = 7.5 Hz, 1H), 4.96 (q, *J* = 7.5 Hz, 1H), 4.65 (s, 1H), 4.00-3.95 (m, 1H), 2.30 9s, 3H), 1.38 (s, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 170.2, 169.5, 141.6, 137.9, 137.8, 136.5, 128.67(2 C), 127.3 (2 C), 125.9 (2 C), 112.4, 56.9, 47.9, 40.1, 38.2, 23.0, 21.0. 20.3. HRMS (CI) *m*/z calcd for C₃₁H₃₆N₃O₄S [M+H]⁺: 546.2348. Found 546.2424.

(2*S*)-2-(2,2,2-Trifluoroacetamido)-N-[1-(3,4-dihydroquinolin-1(2*H*)-yl)-1-oxopent-4-en-2-yl]-3-phenylpropanamide (10g). HPLC (Reprosil, hexane/*i*PrOH 95 : 5, 1mL/min): t_R (15%) = 14.45 min, t_R (85%) = 19.04 min. Major diastereomer: ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 9.21 (d, J = 8.5 Hz, 1H), 8.28 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.29-7.11 (m, 8H), 5.64-5.54 (m, 1H), 5.01-4.96 (m, 3H), 4.72-4.69 (m, 1H), 3.97-3.92 (m, 1H), 3.49-3.44 (m, 1H), 3.10 (dd, J = 14.0 Hz, J = 5.0 Hz, 1H), 2.96 (dd, J = 14.0 Hz, J = 10.0 Hz, 1H), 2.77-2.72 (m, 1H), 2.68-2.62 (m, 1H), 2.39-2.33 (m, 1H), 2.26-2.21 (m, 1H), 2.00-1.92 (m, 1H), 1.88-1.80 (m, 1H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 169.8, 168.6, 155.5 (q, ² $J_{C,F} = 36.2$ Hz), 138.0, 136.6, 132.9, 132.3, 128.5 (2 C), 127.9, 127.4 (2 C), 125.8, 125.2, 123.8, 116.9, 115.2 (q, ¹ $J_{C,F} = 286.5$ Hz), 54.1, 49.1, 42.8, 36.6, 35.6, 25.4, 23.0. Minor diastereomer (selected peaks): ¹H-NMR (500 MHz, DMSO-d₆,

353 K): δ 9.18 (d, J = 8.5 Hz, 1H), 8.22 (d, J = 7.5 Hz, 1H), 7.46 (d, J = 8.5 Hz, 1H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 169.9, 168.7, 136.7, 128.4 (2 C), 127.8, 125.3, 123.7, 53.9, 49.3, 36.2, 35.5, 23.0. HRMS (CI) *m/z* calcd for C₂₅H₂₇F₃N₃O₃ [M+H]⁺: 474.2005. Found 474.2035.

(2*S*)-2-(2,2,2-Trifluoroacetamido)-N-[(*E*)-1-(3,4-dihydroquinolin-1(2*H*)-yl)-1-oxo-5-phenylpent-4-en-2-yl]-3-phenylpropanamide (10h). HPLC (Reprosil, hexane/*i*PrOH 95 : 5, 1mL/min): t_R (14%) = 24.63 min, t_R (86%) = 31.90 min. Major diastereomer; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 9.22 (d, *J* = 8.5 Hz, 1H), 8.39 (d, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.30-7.16 (m, 12H), 7.12 (t, *J* = 7.5 Hz, 1H), 6.37 (d, *J* = 16.0 Hz, 1H), 6.02-5.96 (m, 1H), 5.16-5.12 (m, 1H), 4.75-4.70 (m, 1H), 4.02-3.95 (m, 1H), 3.50-3.43 (m, 1H), 3.09 (dd, *J* = 15.0 Hz, *J* = 5.0 Hz, 1H), 2.93 (dd, *J* = 15.0 Hz, *J* = 10.0 Hz, 1H), 2.71-2.65 (m, 1H), 2.59-2.52 (m, 2H), 2.43-2.38 (m, 1H), 1.95-1.90 (m, 1H), 1.85-1.78 (m, 1H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 169.9, 168.7, 155.5 (q, ²*J*_{C,F} = 36.7 Hz), 115.2 (q, ¹*J*_{C,F} = 287.2 Hz), 138.0, 136.6, 136.4, 131.9, 128.5 (2 C), 127.9, 127.8 (2 C), 127.4, (2 C), 126.6, 125.5, 125.4, 125.4 (2 C), 125.3, 124.7, 124.6, 123.8, 54.1, 49.2, 42.8, 36.6, 35.1, 25.3, 22.9. Minor diastereomer (selected peaks); ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 8.33 (d, *J* = 8.5 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 6.38 (d, *J* = 16.0 Hz, 1H), 3.96-3.93 (m, 1H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 169.9, 168.8, 131.7, 127.4(2 C), 123.7, 54.0, 49.6, 36.2, 35.0, 23.0. HRMS (CI) *m/z* calcd for C₃₁H₃₁F₃N₃O₃ [M+H]⁺ 550.2318. Found 550.2266.

(2*S*)-2-(2,2,2-Trifluoroacetamido)-N-[(*E*)-1-(3,4-dihydroquinolin-1(2*H*)-yl)-1-oxooct-4-en-2yl]-3-phenylpropanamide (10i). HPLC (Reprosil, hexane/*i*PrOH 95 : 5, 1mL/min): t_R (9%) = 13.79 min, t_R (91%) = 18.57 min. Major diastereomer: ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 9.20 (d, *J* = 8.0 Hz, 1H), 8.22 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 7.5 Hz, 1H), 7.29-7.20 (m, 4H), 7.18-7.11 (m, 4H), 5.41 (dt, *J* = 15.5 Hz, *J* = 6.5 Hz 1H), 5.19 (dt, *J* = 15.5 Hz, *J* = 7.0 Hz 1H), 5.02-4.97 (m, 1H), 4.73-4.68 (m, 1H), 4.00-3.96 (m, 1H), 3.47-3.42 (m, 1H), 3.10 (dd, *J* = 13.5 Hz, *J* = 5.0 Hz, 1H), 2.96 (dd, *J* = 13.5 Hz, *J* = 10.0 Hz, 1H), 2.78-2.72 (m, 1H), 2.67-2.61 (m, 1H), 2.33-2.28 (m, 1H), 2.20-2.14 (m, 1H), 2.00-1.94 (m, 1H), 1.90-1.80 (m, 3H), 1.29 (sex, *J* = 7.5 Hz, 2H), 0.82 (t, *J* = 7.5 Hz, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 170.0, 168.6, 155.5 (q, ²*J*_{C,F} = 36.2 Hz),138.1, 136.6, 132.6, 132.3, 128.5 (2 C), 127.8, 127.4 (2 C), 125.8, 125.2, 124.5, 124.2, 123.8, 115.2 (q, ¹*J*_{C,F} = 287.1 Hz), 54.1, 49.5, 42.7, 36.6, 34.6, 33.3, 25.4, 23.0, 21.1, 12.6. minor diastereomer (selected peaks): ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 9.14 (d, *J* = 8.5 Hz, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 9.14 (d, *J* = 8.5 Hz, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 9.14 (d, *J* = 8.5 Hz, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 9.14 (d, *J* = 8.5 Hz, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 170.1, 168.7,136.6, 132.5, 123.7, 53.9, 49.7, 36.3, 34.5. HRMS (CI) *m*/z calcd for C₂₈H₃₃F₃N₃O₃ [M+H]⁺: 516.2474. Found 516.2436.

Analytical data of compound **10k**. HPLC (Reprosil, hexane/*i*PrOH 95 : 5, 1mL/min): t_R (17%) = 9.88 min, t_R (87%) = 12.49 min. Major diastereomer; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 9.19 (d, J = 8.5 Hz, 1H), 8.27 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.29-7.24 (m, 4H), 7.20-7.15 (m, 3H), 7.12 (t, J = 7.5 Hz, 1H), 5.58-5.49 (m, 1H), 5.45-5.36 (m, 1H), 5.04-4.98 (m, 1H), 4.74-4.69 (m, 1H), 4.03 (dd, J = 4.5 Hz, J = 1.0 Hz, 1H), 3.99-3.94 (m, 1H), 3.84 (dd, J = 5.0 Hz, J = 1.0 Hz, 1H), 3.48-3.43 (m, 1H), 3.13-3.08 (m, 1H), 2.99-2.94 (m, 1H), 2.77-2.62 (m, 2H), 2.41-2.32 (m, 1H), 2.23-2.18 (m, 1H), 2.01-1.92 (m, 1H), 1.88-1.81 (m, 1H), 0.87 (s, 9H), -0.01 (s, 6H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 170.0, 168.6, 155.5 (q, ² $J_{C,F} = 36.3$ Hz), 138.1, 136.7, 133.3, 132.0, 128.5 (2 C), 127.8, 127.4 (2 C), 125.8, 125.2, 124.5, 124.2, 123.8, 115.2 (q, ¹ $J_{C,F} = 287.0$ Hz), 62.3, 60.7, 54.1, 49.4, 42.8, 36.7, 34.1, 25.2 (3 C), 23.0, 17.3, -3.8, -5.8. Minor diastereomer (selected peaks); ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 9.15 (d, J = 8.5 Hz, 1H), 8.22 (d, J = 7.0 Hz, 1H), 7.45 (d, J = 6.0 Hz, 1H), 3.94-3.91 (m, 1H), 0.86 (s, 9H), 0.01 (s, 6H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 132.3, 128.5 (2 C), 124.2, 54.0, 36.3, 25.4. HRMS (CI) *m/z* calcd for C₃₂H₄₃F₃N₃O₄Si [M+H]⁺ 618.2975. Found 618.2963.

(2S)-2-(2,2,2-Trifluoroacetamido)-N-[(E)-1-(3,4-dihydroquinolin-1(2H)-yl)-5-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-1-oxopent-4-en-2-yl]-3-phenylpropanamide (10l). HPLC (Reprosil, hexane/*i*PrOH 95 : 5, 1mL/min): t_R (10%) = 24.52 min, t_R (90%) = 34.25 min. Major diastereomer: ¹H-NMR (500 MHz, DMSO-d₆ 353 K): δ 9.17 (d, J = 8.5 Hz, 1H), 8.29 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.27-7.21 (m, 4H), 7.16 (d, J = 7.5 Hz, 2H), 7.13 (td, J = 7.5 Hz, J = 1.5 Hz, 1H), 7.09 (td, J = 7.5 Hz, J = 1.5 Hz 1H), 5.51 (dt, J = 15.5 Hz, J = 7.0 Hz, 1H), 5.42 (dd, J = 15.5Hz, J = 6.5 Hz, 1H), 5.02-4.98 (m, 1H), 4.71-4.66 (m, 1H), 4.36-4.32 (m, 1H), 3.95-3.89 (m, 2H), 3.47-3.42 (m, 1H), 3.39-3.58 (m, 1H), 3.09 (dd, J = 14.0 Hz, J = 5.0 Hz, 1H), 2.94 (dd, J = 14.0 Hz, J = 10.5Hz, 1H), 2.70-2.60 (m, 2H), 2.36-2.31 (m, 1H), 2.25-2.19 (m, 1H), 1.97-1.87 (m, 1H), 1.85-1.77 (m, 1H), 1.24 (s, 3H), 1.23 (s, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 169.7, 168.7, 155.5 (g, ${}^{2}J_{CF}$ = 36.3 Hz), 138.0, 136.7, 130.9,128.5 (2 C), 127.9, 127.6, 127.4 (2 C), 125.8, 125.2, 124.6, 124.6, 123.8, 115.4 (q, ${}^{1}J_{C,F}$ = 287.0 Hz), 107.7, 75.3, 68.1, 54.1, 49.2, 42.8, 36.7, 34.1, 25.9, 25.4, 25.1, 23.0. Minor diastereomer (selected peaks): ¹H-NMR (500 MHz, DMSO-d₆ 353 K): δ 9.12 (d, J = 8.5 Hz, 1H), 8.23 (d, J = 7.5 Hz, 1H), 7.42 (d, J = 8.5 Hz, 1H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): § 169.9, 168.7, 136.6, 128.5 (2 C), 127.4 (2 C), 125.8, 125.3, 123.7, 75.4, 73.9, 79.4, 72.7, 36.3, 34.1, 25.9, 23.0. HRMS (CI) m/z calcd for $C_{27}H_{29}F_3N_3O_4$ [M-C₃H₆O+H]⁺: 516.2110. Found 516.2124.

(2*S*)-2-(2,2,2-Trifluoroacetamido)-N-[1-(3,4-dihydroquinolin-1(2*H*)-yl)-5-methyl-1-oxohex-4en-2-yl]-3-phenylpropanamide (10m₁). HPLC (Reprosil, hexane/iPrOH 95 : 5, 1mL/min): t_R (15%) = 9.53 min, t_R (85%) = 16.68 min. Major diastereomer; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 9.20 (d, *J* = 8.5 Hz, 1H), 8.23 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 7.5 Hz, 1H), 7.28-7.24 (m, 4H), 7.21-7.11 (m, 4H), 5.02-5.97 (m, 1H), 4.91-4.88 (m, 1H), 4.72-4.68 (m, 1H), 4.05-4.00 (m, 1H), 3.40-3.35 (m, 1H), 3.09 (dd, *J* = 14.0 Hz, *J* = 5.0 Hz, 1H), 2.96 (dd, *J* = 14.0 Hz, *J* = 5.0 Hz, 1H), 2.77-2.72 (m, 1H), 2.65-2.59 (m, 1H), 2.31-2.25 (m, 1H), 2.17-2.11 (m, 1H), 2.01-1.93 (m,1H), 1.86-1.78 (m, 1H), 1.58 (s, 3H), 1.44 (s, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 170.3, 168.7, 138.1, 136.6, 133.5, 132.5, 128.5 (2 C), 127.8, 127.4 (2 C), 125.8, 125.3, 124.6, 123.9, 118.3, 54.1, 49.4, 42.7, 36.6, 30.4, 25.4, 24.7, 23.0, 16.7. Minor diastereomer (selected peaks); ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 8.19 (d, *J* = 8.5 Hz, 1H), 7.46 (d, *J* = 7.5 Hz, 1H), 3.97-3.92 (m, 1H), 3.49-3.42 (m, 1H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 123.8, 53.9, 49.3. HRMS (CI) *m/z* calcd for C₂₇H₃₁F₃N₃O₃ [M+H]⁺ 502.2318. Found 502.2335.

(2S)-2-(2,2,2-Trifluoroacetamido)-N-[1-(3,4-dihydroquinolin-1(2H)-yl)-3,3-dimethyl-1-

oxopent-4-en-2-yl]-3-phenylpropanamide (10m_b). HPLC (Reprosil, hexane/*i*PrOH 95 : 5, 1mL/min): t_R (10%) = 14.69 min, t_R (90%) = 19.94 min. Major diastereomer; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 9.30 (d, J = 8.0 Hz, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.43 (d, J = 7.5 Hz, 1H), 7.31 (d, J = 7.5 Hz, 2H), 7.27-7.23 (m, 2H), 7.21-7.11 (m, 4H), 5.72 (dd, J = 17.5 Hz, J = 10.5 Hz, 1H), 5.20 (d, J = 8.5 Hz, 1H), 4.89 (dd, J = 17.5 Hz, J = 1.5 Hz, 1H), 4.88 (dd, J = 10.5 Hz, J = 1.5 Hz, 1H), 4.86-4.82 (m, 1H), 4.20-4.12 (m, 1H), 3.28-3.25 (m, 1H), 3.16 (dd, J = 14.0 Hz, J = 5.0 Hz, 1H), 3.01 (dd, J = 14.0 Hz, J = 5.5 Hz, 1H), 2.75 (dt, J = 16.0 Hz, J = 6.5 Hz, 1H), 2.60 (dt, J = 16.0 Hz, J = 7.0 Hz, 1H), 2.08-2.00 (m, 1H), 1.81-1.74 (m, 1H), 0.93 (s, 3H), 0.91 (s, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 169.1, 169.1, 155.6 (q, ²J_{C,F} = 36.2 Hz), 143.5, 138.2, 136.6, 132.6, 128.6 (2 C), 127.7, 127.4 (2 C), 125.8, 125.3, 124.6, 124.2, 111.8, 54.8, 54.3, 43.0, 40.7, 36.6, 25.5, 23.4, 23.0, 22.2. Minor diastereomer (selected peaks); ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 9.25 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 9.0 Hz, 1H), 7.38 (d, J = 8.0 Hz, 1H), 4.81-4.78 (m, 1H), 0.98 (m, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 169.1, 169.1, 157.8 (CI) *m/z* calcd for C₂₇H₃₁F₃N₃O₃ [M+H]⁺ 502.2318. Found 502.2331

(2*S*)-2-(2,2,2-Trifluoroacetamido)-N-[(*E*)-1-(3,4-dihydroquinolin-1(2*H*)-yl)-5,9-dimethyl-1oxodeca-4,8-dien-2-yl]-3-phenylpropanamide (10n). HPLC (Reprosil, hexane/*i*PrOH 95 : 5, 1mL/min): t_R (8%) = 12.34 min, t_R (92%) = 16.51 min. Major diastereomer; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 9.17 (d, J = 8.5 Hz, 1H), 8.23 (d, J = 7.5 Hz, 1H), 7.49 (d, J = 7.5 Hz, 1H), 7.29-7.24 (m, 4H), 7.20-7.15 (m, 3H), 7.12 (dt, J = 7.5 Hz, J = 1.5 Hz, 1H), 5.06-5.03 (m, 1H), 5.02-4.98 (m, 1H), 4.96-4.93 (m, 1H), 4.73-4.69 (m, 1H), 4.05-3.99 (m, 1H), 3.43-3.38 (m, 1H), 3.20 (dd, J = 14.0 Hz, J = 1.0 Hz, 1H), 2.97 (dd, J = 14.0 Hz, J = 10.0 Hz, 1H), 2.75 (dt, J = 16.0 Hz, J = 6.5 Hz, 1H), 2.63 (dt, J = 16.0 Hz, J = 7.0 Hz, 1H), 2.75 (dt, J = 16.0 Hz, J = 6.5 Hz, 1H), 2.63 (dt, J = 16.0 Hz, J = 7.0 Hz, 1H), 2.75 (dt, J = 16.0 Hz, J = 6.5 Hz, 1H), 2.63 (dt, J = 16.0 Hz, J = 7.0 Hz, 1H), 2.75 (dt, J = 16.0 Hz, J = 6.5 Hz, 1H), 2.55-2.29 (m, 1H), 2.20-2.13 (m, 1H), 2.20-1.95 (m, 3H), 1.91-1.87 (m, 2H), 1.85-1.80 (m, 1H), 1.62 (s, 3H), 1.53 (s, 3H), 1.46 (s, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 170.3, 168.7, 155.5 (q, ² $J_{C,F}$ = 36.2 Hz), 138.1, 137.2, 136.6, 132.3, 130.1, 128.5 (2 C), 127.8, 127.4 (2 C), 125.8, 125.2, 124.5, 123.8, 123.4, 118.0, 54.1, 49.5, 42.8, 38.6, 36.6, 30.3, 25.6, 25.4, 24.6, 23.0, 16.7, 15.2. Minor diastereomer (selected peaks); ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 9.12 (d, J = 8.5 Hz, 1H), 8.19 (d, J = 7.5 Hz, 1H), 7.45 (d, J = 7.5 Hz, 1H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 9.12 (d, J = 8.5 Hz, 1H), 8.19 (d, J = 7.5 Hz, 1H), 7.45 (d, J = 7.5 Hz, 1H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 136.6, 128.5 (2 C), 23.0, 16.7. HRMS (CI) m/z calcd for C₃₂H₃₉F₃N₃O₃ [M+H]⁺ 570.2944; Found 570.2914.

(2S)-2-(2,2,2-Trifluoroacetamido)-N-[1-(3,4-dihydroquinolin-1(2H)-yl)-1-oxo-4-phenylpent-4en-2-vl]-3-phenvlpropanamide (10o). HPLC (Reprosil, hexane/iPrOH 95 : 5, 1mL/min): t_R (6%) = 14.33 min, t_R (94%) = 21.82 min. Major diastereomer: ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 9.16 (d, J = 8.5 Hz, 1H), 8.33 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.26-7.15 (m, 11H), 7.10 (td, J = 8.0 Hz, J = 1.0 Hz, 1H), 7.03 (td, J = 8.0 Hz, J = 1.2 Hz, 1H), 5.30 (d, J = 1.5 Hz, 1H), 5.14-5.10 (m, 1H), 5.07 (d, J = 1.5 Hz, 1H), 4.73-4.66 (m, 1H), 4.01-3.96 (m, 1H), 3.35-3.28 (m, 1H), 3.3 1H), 3.07 (dd, J = 14.0 Hz, J = 5.0 Hz, 1H), 2.92 (dd, J = 14.0 Hz, J = 10.0 Hz, 1H), 2.84 (dd, J = 14.0 Hz, J = 10.0 Hz, 1H), 2.84 (dd, J = 10.0 Hz, 1H) 14.5 Hz, J = 6.0 Hz, 1H), 2.76-2.59 (m, 3H), 1.99-1.91 (m, 1H), 1.83-1.72 (m, 1H); ¹³C-NMR (125) MHz, DMSO-d₆, 353 K): δ 170.3, 168.7, 155.5 (q, ²J_{CF} = 36.3 Hz), 142.7, 138.9, 137.9, 136.6, 132.5, 128.5 (2 C), 127.7, 127.6 (2 C), 127.4 (2 C), 126.8, 125.8, 125.3, 125.0 (2 C), 124.6, 123.8, 115.2 (g, ${}^{1}J_{CF}$ = 286.6 Hz), 114.5, 54.1, 48.4, 42.6, 37.2, 36.7, 25.3, 23.0. Minor diastereomer (selected peaks): ¹H-NMR (500 MHz, DMSO-d₆, 353 K): δ 9.12 (d, J = 8.5 Hz, 1H), 8.23 (d, J = 8.0 Hz, 1H), 5.31 (d, J = 1.5 Hz, 1H), 5.08 (d, J = 1.5 Hz, 1H), 3.94-3.89 (m, 1H), 3.13 (dd, J = 1.5 Hz, 1H), 5.08 (d, J = 1.5 Hz, 1H), 3.94-3.89 (m, 1H), 3.13 (dd, J = 1.5 Hz, 1H), 5.08 (d, J = 1.5 14.0 Hz, J = 5.0 Hz, 1H); ¹³C-NMR (125 MHz, DMSO-d₆, 353 K): δ 170.2, 168.6,142.6, 139.0, 137.8, 136.6, 128.4 (2 C),127.4 (2 C),125.3, 125.0 (2 C), 124.6, 123.6,53.8, 48.6, 42.7,25.3. HRMS (CI) m/z calcd for C₃₁H₃₁F₃N₃O₃ [M+H]⁺: 550.2318. Found 550.2275.

(2*S*)-2-(2,2,2-Trifluoroacetamido)-N-[1-(3,4-dihydroquinolin-1(2*H*)-yl)-4-methyl-1-oxopent-4en-2-yl]-4-methylpentanamide (12). HPLC (Reprosil, hexane/*i*PrOH 95 : 5, 1mL/min): t_R (14%) = 8.72 min, t_R (86%) = 11.63 min. Major diastereomer; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 9.10 (d, *J* = 7.5 Hz, 1H), 8.06 (d, *J* = 7.5 Hz, 1H), 7.49 (d, *J* = 7.5 Hz, 1H), 7.21-7.13 (m, 2H), 7.12 (d, *J* = 7.5 Hz, 1H), 5.17-5.13 (m, 1H), 4.68 (s, 1H), 4.62 (s, 1H), 4.48-4.44 (m, 1H), 4.03-3.98 (m, 1H), 3.43-3.38 (m, 1H), 2.74 (dt, *J* = 16.0 Hz, *J* = 7.0 Hz, 1H), 2.64 (dt, *J* = 16.0 Hz, *J* = 7.0 Hz, 1H), 2.29 (dd, *J* = 13.5 Hz, *J* = 5.0 Hz, 1H), 2.22 (dd, *J* = 13.5 Hz, *J* = 9.0 Hz, 1H), 2.01-1.93 (m, 1H), 1.86-1.78 (m, 1H), 1.67-1.54 (m, 3H), 1.45 (s, 3H), 0.90 (d, *J* = 6.0 Hz, 3H), 0.88 (d, *J* = 6.0 Hz, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 170.4, 169.6, 155.6 (q, ²*J*_{C,F} = 36.2 Hz), 140.2, 138.1, 132.6, 127.8, 125.3, 124.7, 123.9, 115.4 (q, ¹*J*_{C,F} = 286.4 Hz), 112.5, 51.7, 47.9, 42.6, 25.4, 23.9, 22.9, 22.1, 20.9, 20.8. Minor diastereomer (selected peaks); ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 7.15 (d, *J* = 7.5 Hz, 1H), 7.47 (d, *J* = 7.5 Hz, 1H), 1.46 (s, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 170.4, 169.6, 155.6 (q, ²*J*_{C,F} = 36.2 Hz), 10MSO-d₆, 353K): δ 7.15 (d, *J* = 7.5 Hz, 1H), 7.47 (d, *J* = 7.5 Hz, 1H), 1.46 (s, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 170.4, 169.5, 123.8, 112.4, 51.5, 48.1, 23.8, 22.1, 21.1. HRMS (CI) *m*/z calcd for C₂₃H₃₁F₃N₃O₃ [M+H]⁺ 454.2318. Found 454.2319.

(2*S*)-2-(2,2,2-Trifluoroacetamido)-N-[1-(3,4-dihydroquinolin-1(2*H*)-yl)-4-methyl-1-oxopent-4en-2-yl]-3,3-dimethylbutanamide (14). HPLC (Reprosil, hexane/*i*PrOH 95 : 5, 1mL/min): t_R (9%) = 8.51 min, t_R (91%) = 11.25 min. Major diastereomer; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 8.62 (d, *J* = 9.0 Hz, 1H), 8.23 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 7.5 Hz, 1H), 7.21-7.15 (m, 2H), 7.13 (t, *J* = 7.5 Hz, 1H), 5.22-5.17 (m, 1H), 4.68 (s, 1H), 4.64 (s, 1H), 4.43 (d, *J* = 9.0 Hz, 1H), 4.01-3.96 (m, 1H), 3.46-3.39 (m, 1H), 2.73 (dt, J = 16.0 Hz, J = 6.5 Hz, 1H), 2.63 (dt, J = 16.0 Hz, J = 7.0 Hz, 1H), 2.32-2.15 (m, 2H), 2.00-1.92 (m, 1H), 1.86-1.77 (m, 1H), 1.44 (s, 3H), 0.96 (s, 9H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 170.4, 167.6, 155.7 (q, ² $J_{C,F} = 36.6$ Hz), 140.1, 138.1, 132.6, 127.9, 125.3, 124.7, 123.8, 115.4 (q, ¹ $J_{C,F} = 287.8$ Hz), 112.6, 60.6, 48.0, 42.6, 33.7, 28.3, 26.0 (3 C), 25.3, 23.0, 20.8. Minor diastereomer (selected peaks); ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 8.54 (d, J = 8.5 Hz, 1H), 8.12 (d, J = 7.5 Hz, 1H), 3.96-3.92 (m, 1H), 3.49-3.45 (m, 1H), 1.45 (s, 3H), 0.98 (s, 9H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 170.5, 167.7, 140.2, 137.9, 127.9, 125.3, 124.8, 123.8, 112.4, 60.6, 42.7, 33.9, 25.9 (3 C), 25.4, 21.1. HRMS (CI) *m/z* calcd for C₂₃H₃₁F₃N₃O₃ [M+H]⁺ 454.2318. Found 454.2341.

(2*S*)-2-(2,2,2-Trifluoroacetamido)-N-[1-(3,4-dihydroquinolin-1(2*H*)-yl)-4-methyl-1-oxopent-4en-2-yl)-3-(4-methoxyphenyl]propanamide (16). HPLC (Reprosil, hexane/*i*PrOH 95 : 5, 1mL/min): t_R (8%) = 17.95 min, t_R (92%) = 22.80 min. Major diastereomer; ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 9.14 (d, *J* = 8.5 Hz, 1H), 8.24 (d, *J* = 8.5 Hz, 1H), 7.25 (d, *J* = 7.5 Hz, 1H), 7.21-7.12 (m, 5H), 6.81 (d, *J* = 8.5 Hz, 2H), 5.18-5.14 (m, 1H), 4.68 (s, 1H), 4.63 (s, 1H), 4.65-4.61 (m, 2H), 4.04-3.98 (m, 1H), 3.72 (s, 3H), 3.43-3.38 (m, 1H), 3.03 (dd, *J* = 14.0 Hz, *J* = 5.5 Hz, 1H), 2.87 (dd, *J* = 14.0 Hz, *J* = 10.0 Hz, 1H), 2.74 (dt, *J* = 16.0 Hz, *J* = 6.5 Hz, 1H), 2.63 (dt, *J* = 16.0 Hz, *J* = 7.0 Hz, 1H), 2.28 (dd, *J* = 14.0 Hz, *J* = 5.5 Hz, 1H), 2.19 (dd, *J* = 14.0 Hz, *J* = 8.5 Hz, 1H), 2.01-1.94 (m, 1H), 1.86-1.79 (m, 1H), 1.44 (s, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 170.4, 168.8, 157.6, 140.3, 138.0, 129.5 (2 C), 128.5, 127.8, 125.3, 124.7, 123.9, 113.2 (2 C), 112.6, 54.4, 47.9, 42.7, 35.9, 25.4, 23.0, 20.9. Minor diastereomer (selected peaks); ¹H-NMR (500 MHz, DMSO-d₆, 353K): δ 9.10 (d, *J* = 8.5 Hz, 1H), 8.14 (d, *J* = 8.5 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 3.98-3.95 (m, 1H), 3.72 (s, 3H), 1.46 (s, 3H); ¹³C-NMR (125 MHz, DMSO-d₆, 353K): δ 140.2, 129.5, 128.6, 127.9, 125.4, 123.8, 112.5, 54.2, 48.2, 24.5, 23.0, 21.0. HRMS (CI) *m/z* calcd for C₂₆H₃₁F₃N₃O₄ [M+H]⁺ 518.2267. Found 518.2307.

NMR spectra of compound 4b

S31

ppm (t1)

S56

