SUPPORTING INFORMATION

Reveromycins Revealed: New polyketide spiroketals from Australian marine-derived and terrestrial *Streptomyces* spp. A case of natural products vs artifacts.

Leith Fremlin,^a Michelle Farrugia,^a Andrew M. Piggott,^a Zeinab Khalil,^a Ernest Lacey^b and Robert J. Capon^{a*}

^aInstitute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia ^bMicrobial Screening Technologies Pty. Ltd., Building A 28-54 Percival Road, Smithfield, NSW 2164, Australia.

TABLE OF CONTENTS

1. General Experimental Details	3
2. Cultivation and Fractionation	5
Scheme S1. Fractionation of reveromycins from MST-MA568	5
Scheme S2. HPLC fractionation of reveromycins from MST-RA7781	5
Scheme S3. LC-SPE-NMR fractionation of reveromycins from MST-RA7781	5
3. Spectroscopic Data	6
Figure S1. ¹ H NMR (600 MHz, MeOH- d_4) and UV-vis spectra of reveromycin A (1)	6
Table S1. Tabulated LC-SPE-NMR data for reveromycin A (1)	7
Figure S2. ¹ H NMR (600 MHz, MeOH- d_4) and UV-vis spectra of reveromycin B (2)	8
Table S2. Tabulated LC-SPE-NMR data for reveromycin B (2)	9
Figure S3. ¹ H NMR (600 MHz, MeOH- d_4) and UV-vis spectra of reveromycin C (3)	10
Table S3. Tabulated NMR data for reveromycin C (3)	11
Figure S4. ¹ H NMR (600 MHz, MeOH- d_4) and UV-vis spectra of reveromycin D (4)	12
Table S4. Tabulated LC-SPE-NMR data for reveromycin D (4)	13
Figure S5. ¹ H NMR (600 MHz, MeOH- d_4) and UV-vis spectra of reveromycin E (5)	14
Table S5. Tabulated LC-SPE-NMR data for reveromycin E (5)	15
Figure S6. ¹ H NMR (600 MHz, MeOH- d_4) and UV-vis spectra of reveromycin F (6)	16
Table S6. Tabulated LC-SPE-NMR data for reveromycin F (6)	17
Figure S7. ¹ H NMR (600 MHz, MeOH- d_4) and UV-vis spectra of reveromycin G (7)	18
Table S7. Tabulated LC-SPE-NMR data for reveromycin G (7)	19
Figure S8. ¹ H NMR (600 MHz, MeOH- d_4) and UV-vis spectra of reveromycin A 4'-methyl ester (8 Table S8. Tabulated LC-SPE-NMR data for reveromycin A 4'-methyl ester (8)	8)20
Figure S9. ¹ H NMR (600 MHz, MeOH- d_4) and UV-vis spectra of reveromycin D 4'-methyl ester (9 Table S9. Tabulated LC-SPE-NMR data for reveromycin D 4'-methyl ester (9)	9)22 23
Figure S10. ¹ H NMR (600 MHz, MeOH- d_4) and UV-vis spectra of reveromycin E 4'-methyl ester Table S10. Tabulated LC-SPE-NMR data for reveromycin E 4'-methyl ester (10)	(10) 24 25
Figure S11. ¹ H NMR (600 MHz, MeOH- <i>d</i> ₄) and UV-vis spectra of reveromycin H (11)	26
Table S11. Tabulated LC-SPE-NMR data for reveromycin H (11)	27

Figure S12. HPLC-MS trace and UV-vis spectrum of reveromycin I (12)	28
Figure S13. ¹ H NMR (600 MHz, MeOH- <i>d</i> ₄) and UV-vis spectra of reveromycin J (13) Table S13. Tabulated LC-SPE-NMR data for reveromycin J (13)	29 30
Figure S14. ¹ H NMR (600 MHz, MeOH- <i>d</i> ₄) and UV-vis spectra of reveromycin K (14) Table S14. Tabulated LC-SPE-NMR data for reveromycin K (14)	31
Table S14a. Tabulated NMR data for reveromycin K trimethyl ester (14a)	33
Figure S15. ¹ H NMR (600 MHz, MeOH- <i>d</i> ₄) and UV-vis spectra of reveromycin L (15) Table S15. Tabulated LC-SPE-NMR data for reveromycin L (15)	34
Figure S16. ¹ H NMR (600 MHz, MeOH- d_4) and UV-vis spectra of reveromycin M (16)	36
1 able S16. 1 abulated LC-SPE-NMR data for reveromycin M (16)	37
4. Bioassays	38
Table S17. Cytotoxicity of the reveromycins	38
Table S18. Antifungal activities of reveromycins against three Candida sp. at pH 3 and pH 7	39
5. Taxonomy	40

1. General Experimental Details

Fine chemicals were purchased from Merck, Sigma, Aldrich or Fluka unless otherwise specified. Analytical Grade solvent was used for solvent extractions and solid phase extractions (SPE). Solvents used for HPLC and HPLC-MS purposes were of HPLC grade (except methanol used in HPLC-MS which was of Mass Spectrometry grade) supplied by Labscan and filtered and degassed through an Alltech 0.45 µm polytetrafluoroethylene (PTFE) membrane prior to use. Water for HPLC purposes was filtered through an ELGA PurelabUltra system prior to degassing. Deuterated solvents were supplied by Cambridge Isotopes (Andover, MA, USA).

Solid phase extractions were carried out on cartridges as specified. Prior to use each cartridge was conditioned with methanol followed by water, before equilibration with the initial solvent. Elution was carried out under applied vacuum and fractions analyzed by HPLC-DAD-MS or FIA in $ESI(\pm)MS$ mode.

High performance liquid chromatography (HPLC) was performed using:

(1) A Waters 2790 separations module equipped with a Waters 996 photodiode array (PDA) detector, Waters Fraction Collector II (or Waters 2700 Sample Manager) and Alltech 500 evaporative light scatter detector (or Waters 410 Differential Refractometer), operated under the control of Waters Millennium 32® software.

(2) An Agilent 1100 Series separations module equipped with six column switching capability (where required), six-position selection valve, quaternary or binary pump with vacuum degasser, well plate autosampler with thermostat control, diode array detector with analytical flow cell, Polymer Labs PL-ELS1000 ELSD connected through an Agilent 35900E analytical to digital interface, thermostated column compartment and fraction collector. Equipment was under the control of Agilent ChemStation software.

(3) An Agilent 1100 Series preparative separations module equipped with two preparative pumps with gradient control, preparative autosampler, multiple wavelength detector with preparative flow cell, and preparative fraction collector. Equipment was under the control of Agilent ChemStation software.

Standard analytical HPLC conditions were 1 mL/min linear gradient elution from 90% H₂O/MeCN (0.01% TFA) to MeCN (0.01% TFA) over 15 min, followed by a 5 min flush with MeCN (0.01% TFA). The standard HPLC-DAD-MS gradient conditions were identical, however the TFA modifier was replaced with 0.05% HCO₂H in order to minimize ion suppression in the negative mode. The standard column used for both gradients was a Zorbax StableBond C₈ (150 × 4.6 mm, 5 μ m) column, unless otherwise specified.

Chiroptical measurements ($[\alpha]_D$) were obtained on a Jasco P-1010 intelligent remote module polarimeter, using a 100 × 2 mm cell at room temperature (~22 °C). Circular dichroism (CD) spectra were acquired using a Jasco J-810 spectropolarimeter using a 1 mm quartz cell. Ultraviolet-visible (UV-vis) absorption spectra were obtained using a CARY3 UV-visible spectrophotometer using a 1 cm quartz cell. Infrared (IR) spectra were acquired on a Jasco FT/IR-460Plus spectrophotometer with samples examined as films on NaCl discs, or in a NaCl solution cell, or as KBr discs.

Nuclear magnetic resonance (NMR) experiments were carried out on:

(1) A Varian Unity 400 MHz spectrometer with XYX probe, controlled by VNMRJ software.

(2) A Bruker Avance 600 MHz spectrometer with either a 5 mm BBI 1H-BB Z-Gradient or 5 mm PASEL 1H/D-13C Z-Gradient probe, controlled by XWinNMR or TopSpin software.

In all cases spectra were acquired at 25 $^{\circ}$ C (unless otherwise specified) in solvents as specified in the text, with referencing to residual ¹H signals in the deuterated solvent.

LC-NMR experiments were carried out on a Bruker Avance 600 MHz spectrometer with a 3 mm PASEI 1H/D-13C Z-Gradient probe, controlled by TopSpin software. The HPLC consisted of an Agilent 1100 Series separation module equipped with a quaternary pump, vacuum degasser and analytical autosampler, connected to a Bruker diode array detector, Bruker BSMS, Spark SPE robot and Foxy Jnr fraction collector, under the control of Bruker HyStar software.

NMR chemical shift predictions were performed using ACD/Labs 7.0 HNMR and CNMR predictor modules.

Electrospray Ionisation Mass Spectra (ESI-MS) were acquired using both flow injection analysis (FIA) and liquid chromatography-diode array-mass spectrometry (HPLC-DAD-MS), were acquired on an Agilent 1100 series separation module with quaternary pump equipped with a vacuum degasser, an Agilent well plate autosampler with thermostat control, an Agilent diode array detector with micro flow cell, an Agilent thermostated column compartment and an Agilent single quadrupole mass detector. Equipment was under the control of Agilent ChemStation software. High Resolution Electrospray Ionisation Mass Spectra (HR-ESI-MS) measurements were obtained on either a Finnigan MAT 900 XL-Trap instrument with a Finnigan API III source or Bruker Daltonics micrOTOF-Q instrument with Apollo II ESI ion source. High-resolution electron-impact mass spectra (HR-EI-MS) measurements were obtained on a Kratos MS25RFA mass spectrometer at 70 eV.

3. Cultivation and Fractionation

Scheme S1. Fractionation of reveromycins from MST-MA568. (a) fermentation supernatant dried *in vacuo*; (b) partitioning between H_2O and *n*-BuOH; (c) gel chromatography (Sephadex LH-20, MeOH); (d) C_8 HPLC.

Scheme S2. HPLC-DAD fractionation of reveromycins from MST-RA7781. (a) Acetone extraction $(2 \times 2.5 \text{ L})$ then concentration *in vacuo* to 1.2 L; (b) Ethyl acetate extraction $(2 \times 1.5 \text{ L})$ then concentration *in vacuo* to dryness; (c) Preparative C₁₈ HPLC; (d) Semi-preparative C₈ HPLC

Scheme S3. HPLC-DAD-SPE-NMR fractionation of reveromycins from MST-RA7781. (a) Preparative C_{18} HPLC; (b) HPLC-DAD-SPE-NMR. Percent compositions are calculated on a mass-to-mass basis against the parent crude extract.

Figure S1. <u>Upper panel</u>: ¹H NMR (600 MHz, MeOH- d_4 , HPLC-SPE-NMR) spectrum of reveromycin A (1), with inset showing expansion between 0.6 and 2.8 ppm. <u>Lower panel</u>: UV-vis spectrum of reveromycin A (1) extracted from HPLC diode array detector (MeCN:H₂O).

Pos	$\delta_{\rm H}$ (m, J (Hz))	δ_{C}^{a}	COSY	TOCSY	HMBC (¹ H- ¹³ C)
1		169.8			
2	5.82 (dd, 15.7, 1.3)	122.3	3	3, 4, 4-Me	1, 4
3	6.98 (dd, 15.7, 7.7)	152.7	2, 4	2, 4, 4-Me	1, 2, 4, 5, 4-Me
4	2.53 (dqdd, 7.7, 6.8, 5.8, 1.3)	43.9	3, 5, 4-Me	2, 3, 5, 6, 7, 4-Me	2, 3, 5, 6, 4-Me
5	4.07 (ddd, 7.2, 5.8, 0.9)	76.7	4, 6	2, 4, 6, 7, 4-Me	3, 4, 6, 7, 4-Me
6	5.52 (dd, 15.7, 7.2)	127.7	5,7	5, 7	4, 5, 8
7	6.25 (dd, 15.7, 0.9)	137.7	6	4, 5, 6, 4-Me	5, 6, 8, 8-Me
8		135.9			
9	5.58 (dd, 7.7, 6.8)	129.3	10a/b, 8-Me	10a/b, 11, 8-Me	7, 8-Me
10a	2.41 (ddd, 15.7, 7.7, 3.8)	32.8	9, 11	9, 11, 8-Me, 12-Me	9
10b	2.35 (ddd, 15.7, 6.8, 4.3)		9, 11	9, 11, 8-Me, 12-Me	8, 9, 11
11	3.45 (ddd, 10.1, 4.3, 3.8)	76.1	10a/b, 12	9, 10a/b, 12, 12-Me, 14a/b	9
12	1.39 (m)	36.2	12-Me	11, 12-Me, 14a/b	14
13	1.44 (m)	28.1	14a	14a	
14a	1.71 (ddd, 12.8, 2.7, 2.7)	36.7	13, 14b	13, 14b	12, 15
14b	1.47 (m)		14a	12, 14a, 12-Me	12
15		97.1			
16a	1.83 ^d (ddd, 13.6, 13.6, 4.3)	35.1	16b, 17b	16b, 17a/b	15, 17
16b	1.60 (ddd, 13.6, 4.3, 3.9)		16a	16a, 17a/b	15, 17
17a	2.29 (ddd, 14.2, 4.3, 3.9)	25.4	17b	16a/b, 17b	16
17b	2.02 (ddd, 14.2, 13.6, 4.3)		16a, 17a	16a/b, 17a	
18		84.2			
19	4.63 (d, 8.3)	79.5	20, 21	20, 21	15, 17, 18, 20, 21
20	6.46 (dd, 15.6, 8.3)	134.1	19	19	19, 20, 22, 23, 22-Me
21	6.44 (d, 15.6)	139.1	19	19	19, 21, 22, 23, 22-Me
22		152.6			
23	5.88 (d, 1.2)	121.3		22-Me	21, 24, 22-Me
24		170.0			
25a	1.83 ^d (ddd, 13.6, 13.6, 4.3)	34.8	25b, 26a/b	25b, 26a/b, 27a/b, 28	26, 27, 28
25b	1.66 (ddd, 13.6, 4.3, 3.9)		25a, 26a/b	25a, 26a/b, 27a/b, 28	
26a	1.24 (m)	23.8	25a/b	25a/b, 28	25, 27, 28
26b	1.22 (m)		25a/b	25a/b, 28	25, 27, 28
27a	1.26 (m)	23.3	28	25a/b, 28	25, 26, 28
27b	1.21 (m)		28	25a/b, 28	25, 26, 28
28	0.86 (t, 6.8)	14.6	27a/b	25a/b, 26a/b, 27a/b	26, 27
4-Me	1.08 (d, 6.8)	15.0	4	2, 3, 4, 5, 6	3, 4, 5
8-Me	1.75 (s)	12.5	9	9, 10a/b, 11	7, 8, 9
12-Me	0.79 (d, 6.5)	17.5	12	11, 12, 13, 14a/b	11, 13, 14
22-Me	2.25 (d, 1.2)	14.3		23	21, 22, 23
1'		173.8 ^c			
2'	2.62^{b} (m)	30.9			1', 3', 4'
3'	2.59^{b} (m)	29.7			1', 2', 4'
4′	. /	176.4 ^c			

Table S1. NMR (600 MHz, MeOH-d4, HPLC-SPE-NMR) data for reveromycin A (1).

(a) ¹³C assignments obtained from gHSQC and gHMBC data. (b-c) Assignments interchangeable (d) Overlapping resonances

Figure S2. <u>Upper panel</u>: ¹H NMR (600 MHz, MeOH- d_4 , HPLC-SPE-NMR) spectrum of reveromycin B (2), with inset showing expansion between 0.6 and 2.8 ppm. <u>Lower panel</u>: UV-vis spectrum of reveromycin B (2) extracted from HPLC diode array detector (MeCN:H₂O).

Pos	$\delta_{\rm H}$ (m, J (Hz))	δ_{C}^{a}	COSY	TOCSY	HMBC (¹ H- ¹³ C)
1		169.7			
2	5.77 ^d (dd, 15.8, 1.2)	120.9	3	3, 4, 4-Me	1, 2, 4, 4-Me
3	6.98 (dd, 15.8, 7.5)	152.8	2,4	2, 4, 4-Me	1, 2, 4, 4-Me
4	2.50 (dqdd, 7.5, 6.9, 5.2, 1.2)	43.8	3, 5, 4-Me	2, 3, 5, 4-Me	2, 3, 5, 6, 4-Me
5	4.08 (dd, 7.5, 5.2)	76.9	4,6	4, 6, 7, 4-Me	3, 6, 7, 8
6	5.46 (dd, 15.7, 7.5)	126.9	5,7	5	5, 8
7	6.39 (d, 15.7)	138.4	6	5	8, 9, 11, 8-Me
8		135.2			
9	5.77^{d} (m)	130.7	10a/b, 8-Me	10a/b, 11	
10a	2.57 (ddd, 15.3, 7.7, 2.7)	32.7	9, 10b, 11	9, 10b, 11	8,9
10b	2.17 (ddd, 15.3, 8.6, 7.4)		9, 10a, 11	9, 10a, 11	8, 9, 11
11	3.45 (ddd, 10.0, 8.6, 2.7)	78.3	10a/b, 12	9, 10a/b, 12, 13b, 14, 12-Me	9
12	1.38 (m)	35.6	11, 12-Me	11, 13a/b, 14, 12-Me	
13a	1.61 (m)	30.1	13b, 14	11, 12, 13b, 14, 12-Me	
13b	1.51 (m)		13a, 14	12, 13a, 14, 12-Me	15
14	1.72 (m)	35.1	13a/b	11, 12, 13a/b, 12-Me	
15		108.7			
16a	1.99 (m)	39.5	16b, 17b	16b, 17b	15, 17, 18
16b	1.80 (m)		16a, 17a	16a, 17a	15
17a	1.99 (m)	32.8	16b, 17b	16b, 17b	15, 16, 18
17b	1.84 (m)		16a, 17a	16a, 17a	15, 16
18		88.5			
19	5.56 (d, 3.6)	80.2	20, 21	20, 21	16, 17, 18, 20, 21, 1'
20	6.25 (dd, 16.0, 3.6)	132.4	19, 21	19, 21	19, 20, 22, 23
21	6.28 (d, 16.0)	135.4	19, 20	19, 20	19, 21, 22, 23
22		152.3			
23	5.80 (d, 1.0)	122.2			19, 20, 21, 22, 24
24		169.7			
25a	1.59 (m)	35.4	25b, 26	25b, 26, 27, 28	26, 27
25b	1.47 (m)		25a, 26	25a, 26, 27, 28	26, 27
26	1.31 (m)	26.4	25a/b	25a/b, 28	25, 27, 28
27	1.31 (m)	24.1	28	25a/b, 28	25, 26, 28
28	0.92 (t, 6.9)	14.3	27	25a/b, 26, 27	26, 28
4-Me	1.02 (d, 6.9)	14.8	4	2, 3, 4	3, 4, 5
8-Me	1.74 (s)	12.6	9	9, 11	7, 8, 9
12-Me	0.89 (d, 6.5)	18.1	12	11, 12, 13a/b, 14	11, 12, 13, 14
22-Me	2.23 (d, 1.0)	13.7		23	21, 22, 23, 24
1'		172.7 ^c			
2'	2.60^{b} (m)	30.0			1', 3', 4'
3'	2.62^{b} (m)	29.8			1', 2', 4'
4′		175.7 ^c			

Table S2. NMR	(600 MHz,	MeOH-d ₄ , HPI	C-SPE-NMR)	data for reverom	nycin B (2).
---------------	-----------	---------------------------	------------	------------------	--------------

(a) ¹³C assignments obtained from gHSQC and gHMBC data. (b-c) Assignments interchangeable (d) Overlapping resonances

Figure S3. <u>Upper panel</u>: ¹H NMR (600 MHz, MeOH- d_4) spectrum of reveromycin C (**3**), with inset showing expansion between 0.6 and 2.8 ppm. <u>Lower panel</u>: UV-vis spectrum of reveromycin C (**3**) extracted from HPLC diode array detector (MeCN:H₂O).

Table S3. NMR	(600 MHz,	MeOH- d_4) data	for reveromycin C (3).
---------------	-----------	--------------------	------------------------

Pos	δ _H (m, <i>J</i> (Hz))	δ_{C}^{a}	COSY	HMBC (¹ H- ¹³ C)
1		169.9		· · · ·
2	5.82 (dd, 15.7, 1.3)	122.3	3	1, 4
3	6.98 (dd, 15.7, 7.7)	152.6	2,4	1, 2, 4, 5, 4-Me
4	2.53 (dqdd, 7.7, 6.8, 5.8, 1.3)	43.9	3, 5, 4-Me	2, 3, 5, 6, 4-Me
5	4.06 (dd, 7.3, 5.8)	76.7	4, 6	3, 4, 6, 7, 4-Me
6	5.52 (dd, 15.6, 7.3)	127.7	5, 7	4, 5, 8
7	6.25 (d, 15.6)	137.7	6	5, 6, 8, 8-Me
8		135.3		, , , ,
9	5.58 (dd, 7.7, 6.8)	129.2	10a/b, 8-Me	7. 8-Me
10a	2.41 (ddd, 15.7, 7.7, 3.8)	32.8	9, 11	9
10b	2.35^{d} (m)		9, 11	8, 9, 11
11	3.45 (ddd, 10.1, 4.3, 3.8)	76.1	10a/b. 12	9
12	1.39 (m)	36.2	12-Me	14
13	1.44 (m)	28.1	14a	
14a	1.71 (ddd, 12.8, 2.7, 2.7)	36.8	13, 14b	12, 15
14b	1.47 (m)		14a	12
15		96.9		
16a	1.83 (ddd, 13.6, 13.6, 4.3)	35.1	16b. 17b	15, 17
16b	1.60° (m)		16a	15, 17
17a	2.29 (ddd, 14.2, 4.3, 3.9)	25.2	17b	16
17b	2.02 (ddd, 14.2, 13.6, 4.3)		16a, 17a	
18	(,,,,)	84.0		
19	4.63 (d. 8.3)	79.7	20. 21	15, 17, 18, 20, 21
20	6.46 (dd. 15.6. 8.3)	133.8	19	19, 20, 22, 23, 22-Me
21	6 44 (d. 15 6)	139.1	19	19 21 22 23 22-Me
22	0.11 (u, 10.0)	152.6	.,	,,,,
23	5 88 (d. 1.2)	121.4		21 24 22-Me
24	0.000 (u, 1.2)	170.0		
25a	1.83^{d} (ddd 13.6, 13.6, 4.3)	34.8	25h 26a/b	26.27
25h	1 63° (m)	5	25a 26a/b	26,27
26a	1 17 (m)	31.7	25a/b	25 27 28 27-Me
26h	1.09 (m)	01.7	25a/b	25, 27, 28, 27-Me
200	1 38 (m)	293	28 27-Me	25, 26, 28, 27-Me
28	0.84 (d. 6.8)	22.9	27a/b	26, 27, 27-Me
2-Me	1.08 (d. 6.8)	15.0	4	3 4 5
8-Me	1.00 (a, 0.0)	12.5	9	7 8 9
12-Me	0.79 (d. 6.5)	17.5	12	11 13 14
22-Me	2 25 (d. 1.2)	14.3	12	21 22 23
27-Me	0.80 (d, 6.8)	22.5	27	26, 27, 28
1'	0.00 (a, 0.0)	173 1°		
· 2'	2.58^{b} (m)	29.8		1' 3' 4'
2'	2.50^{b} (m)	20.0		1, 5, 7 1', 0', 4'
3 1/	2.39 (III)	30.9		1, 2, 4
4		1/5.6°		

(a) ¹³C assignments obtained from gHSQC and gHMBC data. (b-c) Assignments interchangeable (d-e) Overlapping resonances

Figure S4. <u>Upper panel</u>: Presat ¹H NMR (600 MHz, MeOH- d_4 , irr. δ_H 4.87, HPLC-SPE-NMR) spectrum of reveromycin D (4), with inset showing expansion between 0.6 and 2.8 ppm. <u>Lower panel</u>: UV-vis spectrum of reveromycin D (4) extracted from HPLC diode array detector (MeCN:H₂O)

Table S4. NMR	(600 MHz,	MeOH- d_4 ,	HPLC-SPE-NMR)	data for reveror	nycin D (4).
---------------	-----------	---------------	---------------	------------------	--------------

Pos	$\delta_{\rm H}$ (m, J (Hz))	δ_{C}^{a}	COSY	TOCSY	HMBC (¹ H- ¹³ C)
1		169.9			· · ·
2	5.82 (dd, 15.8, 1.3)	122.4	3	3, 4, 5, 4-Me	1,4
3	6.98 (dd, 15.8, 7.7)	152.9	2,4	2, 4, 5, 4-Me	1, 2, 4, 5, 4-Me
4	2.52 (ddad. 7.7. 6.9. 6.8. 1.3)	44.2	3. 4-Me	2. 3. 5. 7. 4-Me	2, 3, 5, 6, 4-Me
5	4.07 (dd. 7.3, 6.9)	76.8	4.6	4, 6, 7, 4-Me	3. 4. 6. 7. 4-Me
6	5.54 (dd. 15.7. 7.3)	128.0	5.7	4. 5. 7. 4-Me	5.7
7	6 26 (d. 15 7)	137.9	6	4 5 6	5 6 8 8-Me
8	0.20 (4, 10.7)	135.3	ů –	., 0, 0	2, 0, 0, 0
9	5 59 (dd 7 7 6 8)	129.5	10a/b	10a/b 11 8-Me	7 10 8-Me
10a	2 41 (ddd 157 77 38)	32.9	9 11	9 11 12 8-Me	9 11
10h	2.41 (ddd, 15.7, 7.7, 5.6)	52.7	9 11	9 11 12 8 Me	8 9
11	3.45 (ddd, 10.1, 4.3, 3.8)	76.2	$10_{2}/b$ 12	$9, 10_{2}/h$ 12 13 ₂ /h 14 ₂ /h 12 Me	0
12	1.40 (m)	24.8	10a/0, 12 11 12a/b 12 Ma	$11 120 140 12 M_0$	11
12	1.40 (III) 1.54 (m)	24.0	11, 13a/0, 12-ivic	11, 13a, 14a, 12-Wic	11
13a 12b	1.54 (III) 1.45 (m)	20.7	12, 14a/0 12, 14a/b	14a 14a/b 12 Ma	14
130	1.45 (III) 1.72 (111 12.8 2.7 2.7)	26.9	12, 14a/0	14a/0, 12-1vic	12
14a	1.72 (add, 12.8, 2.7, 2.7)	30.8	13a/b	13a/0, 140	12, 15
140	1.47 (m)	06.0	13a/b, 14a	13a, 14a, 12-Me	15
15		96.9			
16a	1.83° (ddd, 13.6, 13.6, 4.3)	32.8	16b, 17b	16b, 1/a/b	14, 15, 17, 18
166	1.61 (ddd, 13.6, 4.3, 3.9)		16a, 17a	16a, 1/a/b	15, 17, 18
17a	2.30 (ddd, 13.8, 4.3, 3.9)	25.3	16b, 17b	16a/b, 17b	
17b	2.02 (ddd, 13.8, 13.6, 4.4)		16a, 17a	16a/b, 17a	16
18		83.9			
19	4.62 (d, 8.3)	79.7	20, 21	20, 21	15, 18, 20, 21
20	6.46 (dd, 15.6, 8.3)	134.2	19	19	19, 21, 22, 23, 22-Me
21	6.44 (d, 15.6)	139.1	19	19	19, 20, 22, 23, 22-Me
22		152.5			
23	5.88 (d, 1.0)	121.6		22-Me	21, 22, 24, 22-Me
24		169.7			
25a	1.83 ^d (ddd, 13.6, 13.6, 4.3)	39.3	25b, 26a/b	25b, 26a/b, 27a/b, 28a/b, 29	
25b	1.65 (ddd, 13.6, 4.3, 3.9)		25a, 26a/b	25a, 26a/b, 27a/b, 28a/b, 29	
26a	1.29 (m)	22.9	25a/b	25a/b, 29	27
26b	1.23 (m)		25a/b	25a/b, 29	
27a	1.21 (m)	33.0	28a/b	25a/b, 29	29
27b	1.16 (m)		28a/b	25a/b, 29	26, 28
28a	1.29 (m)	22.9	27a/b, 29	25a/b, 29	27
28b	1.23 (m)		27a/b, 29	25a/b, 29	
29	0.85 (t, 7.1)	14.2	28a/b	25a/b, 26a/b, 27a/b, 28a/b	26, 27, 28
4-Me	1.08 (d, 6.8)	14.9	4	2, 3, 4, 5	3, 4, 5
8-Me	1.76 (s)	12.9		9, 10a/b	7, 8, 9
12-Me	0.79 (d. 6.5)	17.2	12	10a/b. 11, 12, 13a/b. 14b	11. 12. 13
22-Me	2.26(d, 1.0)	14.4	-	23	21, 22, 23, 24
1'	(,)	173.2°			, _ 2 , 2 0, 2 .
2'	2.58^{b} (m)	31.3			1' 3' 4'
2'	2.60^{b} (m)	20.7			1', 2', 4'
J 1/	2.02 (III)	27.1 175.0°			1, 2, 4
4		175.8			

(a) ¹³C assignments obtained from gHSQC and gHMBC data. (b-c) Assignments interchangeable. (d) Overlapping resonances

Figure S5. <u>Upper panel</u>: Presat ¹H NMR (600 MHz, MeOH- d_4 , irr δ_H 4.84, HPLC-SPE-NMR) spectrum of reveromycin E (**5**), with inset showing expansion between 0.6 and 2.8 ppm. <u>Lower panel</u>: UV-vis spectrum of reveromycin E (**5**) extracted from HPLC diode array detector (MeCN:H₂O).

Table S5. NMR	(600 MHz, MeOH-	d ₄ , HPLC-SPE-NMR) data for reveromycin E (5).
---------------	-----------------	-------------------------------	-------------------------------

Pos	$\delta_{\rm H}$ (m, J (Hz))	δ_{C}^{a}	COSY	TOCSY	HMBC (¹ H- ¹³ C)
1		170.2			
2	5.82 (dd, 15.8, 1.2)	122.5	3	3, 4, 5, 4-Me	1,4
3	6.99 (dd, 15.8, 7.7)	152.8	2,4	2, 4, 5, 4-Me	1, 2, 4, 5, 4-Me
4	2.52 (ddad, 7.7, 6.8, 6.8, 1.2)	44.1	3. 5. 4-Me	2, 3, 5, 7, 4-Me	2. 3. 5. 6. 4-Me
5	4.07 (dd. 7.3, 6.8)	76.9	4.6	4, 6, 7, 4-Me	3. 4. 6. 7. 4-Me
6	5 54 (dd 15 6 7 3)	127.8	5 7	4 5 7 4-Me	5 8
7	6.26 (d. 15.6)	137.8	6	4 5 6	5 8 9 8-Me
8	0.20 (u, 15.0)	135.2	0	1, 5, 6	5, 6, 7, 6 110
0	5 59 (dd 7 1 6 9)	129.4	10a/b	10a/b 11 8-Me	7 10 11 8-Me
102	2.41 (ddd 1577738)	32.0	0 11	0 11 12 8 Mg	11
10a 10b	2.41 (ddd, 15.7, 7.7, 5.8)	32.9	9,11	9, 11, 12, 0-MC	2 0 11 8 Me
110	2.57 (udd, 15.7, 0.8, 4.5)	76.2	$\frac{9,11}{10a/b}$ 12	$9, 11, 12, 0^{-1010}$	0, 10
11	1.40 (m)	24.6	10a/0, 12	9, 10a/0, 12, 13a/0, 14a/0, 12-We	9, 10
12	1.40 (III) 1.51 (m)	34.0 29.6	11, 15a, 12-Me	11, 15a, 14a, 12-Me	11 14
138	1.51 (m)	28.0	12, 14a	12, 14a	11, 14
130	1.44 (m)	26.0	14a	11, 14a, 12-Me	14, 15
14a	1.72 (ddd, 12.8, 2.7, 2.7)	36.8	13a/b, 14b	12, 13a/b, 14b	12
14b	1.47 (m)		14a	11, 14a, 12-Me	13, 15
15		97.1			
16a	1.82 (ddd, 13.6, 13.6, 4.3)	32.6	16b, 17b	16b, 17a/b	14, 15, 17, 18
16b	1.60 (ddd, 13.6, 4.2, 3.9)		16a	16a, 17a/b	14, 15, 17, 18
17a	2.31 (ddd, 13.8, 4.3, 3.9)	25.3	17b	16a/b, 17b	15
17b	2.02 (ddd, 13.8, 13.6, 4.2)		16a, 17a	16a/b, 17a	15, 16
18		84.1			
19	4.61 (d, 8.3)	79.8	20, 21	20, 21	15, 17, 20, 21
20	6.46 (dd, 15.6, 8.3)	134.1	19	19	19, 21, 22, 23, 22-Me
21	6.44 (d, 15.6)	139.1	19	19	19, 20, 22, 23, 22-Me
22		152.3			
23	5.88 (d, 0.9)	121.5		22-Me	21, 22, 24, 22-Me
24		169.9			, , ,
25a	1.85 (ddd, 13.6, 13.6, 4.3)	35.3	25b, 26	25b, 26, 27a/b, 28, 29a/b	18, 27, 29
25b	1.64 (ddd, 13.6, 4.2, 3.9)		25a. 26	25a, 26, 27a/b, 28, 29a/b	18, 27, 29
26	1.20 (m)	30.4	25a/b	25a/b. 30	- , - , -
27a	1 27 (m)	23.5		25a/b 30	28 30
27h	1.25 (m)			25a/b 30	28
28	1 22 (m)	32.4		25a/b, 30	26
202	1.22 (m)	22.6	30	25a/b, 30	28 30
290 20b	1.27 (m)	22.0	30	25a/b, 30	28, 50
30	0.86(t, 6.0)	143	20a/b	25a/0, 50 26 27a/b 28 20a/b	20
30 4 Ma	1.08 (d, 6.8)	14.5	29a/0 A	20, 27a/0, 20, 29a/0	27, 20, 29
9 Ma	1.06 (u, 0.0)	12.1	4	2, 3, 4, 5, 7	7 8 0
0-IVIC	1.73(8)	12.0	9	9, 10a/0 10-/- 11 12 12-/- 14-/-	7, 8, 9
12-Me	0.78(d, 0.5)	17.8	12	10a/b, 11 , 12 , $13a/b$, $14a/b$	11, 12, 13
22-Me	2.20 (a, 0.9)	14.5		20, 21, 23	21, 22, 23, 24
1'	• cub c	1/2.9			
2'	2.61° (m)	31.1			1', 3', 4'
3'	2.57° (m)	29.7			1', 2', 4'
4'		175.4 ^c			

(a) ¹³C assignments obtained from gHSQC and gHMBC data. (b-c) Assignments are interchangeable.

Figure S6. <u>Upper panel</u>: ¹H NMR (600 MHz, MeOH- d_4 , HPLC-SPE-NMR) spectrum for reveromycin F (6), expansion between 0.6 and 2.8 ppm. <u>Lower panel</u>: UV-vis spectrum of reveromycin F (6) extracted from HPLC diode array detector (MeCN:H₂O).

Pos	$\delta_{\rm H}$ (m, J (Hz))	δ_{C}^{a}	COSY	TOCSY	HMBC (¹ H- ¹³ C)
1		169.8			1, 4, 4-Me
2	5.80 ^d (dd, 15.8, 1.2)	120.9	3	3, 4, 4-Me	1, 2, 4, 5, 4-Me
3	6.99 (dd, 15.8, 7.6)	152.8	2, 4	2, 4, 4-Me	2, 3, 5, 6, 4-Me
4	2.51 (dqdd, 7.6, 6.9, 5.4, 1.2)	44.0	3, 5	2, 3, 5, 4-Me	3, 4, 6, 7, 4-Me
5	4.08 (dd, 7.5, 5.4)	76.9	4, 6	4, 6, 7, 4-Me	4, 5, 8
6	5.46 (dd, 15.7, 7.5)	127.0	5, 7	5, 7	5, 8, 9, 8-Me
7	6.37 (d, 15.7)	138.4	6	5, 6	
8		135.8			7, 8, 10, 8-Me
9	5.80^{d} (m)	130.7	10a/b, 8-Me	10a/b, 11	8,9
10a	2.57 (ddd, 15.3, 7.7, 2.6)	32.8	9, 10b	9, 10b, 11	8, 9, 11
10b	2.17 (ddd, 15.3, 8.6, 7.4)		9, 10a, 11	9, 10a, 11	9
11	3.45 (ddd, 10.0, 8.6, 2.6)	78.3	10a/b, 12	9, 10a/b, 12, 13b, 14	1, 4, 4-Me
12	1.39 (m)	35.6	11	11, 13a/b, 14, 12-Me	1, 2, 4, 5, 4-Me
13a	1.61 (m)	30.2	13b, 14	12, 13b, 14, 12-Me	
13b	1.53 (m)		13a	12, 13a, 14, 12-Me	
14	1.72 (m)	35.2	13a	12, 13a/b, 12-Me	
15		108.8			
16a	1.99 (m)	39.6	16b, 17a/b	16b, 17a/b	15, 18
16b	1.80 (m)		16a, 17a/b	16a, 17a/b	15, 17
17a	1.99 (m)	32.7	16a/b, 17b	16a/b, 17b	15, 18
17b	1.88 (m)		16a/b, 17a	16a/b, 17a	14, 15
18		88.6	,		
19	5.56 (d, 4.1)	80.3	20, 21	20, 21	17, 18, 20, 21, 25, 1'
20	6.25 (dd, 16.0, 4.1)	132.4	19, 21	19, 21	19, 21, 22, 23, 22-Me
21	6.28 (d, 16.0)	135.8	19, 20	19, 20	19, 20, 22
22		152.2		, ,	
23	5.80^{d} (m)	122.2	22-Me	22-Me	24
24		170.1			
25a	1.57 (m)	35.6	25b, 26	25b, 26, 27, 28	
25b	1.48 (m)		25a, 26	25a, 26, 27, 28	
26	1.34 (m)	23.7	25a/b, 27	25a/b, 27, 28, 29	
27	1.29 (m)	33.5	26, 28	25a/b, 26, 29, 29	
28	1.34 (m)	23.7	27, 29	25a/b, 26, 27, 29	
29	0.87 (m)	14.2	28	25a/b, 26, 27, 28, 29	26, 27, 28
4-Me	1.02 (d, 6.9)	14.9	4	2, 3, 4, 5	3, 4, 5
8-Me	1.74 (s)	12.6	9	11	7, 8, 9
12-Me	0.87 (m)	18.1	12	11, 12, 13a/b, 14	11, 12, 13
22-Me	2.24 (d, 1.0)	13.8	23	23	20, 21, 22, 23, 24
1'	· · /	172.9			
2'	2.68^{b} (m)	30.3			1', 4'
3'	2.65^{b} (m)	29.6			1'. 4'
4'		175.9			~

Table S6. NMR (600 MH	z, MeOH-d ₄ , HPLC-DA	D-SPE-NMR) data for re	everomycin F (6).
-----------------------	----------------------------------	------------------------	-------------------

(a) ¹³C assignments obtained from gHSQC and gHMBC data. (b) Assignments interchangeable. (c) Overlapping resonances

Figure S7. <u>Upper panel</u>: ¹H NMR (600 MHz, MeOH- d_4 , HPLC-SPE-NMR) spectrum for reveromycin G (7), expansion between 0.6 and 2.8 ppm. <u>Lower panel</u>: UV-vis spectrum of reveromycin G (7) extracted from HPLC diode array detector (MeCN:H₂O).

Pos	$\delta_{\mathrm{H}}(\mathrm{m}, J(\mathrm{Hz}))$	$\delta_{C}{}^{a}$	COSY	TOCSY	HMBC (¹ H- ¹³ C)
1		169.7			· · · ·
2	5.78 ^d (dd, 15.7, 1.2)	120.9	3	3, 4, 4-Me	
3	6.99 (dd, 15.7, 7.5)	152.8	2,4	2, 4, 4-Me	1,4
4	2.49 (ddqd, 7.5, 6.8, 5.4, 1.2)	43.9	5, 4-Me	2, 3, 5, 4-Me	
5	4.08 (dd 7.5, 5.4)	76.9	4,6	4, 6, 7, 4-Me	6
6	5.46 (dd, 15.7, 7.5)	127.1	5, 7	5, 7	
7	6.37 (d, 15.7)	138.4	6	5,6	5
8		135.1			
9	5.78 ^d (m)	130.7	10a/b, 8-Me	10a/b, 11	
10a	2.57 (m)	32.5	9, 10b	9, 10b, 11	12
10b	2.17 (m)		9, 10a, 11	9, 10a, 11	
11	3.45 (m)	78.4	10a/b, 12	9, 10a/b, 12, 13b, 14, 12-Me	
12	1.39 (m)	35.5	11, 12-Me	11, 13a/b, 14, 12-Me	
13a	1.62 (m)	30.2	13b, 14	12, 13b, 14, 12-Me	
13b	1.52 (m)		13a, 14	12, 13a, 14, 12-Me	
14	1.72 (m)	35.2	13a/b	12, 13a/b, 12-Me	12
15		108.9		, ,	
16a	1.98 (m)	39.5	16b, 17b	16b, 17a/b	18
16b	1.78 (m)		16a, 17a/b	16a, 17a/b	15
17a	1.98 (m)	32.8	16b, 17b	16a/b, 17b	18
17b	1.88 (m)		16a/b, 17a	16a/b, 17a	15
18		88.7	,	,	
19	5.56 (d, 3.6)	80.2	20, 21	20, 21	18, 21
20	6.25 (dd, 15.9, 3.6)	132.4	19, 21	19, 21	
21	6.28 (d, 15.9)	135.7	19,20	19, 20	
22		152.7			
23	5.78 (d, 0.9)	122.3	22-Me	22-Me	
24		170.3			
25a	1.57 (m)	35.7	25b, 26	25b, 26, 27, 28, 29, 30	
25b	1.46 (m)		25a, 26	25a, 26, 27, 28, 29, 30	
26	1.30 (m)	30.7	25a/b	25a/b, 30	
27	1.30 (m)	23.8		25a/b, 30	
28	1.30 (m)	32.9		25a/b, 30	
29	1.30 (m)	23.8	30	25a/b, 30	
30	0.90 (m)	14.2	29	26, 27, 28, 29	27, 28, 29
4-Me	1.01 (d, 6.8)	15.0	4	2, 3, 4, 5	3, 4, 5
8-Me	1.74 (s)	12.6	9	10a/b, 11, 12	7, 8, 9
12-Me	0.90 (m)	18.0	12	10a/b, 11, 12, 13a/b, 14	11, 12, 13
22-Me	2.24 (d, 0.9)	13.7	23	23	21, 22, 23
1'		176.0 ^c			
2'	2.68^{b} (m)	30.1			1', 4'
3'	2.65^{b} (m)	29.6			1'. 4'
4′		173.4°			2

Table S7. NMR (600 MHz, MeOH-d4, HPLC-SPE-NMR) data for reveromycin G (7).

(a) ¹³C assignments obtained from gHSQC and gHMBC data. (b-c) Assignments interchangeable. (d) Overlapping resonances

Figure S8. <u>Upper panel</u>: Presat ¹H NMR (600 MHz, MeOH- d_4 , irr δ_H 4.87, HPLC-SPE-NMR) spectrum for reveromycin A 4'-methyl ester (8), expansion between 0.6 and 2.8 ppm. <u>Lower panel</u>: UV-vis spectrum of reveromycin A 4'-methyl ester (8) extracted from HPLC diode array detector (MeCN:H₂O)

Pos	$\delta_{\rm H}$ (m, J (Hz))	δ_{C}^{a}	COSY	TOCSY	HMBC (¹ H- ¹³ C)
1		169.5			
2	5.81 (dd, 15.7, 1.2)	122.3	3	3, 4, 4-Me	1,4
3	6.98 (dd, 15.7, 7.7)	152.8	2, 4	2, 4, 5, 4-Me	1
4	2.53 (dqdd, 7.7, 6.8, 5.8, 1.2)	43.9	3, 5, 4-Me	2, 3, 5, 4-Me	3, 5, 4-Me
5	4.07 (dd, 7.3, 5.8)	76.7	3, 6	4, 6, 7, 4-Me	4, 6, 7
6	5.53 (dd, 15.7, 7.3)	127.8	5, 7	4, 5, 6, 4-Me	4, 8
7	6.24 (d, 15.7)	137.7	6	4, 5, 6	5, 8, 9, 8-Me
8		135.1			
9	5.59 (dd, 7.7, 6.8)	129.4	10a/b	10a/b, 11	8, 8-Me
10a	2.41 (ddd, 15.7, 7.7, 3.8)	32.7	9, 11	9, 11, 8-Me	
10b	2.37 (ddd, 15.7, 6.8, 4.3)		9, 11	9, 11, 8-Me	
11	3.45 (ddd, 10.1, 4.3, 3.8)	76.2	10a/b, 12	9, 10a/b, 13, 12-Me	9
12	1.39 (m)	34.6	13, 12-Me	13, 14a/b	
13	1.48 (m)	28.5	12, 14a	12, 14a, 12-Me	
14a	1.72 (m)	36.8	13, 14b	13, 14b	
14b	1.46 (m)		14a	12, 14a, 12-Me	
15		96.7			
16a	1.82 (m)	35.1	16b, 17b	16b, 17a/b	
16b	1.61 (ddd, 13.6, 4.3, 3.9)		16a	16a, 17a/b	
17a	2.28 (m)	25.1	17b	16a/b, 17b	
17b	2.02 (m)		16a, 17a	16a/b, 17a	
18		84.2			
19	4.62 (d, 8.3)	79.5	20, 21	20, 21	15, 18, 20, 21
20	6.46 (dd, 15.6, 8.3)	133.9	19	19	19, 22, 23, 22-Me
21	6.44 (d, 15.6)	139.2	19	19	19, 20, 22, 23, 22-Me
22		151.6			
23	5.88 (d, 1.1)	121.4		22-Me	21, 24, 22-Me
24		169.5			
25a	1.81 (m)	32.8	25b, 26b	25b, 26a/b, 27a/b	
25b	1.66 (m)		25a, 26a	25a, 26a/b, 27a/b	
26a	1.26 (m)	23.8	25b	25a/b, 27a/b, 28	
26b	1.20 (m)		25a	25a/b, 28	
27a	1.26 (m)	23.4	28	25a/b, 28	
27b	1.20 (m)		28	25a/b, 28	
28	0.86 (t, 6.9)	14.0	27a	25a/b, 26a/b, 27a/b	26, 27
4-Me	1.08 (d, 6.8)	15.0	4	2, 3, 4, 5	3, 4, 5
8-Me	1.76 (s)	12.8		10a/b	7, 8, 9
12-Me	0.78 (d, 6.5)	17.7		11, 12, 13, 14a/b	11, 12, 13
22-Me	2.26 (d, 1.1)	14.4		23	21, 22, 23, 24
1'		176.9			
2'	2.60^{b} (m)	30.9			1', 4'
3'	2.62^{b} (m)	29.6			1', 4'
4′	× /	174.4			<i>,</i>
CO ₂ Me	3.68 (s)	51.8			4′

Table S8. NMR	(600 MHz	MeOH- d_4 , H	HPLC-SPE-NMR)	data for reveromycin	A 4'-methyl ester (8).
---------------	----------	-----------------	---------------	----------------------	------------------------

(a) ¹³C assignments obtained from gHSQC and gHMBC data. (b) Assignments are interchangeable.

Figure S9. <u>Upper panel</u>: Presat ¹H NMR (600 MHz, MeOH- d_4 , irr. δ_H 4.87, HPLC-SPE-NMR) spectrum for reveromycin D 4'-methyl ester (9), expansion between 0.6 and 2.8 ppm. <u>Lower panel</u>: UV-vis spectrum of reveromycin D 4'-methyl ester (9) extracted from HPLC diode array detector (MeCN:H₂O).

Table S9. NMR (600 MHz	, MeOH-d ₄ , HPLC-SPE-	NMR) data for reveromy	ycin D 4'-methyl ester (9).
------------------------	-----------------------------------	------------------------	-----------------------------

Pos	$\delta_{\rm H}$ (m, J (Hz))	δ_{C}^{a}	COSY	TOCSY	HMBC (¹ H- ¹³ C)
1		170.3			
2	5.82 (dd, 15.7, 1.2)	122.7	3	3, 4, 4-Me	1, 4, 4-Me
3	6.98 (dd, 15.7, 7.7)	152.5	2,4	2, 4, 4-Me	1, 2, 4, 5, 4-Me
4	2.52 (ddqd, 7.7, 6.9, 6.8, 1.2)	44.3	3, 5, 4-Me	2, 4-Me	2, 3, 5. 4-Me
5	4.07 (dd, 7.3, 6.9)	77.1	4,6		3, 4, 6, 7, 4-Me
6	5.54 (dd, 15.7, 7.3)	128.1	5,7	7	4, 5, 8
7	6.25 (d, 15.7)	137.9	6	6	5, 6, 8, 8-Me
8		135.6			
9	5.59 (dd, 7.7, 6.8)	129.6	10a/b, 8-Me	10a/b, 11, 8-Me	7, 8-Me
10a	2.41 (ddd, 15.7, 7.7, 3.8)	32.9	9, 11	9, 11, 8-Me	9
10b	2.37 (ddd, 15.7, 6.8, 4.3)		9,11	9, 11, 8-Me	8, 9, 11
11	3.45 (ddd, 10.1, 4.3, 3.8)	76.4	10a/b, 12	9, 10a/b, 12, 12-Me	9, 29
12	1.39 (m)	34.9	13, 12-Me	13, 14a, 12-Me	
13	1.47 (m)	28.8	14a	12, 14a, 12-Me	12, 15
14a	1.71 (m)	37.1	13, 14b	12, 13, 14b, 12-Me	12, 15
14b	1.45 (m)		14a	14a, 12-Me	12, 15
15		97.1		,	,
16a	1.80 (ddd, 13.6, 13.6, 4.3)	33.2	16b, 17a/b	16b, 17a/b	15, 17, 18
16b	1.62 (ddd, 13.6, 4.3, 3.9)		16a, 17a/b	16a, 17a/b	15, 17, 18
17a	2.31 (m)	25.6	16a/b. 17b	16a/b. 17b	16
17b	2.02 (ddd, 13.8, 13.6, 4.3)		16a/b. 17a	16a/b. 17a	15.16
18		84.5		,	-) -
19	4.61 (d, 8.2)	79.9	20, 21	20, 21	15, 18, 20, 21
20	6.46 (dd. 15.6. 8.2)	134.2	19	19	19, 21, 22, 23
21	6.44 (d. 15.6)	139.4	19	19	19, 20, 22, 23
22		152.9			- 3 - 3 3 -
23	5.88 (d, 0.9)	121.9	22-Me	21, 22-Me	21, 24, 22-Me
24		170.4		,	
25a	1.81 (ddd, 13.6, 13.6, 4.3)	35.6	25b, 26	25b, 26, 27a/b	
25b	1.64 (ddd, 13.6, 4.3, 3.9)		25a, 26	25a, 26, 27a/b	27
26	1.22 (m)	22.6	25a/b	25a/b, 29	
27a	1.20 (m)	33.1		25a/b, 29	
27b	1.16 (m)			25a/b, 26, 28a/b, 29	28
28a	1.28 (m)	23.5	29	25a/b, 29	27
28b	1.25 (m)		29	25a/b, 27a/b, 29	27
29	0.87 (t, 7.2)	14.4		26, 27a/b, 28a/b	27, 28
4-Me	1.08 (d. 6.8)	15.4	4	2, 3, 4	3, 4, 5
8-Me	1.76 (s)	13.2	9	9. 10a/b	7. 8. 9
12-Me	0.79 (d. 6.5)	18.2		11, 12, 13	11, 12, 13
22-Me	2.26 (d. 0.9)	14.8	23	23	20, 21, 22, 23
1'	×) ···)	173.3			- 7 7 7 -
2'	2.63^{b} (m)	31.2			1'. 3'. 4'
3'	2.60^{b} (m)	29.9			1' 2' 4'
<u>4</u> ′	2.00 (m)	1747			·, ~, ~
CO ₂ Me	3 68 (s)	52.4			4'

(a) ¹³C assignments obtained from gHSQC and gHMBC data. (b) Assignments are interchangeable.

Figure S10. <u>Upper panel</u>: Presat ¹H NMR (600 MHz, MeOH- d_4 , irr δ_H 4.84, HPLC-SPE-NMR) spectrum for reveromycin E 4'-methyl ester (10), expansion between 0.6 and 2.8 ppm. <u>Lower panel</u>: UV-vis spectrum of reveromycin E 4'-methyl ester (10) extracted from HPLC diode array detector (MeCN:H₂O)

Pos	$\delta_{\rm H}$ (m, J (Hz))	δ_{C}^{a}	COSY	TOCSY	HMBC (¹ H- ¹³ C)
1		170.2			· · · ·
2	5.81 (dd, 15.7, 1.1)	122.3	3	3, 4, 5, 4-Me	
3	6.98 (dd, 15.7, 7.7)	152.9	2,4	2, 4, 5, 4-Me	1, 4
4	2.52 (dqdd, 7.7, 6.8, 5.9, 1.1)	44.0	3, 5, 4-Me	2, 3, 5, 7, 4-Me	2, 5, 4-Me
5	4.07 (dd, 7.3, 5.9)	76.8	4,6	4, 6, 7, 4-Me	3, 7
6	5.54 (dd, 15.6, 7.3)	127.8	5,7	4, 5, 7, 4-Me	5, 8, 8-Me
7	6.26 (d, 15.6)	137.7	6	4, 5, 6	5, 8, 9, 8-Me
8		135.6			
9	5.59 (dd, 7.7, 6.8)	129.3	10a/b	10a/b, 11, 8-Me	7, 10, 8-Me
10a	2.43 (ddd, 15.7, 7.7, 3.8)	32.8	9, 11	9, 11	
10b	2.37 (ddd, 15.7, 6.8, 4.3)		9, 11	9, 11	
11	3.45 (ddd, 10.1, 4.3, 3.8)	76.2	10a/b, 12	10a/b, 12, 13a/b, 14a, 12-Me	10, 12
12	1.39 (m)	34.8	11	13a/b, 14a/b, 12-Me	11
13a	1.52 (m)	28.3	14a	12, 14a/b, 12-Me	
13b	1.44 (m)		14a/b	12 14a/b, 12-Me	
14a	1.71 (m)	36.7	13b, 14b	13a/b, 14b	
14b	1.48 (m)		13b, 14a	12, 13a/b, 14a, 12-Me	
15		96.3			
16a	1.82 (m)	32.5	16b, 17b	16b, 17a/b	
16b	1.62 (m)		16a	16a, 17a/b	
17a	2.30 (m)	25.3	17b	16a/b, 17b	
17b	2.02 (m)		16a, 17a	16a/b, 17a	
18		84.0			
19	4.59 (d, 8.4)	79.7	20, 21	20, 21	15, 18, 20, 21
20	6.46 (dd, 15.6, 8.4)	134.2	19	19	19, 21, 22
21	6.44 (d, 15.6)	139.2	19	19	19, 20, 22
22		152.5			
23	5.88 (s)	121.6		22-Me	21, 22, 24
24		169.3			• -
25a	1.86 (m)	35.8	25b, 26a/b	25b, 26a/b, 27a/b	26
25b	1.60 (m)	20.2	25a, 26a/b	25a, 26a/b, 27a/b	•
26a	1.25 (m)	30.3	25a/b	25a/b, 30	28
26b	1.21 (m)	22 0	25a/b	25a/b, 30	
2/a	1.29 (m)	23.8		25a/b, 30	
270	1.25 (m)	22.4		25a/b, 30	
28a	1.25 (m)	32.4		25a/b, 30	
280	1.21 (m)	22.0	20	25a/b, 30	
29a 20h	1.29 (m)	23.8	30	25a/b, 50	
290	1.25 (m)	14.2	30 20a/b	25a/b, $5026a/b$, $27a/b$, $28a/b$, $20a/b$	
50 4 Ma	1.07 (d. 6.8)	14.5	290/0	20a/0, 2/a/0, 28a/0, 29a/0	2 1 5
4-Me	1.07 (0, 0.8)	13.0	4	2, 5, 4, 5, 7	5, 4, 5 7 8 0
0-IVIC	1.70(8)	12.0	9	9, $10a/b$ 10a/b 11 12 12a/b 14a	7, 6, 9
12-IVIC	2.26 (a)	1/.8	12	10a/0, 11, 12, 15a/0, 14a	11, 12, 13 21 22 23 24
22-IVIC	2.20 (8)	14.3	23	23	21, 22, 23, 24
1 2'	2.58 ^b (m)	1/4.0			1/ 2/
∠ 2/	2.30 (III)	30.9			1,5
5	2.05 (m)	29.5			1,2
4'	2 (2 ()	174.2			
CO_2Me	3.68 (s)	51.9			4'

Table S10. NMR (600 MHz, MeOH-d₄, HPLC-SPE-NMR) data for reveromycin E 4'-methyl ester (10).

(a) ¹³C assignments obtained from gHSQC and gHMBC data. (b) Assignments are interchangeable.

Figure S11. <u>Upper panel</u>: Presat ¹H NMR (600 MHz, MeOH- d_4 , irr δ_H 4.87, HPLC-SPE-NMR) spectrum for reveromycin H (11), expansion between 0.6 and 2.8 ppm. <u>Lower panel</u>: UV-vis spectrum of reveromycin H (11) extracted from HPLC diode array detector (MeCN:H₂O)

Pos	$\delta_{\rm H}$ (m, J (Hz))	δ_{C}^{a}	COSY	TOCSY	HMBC (¹ H- ¹³ C)
1		170.3			
2	5.83 (d, 15.7)	122.7	3	3, 4, 4-Me	1
3	6.99 (dd, 15.7, 7.7)	153.8	2,4	2, 4, 4-Me	1
4	2.53 (dqd, 7.7, 6.8, 6.8)	44.3	3, 5, 4-Me	2, 3, 5, 4-Me	
5	4.07 (dd, 7.3, 6.8)	77.1	4, 6	4, 6, 7, 4-Me	
6	5.55 (dd, 15.6, 7.3)	128.1	5, 7	5, 7	
7	6.25 (d, 15.6)	138.0	6	5, 6	5, 6, 8, 12-Me
8		135.4			
9	5.58 (dd, 7.3, 6.8)	129.5	10a/b	10a/b, 11	
10a	2.40 (m)	34.9	9	9, 11	
10b	2.36^{d} (m)		9	9, 11	
11	3.43 (m)	76.5	12	9, 10a/b, 12, 12-Me	
12	1.38 (m)	34.9	11	11	
13a	1.53 (m)	29.7			
13b	1.49 (m)			10b, 11, 14a, 12-Me	
14a	1.65 (m)	37.3		11, 14b, 12-Me	
14b	1.47 (m)				
15		97.1			
16a	1.78 (m)	33.0	16b, 17a/b	17a/b	
16b	1.69 (m)		16a, 17a/b	17a/b	
17a	2.33 ^d (m)	25.6	16a/b, 17b	16a/b, 17b	
17b	2.09 (ddd, 14.2, 13.6, 4.4)		16a/b, 17a	16a/b, 17a	
18		85.4			
19	4.70 (d, 7.0)	79.9	20, 21	20, 21	20, 21
20	6.48 (dd, 15.5, 7.0)	134.1	19	19	22
21	6.46 (d, 15.5)	139.8	19	19	22
22		153.0			
23	5.89 (s)	122.0		22-Me	1
24		170.3			
25a	1.86 (m)	35.3	26b, 27b	26a/b, 27a/b	
25b	1.80 (m)			26a/b, 27a/b	
26a	1.25 (m)	25.4		26b, 27b, 28	
26b	1.19 (m)			26a, 27a, 28	
27a	1.25 (m)	24.3		26b, 27b, 28	
27b	1.19 (m)				
28	0.85 (t, 7.0)	14.3	26a, 27a	25a/b, 26a/b, 27a/b	26, 27
4-Me	1.08 (d, 6.8)	15.4	4	2, 3, 5	3, 4, 5
8-Me	1.75 (s)	13.2		9	7, 8, 9
12-Me	0.78 (d, 6.6)	18.1	12	11, 12	11, 12, 13
22-Me	2.26 (s)	14.8		23	21, 22, 23, 24
1'		165.9°			
2'	6.81° (d, 16.0)	135.7			1', 2', 3', 4'
3'	6.78^{b} (d, 16.0)	135.7			1', 2', 3', 4'
4′		169.4°			

Table C11 M	MD (600 MU-	MOOU J UDI	C CDE NIMD)	data for rovaram	Uoin U(11)
Table STL. N	WIK LOUU WITZ.	WEUT- a_A . TPL	U-SPE-INIVIK) (uata for reveron	
					, ().

(a) ¹³C assignments obtained from gHSQC and gHMBC data. (b-c) Assignments are interchangeable. (d) Overlapping resonances

Figure S12. <u>Upper panel</u>: Total negative ion chromatogram from HPLC-MS separation of crude extract of *Streptomyces* sp. MST-RA7781 overlaid with extracted negative ion chromatogram (m/z 671) corresponding to reveromycin I (**12**). <u>Lower panel</u>: UV-vis spectrum of reveromycin I (**12**) extracted from HPLC diode array detector (MeCN:H₂O).

Figure S13. <u>Upper panel</u>: ¹H NMR (600 MHz, MeOH- d_4 , HPLC-SPE-NMR) spectrum of reveromycin J (13), expansion between 0.6 and 2.8 ppm. <u>Lower panel</u>: UV-vis spectrum of reveromycin J (13) extracted from HPLC diode array detector (MeCN:H₂O).

Pos	δ _H (m, J (Hz))	δ_{C}^{a}	COSY	TOCSY	HMBC (¹ H- ¹³ C)
1	· · · · · · · //	169.3			× /
2	5.80 (dd, 15.8, 1.1)	122.5	3	3, 4, 5, 4-Me	3
3	6.99 (dd, 15.8, 7.7)	152.5	2,4	2, 4, 4-Me	1
4	2.56 (ddqd, 7.7, 6.8, 5.8, 1.1)	44.0	3, 5, 4-Me	2, 6, 7, 4-Me	
5	4.07 (dd, 7.2, 5.8)	76.7	4, 6		
6	5.53 (dd, 15.6, 7.2)	127.8	5, 7	5,7	
7	6.26 (d, 15.6)	137.6	6	4, 5, 6	5,6
8		135.0			
9	5.60 (dd, 7.7, 6.8)	129.1	10a/b, 8-Me	8, 10a/b, 11	
10a	2.41 (ddd, 15.7, 7.7, 3.9)	32.8	9, 10b, 11	9, 10b, 11	
10b	2.38° (m)		9, 10a, 11	9, 10a, 11	
11	3.45 (ddd, 10.0, 4.3, 3.9)	76.2	10a, 12	9, 10a/b, 13, 14b, 12-Me	
12	1.40 (m)	34.6	11, 12-Me	11, 13, 14a/b	
13	1.48 (m)	28.5	14a/b	11, 12, 14a/b	
14a	1.67 (m)	36.9	13, 14b	11, 12, 13, 14b	
14b	1.45 (m)		13, 14a	11, 12, 13, 14a	
15		N.O.	- ,	7 7 - 7	
16a	1.77 (m)	32.7	16b, 17a/b	16b, 17a/b	
16b	1.67 (m)		16a	16a. 17a/b	
17a	2.35° (m)	25.2	17b	16a/b, 17b	
17b	2.09 (ddd, 14.2, 13.6, 4.3)		16a/b. 17a	16a/b. 17a	
18	(, , , , , , , , , , , , , , , , , , ,	N.O.			
19	4.68 (d. 7.9)	79.6	20.21	20, 21	
20	6.47 (dd. 15.6, 7.9)	133.5	19.21	19, 21	
21	6.49 (d. 15.6)	139.5	19, 20	19, 20	
22		151.9	- , -	- , -	
23	5.90 (d. 0.9)	121.5	22-Me	22-Me	
24		N.O.			
25a	1.87 (m)	35.3	25b. 26	25b, 26, 27, 28, 29, 30	
25b	1.72 (m)		25a, 26	25a, 26, 27, 28, 29, 30	
26	1.23 (m)	30.2	25a/b	25a/b, 30	
27	1.26 (m)	23.0		25a/b. 30	
28	1.20 (m)	32.5		25a/b, 30	
29	1.26 (m)	23.0	30	25a/b, 30	
30	0.85 (t, 6.9)	14.1	29	25a/b, 26, 27, 28, 29	
4-Me	1.08 (d. 6.8)	14.9	4	2, 3, 4, 5	3, 4, 5
8-Me	1.76 (s)	12.8	9	9	7, 8, 9
12-Me	0.79 (d, 6.5)	17.8	12	10a/b, 11, 12, 13, 14a/b	11
22-Me	2.27 (d, 0.9)	14.5	23	23	21, 22, 23
1'	× / /	165.2 ^b			
2'	6.78 (s)	134.9			1'. 4'
3'	6.78 (s)	134.9			1'.4'
4'	<-/	168.1 ^b			2

Table S13. NMR	(600 MHz. MeOH-	$-d_{4}$, HPLC-SPE-NMR) data for reveromycin J	[(13).
	(000 111112, 1110011	<i>w</i> ₄ , <i>D C D L C C C C C C C C C C</i>	, aava 101 1 0 , e 10111, e 111 t	(10)

(a) ¹³C assignments obtained from gHSQC and gHMBC data. (b) Assignments are interchangeable. (c) Overlapping resonances. N.O. = not observed

Figure S14: <u>Upper panel</u>: Presat ¹H NMR (600 MHz, MeOH- d_4 , irr δ_H 4.87, HPLC-SPE-NMR) spectrum of reveromycin K (14), expansion between 0.6 and 2.8 ppm. <u>Lower panel</u>: UV-vis spectrum of reveromycin K (14) extracted from HPLC diode array detector (MeCN:H₂O).

Pos	δ_{H} (m, J (Hz))	$\delta_{C}{}^{a}$	COSY	TOCSY	HMBC (¹ H- ¹³ C)
1		169.9			
2	5.83 (dd, 15.7, 1.2)	122.7	3	3, 4, 5, 4-Me	1, 4
3	6.98 (dd, 15.7, 7.7)	153.0	2, 4	2, 4, 5, 4-Me	1, 4-Me
4	2.53 (dqdd, 7.8, 6.8, 6.8, 1.2)	44.3	3, 4-Me	2, 3, 5, 4-Me	3
5	4.07 (dd, 7.4, 6.8)	77.1	6	4, 6, 7, 4-Me	3, 7, 4-Me
6	5.54 (dd, 15.6, 7.4)	128.1	5,7	4, 5, 7, 4-Me	6, 7
7	6.25 (d, 15.6)	138.0	6	4, 5, 6	5, 6, 8-Me
8		134.2			
9	5.58 (dd, 7.7, 6.8)	129.5	10a/b	7, 10a/b, 11	8-Me
10a	2.42° (m)	33.1	9	9, 10b, 11	
10b	2.38° (m)		9	9, 10a, 11	
11	3.46 (ddd, 10.1, 4.3, 3.8)	76.5	12	9, 10a/b, 13, 14a/b, 12-Me	
12	1.40 (m)	34.5	8-Me	14a	
13	1.48 (m)	28.9	14a/b, 12	12, 14a, 12-Me	
14a	1.63 (m)	37.3	13, 14b	13, 14b	
14b	1.48 (m)		13	12, 14a, 12-Me	
15		97.1		, ,	
16a	1.82(ddd, 13.7, 13.6, 4.4)	32.7	16b, 17b	16b, 17a/b	
16b	1.69 (ddd, 13.7, 4.4, 3.7)		16a. 17b	16a, 17a/b	
17a	2.41° (m)	25.4	17b	16a/b, 17b	
17b	2.13 (ddd, 14.2, 13.7, 4.4)		16a. 17a	16a/b. 17a	
18		85.2	,		
19	4.67 (d. 6.8)	80.1	20.21	20.21	21
20	6.49 (dd. 15.5, 6.8)	134.1	19.21	19, 21	
21	6.50 (d. 15.5)	139.8	19, 20	19, 20	
22		152.3	- , -	- , -	
23	5.91 (d. 1.0)	121.9		22-Me	22. 22-Me
24		170.2			,
25a	1.93 (m)	35.7	25b. 26a/b	25b, 26a/b, 27a/b, 28	
25b	1.79 (m)		25a, 26a/b	25a, 26a/b, 27a/b, 28	
26a	1.27 (m)	24.3	25a/b	25a/b. 28	
26b	1.25 (m)		25a/b	25a/b. 28	
27a	1.27 (m)	23.9	28	25a/b. 28	
27b	1.25 (m)		28	25a/b. 28	
28	0.84 (t. 6.8)	14.1	27a/b	25a/b, 26a/b, 27a/b	26.27
4-Me	1.09 (d. 6.8)	15.4	4	2, 3, 4, 5, 6	3.4.5
8-Me	1.76 (s)	13.2		9 10a/b	7 8 9
12-Me	0.78(d, 6.4)	18.1	12	11	11. 12. 13
22-Me	2.27 (d. 1.0)	14.3		23	21, 22, 23, 24
1'		162.7 ^b		-	, -,,
2'		147.8			
- 3'	7.44 (s)	117.8		5'	2' 1' 5'
5 1'	(6) דד. (122 /		5	2, 7 ,J
4	9.2((-)	123.4		21	21 21 41
5	8.30 (S)	152.2		3	2,3,4
6'		161.1			

Table S14. NMR	(600 MHz, MeOH-	d4, HPLC-SPE-NMR) data for reveromycin K (14).
----------------	-----------------	------------------	--------------------------------

(a) ¹³C assignments obtained from gHSQC and gHMBC data. (b) Assignments are interchangeable. (c) Overlapping resonances.

Pos	$\delta_{\rm H}$ (m, J (Hz))	δ_{C}^{a}	COSY	HMBC (¹ H- ¹³ C)
1		168.0		
2	5.88 (d, 1.0, 15.8)	122.0	3	1,4
3	7.02 (dd, 7.6, 15.8)	151.0	2, 4	1
4	2.58 (m)	43.0	3, 5, 4-Me	
5	4.11 (m)	77.0	4, 6	
6	5.51 (dd, 7.6 15.9)		5, 7	
7	6.22 (d, 15.9)	138.0	6	5, 9, 8-Me
8		135.0		
9	5.54 (m)	130.0	10, 8-Me	8
10	2.39 (m)		9, 11	
11	3.41 (m)	76.0	10, 12	
12	1.37 (m)	34.0	11, 14b, 12-Me	
13	1.30-1.50 (m)	28.0	14b	
14a	1.45 (m)		14b	
14b	1.63 (m)		12, 13/14a	
15				
16	1.67-1.90 (m)		17a, 17b	
17a	2.02 (m)		16, 17b	
17b	2.35 (m)		16, 17a	
18				
19	4.72 (d, 8.2)	79.0	20/21	
20	6.39 (m)	133.0	19	19, 22
21	6.39 (m)	139.0	19	19, 22
22		152.0		
23	5.85 (d, 0.9)	120.0	22-Me	22-Me
24		168.0		
25a	1.77 (m)		26, 27	
25b	1.81 (m)		26, 27	
26	1.07-1.30 (m)	25.0	25a/b, 2	
27	1.07-1.30 (m)	24.0	25a/b, 28	
28	0.80 (t, 7.0)	14.0	26, 27	26, 27
1'				
2'		145.0		
3'	7.44 (s)	117.0		2', 4', 5'
4'		122.0		
5'	8.08 (s)	150.0		2', 3', 4'
6'	~ /	159.0		
4-Me	1.09 (d, 7.0)	15.0	4	3, 4, 5
8-Me	1.72 (s)	13.0		7, 8, 9
12-Me	0.76 (d, 6.4)	18.0	12	11, 12, 13
22-Me	2.25 (d, 0.9)	14.5	23	21, 22, 23
CO ₂ Me	3.74 (s)	51.0		1/24
CO ₂ Me	3.73 (s)	51.0		1/24
4'-CO ₂ Me	3.92 (s)	52.0		4'-CO ₂ Me

Table S14a. NM	/R (400 MHz.	MeOH- d_{A}) d	lata for reveromy	vein K trimeth	vl ester (14a).
1 4010 01 140 140	110 (100 11112)	1110011 (4) 4	ata 101 10 010111		

(a) ¹³C assignments obtained from gHSQC and gHMBC data.

Figure S15. <u>Upper panel</u>: Presat ¹H NMR (600 MHz, MeOH- d_4 , irr. δ_H 4.87, HPLC-SPE-NMR) spectrum of reveromycin L (**15**), expansion between 0.6 and 2.8 ppm. <u>Lower panel</u>: UV-vis spectrum of reveromycin L (**15**) extracted from HPLC diode array detector (MeCN:H₂O).

Pos	$\delta_{\rm H}$ (m, J (Hz))	δ_{c}^{a}	COSY	TOCSY	HMBC (¹ H- ¹³ C)
1		170.1			
2	5.83 (dd, 15.7, 1.2)	122.4	3	3, 4, 5, 4-Me	1,
3	6.98 (dd. 15.7, 7.8)	152.6	2.4	2. 4. 4-Me	1. 4-Me
4	2.53 (ddad. 7.8, 6.8, 6.8, 1.2)	44.0	4-Me	2, 3, 5, 6, 4-Me	5
5	4.07 (dd. 7.3, 6.8)	76.8	4.6	2, 3, 4, 6, 7, 4-Me	2. 4. 6. 4-Me
6	5.54 (dd. 15.6. 7.3)	127.9	7.5	4, 5, 7, 4-Me	2 2 - 2 - 2
7	6.26 (d. 15.6)	137.5	6	4, 5, 6	9. 5. 8-Me
8		135.4		1 - 1 -	- 7 - 7
9	5.60 (dd. 7.7. 6.8)	129.1	10a/b	11. 10a/b	
10a	2.42^{b} (m)	32.7	9	9.11	
10b	2.38^{b} (m)		9	-)	
11	3.46 (ddd, 10.1, 4.3, 3.8)	76.1	12	9, 10a/b, 12, 13a/b, 14a/b, 12-Me	
12	1.40 (m)	34.7		11, 12, 13a/b, 14a/b, 12-Me	
13a	1.53 (m)	28.4		11, 12, 13b, 14a/b, 12-Me	
13b	1.51 (m)			11, 12, 13a, 14a/b, 12-Me	
14a	1.64 (m)	37.1		11, 12, 13a/b, 14b, 12-Me	
14b	1 51 (m)			11 12 13a/b 14a 12-Me	
15	1.0 I ()	N.O.		11, 12, 150, 110, 12 110	
16a	1 84 (ddd 13 5 13 4 4 2)	32.9	16h 17h	16b 17a/b	
16b	1.69 (ddd, 13.5, 4.4, 3.7)	52.9	16a, 17b	16a, 17a/b	
17a	2.39^{b} (m)	253	17b	16a/b 17b	
17b	2.15 (ddd, 14.2, 13.4, 4.4)	20.0	16a/b	16a/b, 17a	
18		NO			
19	4.76 (d. 8.0)	79.8	20. 21	20. 21	21
20	6.49 (dd. 15.4, 8.0)	133.8	19	19	24, 23, 22, 19, 22-Me
21	6.50 (d. 15.4)	139.4	19	19	24, 23, 22, 19, 22-Me
22		152.1			_ , _ , _ , _ , _ , _ ,
23	5.90 (d. 1.0)	121.4		22-Me	21, 22-Me
24		171.5			,
25a	1.92 (m)	35.4	25b. 26a/b	25b, 27a/b, 28a/b, 29	20
25b	1.79 (m)		25a. 26a/b	25a, 27a/b, 28a/b, 29	
26a	1.32 (m)	23.5	25a/b	25a/b. 29	
26b	1.30 (m)		25a/b	25a/b. 29	
27a	1.27 (m)	33.0		27b. 28a/b. 29	
27b	1.23 (m)			27a. 28a/b. 29	
28a	1.27 (m)	23.0	29	27a/b. 28b. 29	
28b	1.23 (m)		29	27a/b. 28a. 29	
29	0.83(t, 6.9)	14.0	28a/b	25a/b, 26a/b, 27a/b, 28a/b	26, 27, 28
4-Me	1.08 (d. 6.8)	15.0	4	2, 3, 4, 5, 6	3. 4. 5
8-Me	1.76 (s)	12.9		9. 10a/b	7.8.9
12-Me	0.78 (d. 6.5)	17.8	12	11	11 12 13
22-Me	2.28 (d. 1.0)	14.5		20. 21. 23	21, 22, 23
1'				., =-, ==	,,
2'		148.2			
3'	7.43 (s)	117.2		5'	2', 4', 5'
4'		123.6		-	, - , -
5'	8 35 (s)	151.3		3'	2' 3' 4'
6'	0.00 (0)	101.0		5	2,2,7

 $\frac{1}{(a)}$ ¹³C assignments obtained from gHSQC and gHMBC data. (b) Overlapping resonances. N.O. = not observed

Figure S16. <u>Upper panel</u>: ¹H NMR (600 MHz, MeOH- d_4 , HPLC-SPE-NMR) spectrum for reveromycin M (16), expansion between 0.6 and 2.8 ppm. . <u>Lower panel</u>: UV-vis spectrum of reveromycin M (16) extracted from HPLC diode array detector (MeCN:H₂O).

Pos	δ_{H} (m, J (Hz))	δ _C	COSY	TOCSY	HMBC (¹ H- ¹³ C)
1		170.1			
2	5.80 (dd, 15.7, 1.2)	122.1	3	3, 4	4
3	6.98 (dd, 15.7, 7.7)	152.4	2, 4	2, 4, 4-Me	1
4	2.56 (ddqd, 7.7, 6.8, 6.8, 1.2)	43.9	5, 4-Me	2, 3, 5, 7, 4-Me	
5	4.07 (dd, 7.3, 6.8)	76.6	4, 6	4, 6, 7, 4-Me	
6	5.53 (dd, 15.4, 7.3)	127.6	5, 7	5, 7	8
7	6.24 (d, 15.7)	137.4	6	4, 5, 6	5, 6
8		135.7			
9	5.60 (dd, 7.7, 6.8)	129.0	10a/b	10a/b	
10a	2.40^{b} (m)	32.7	9, 10b	9, 10b, 11	
10b	2.37 (m)		9, 10a	9, 10a, 11	
11	3.46 (ddd, 10.1, 4.3, 3.8)	75.9	12	9, 10a/b, 12, 13a/b, 14b, 12-Me	
12	1.39 (m)	34.5	13a/b, 12-Me	11, 13a/b, 14a/b, 12-Me	
13a	1.52 (m)	28.4	12, 13b, 14a/b	11, 12, 13b, 14a/b, 12-Me	
13b	1.47 (m)		12, 13a, 14a/b	11, 12, 13a, 14a/b, 12-Me	
14a	1.64 (m)	37.0	13a/b, 14b	11, 12, 13a/b, 14b, 12-Me	
14b	1.46 (m)		13a/b, 14a	11, 12, 13a/b, 14a, 12-Me	
15		N.O.	,		
16a	1.83 (m)	32.6	16b, 17a/b	16b, 17a, 17b	
16b	1.69 (m)		16a	16a, 17a, 17b	
17a	2.41^{b} (m)	25.3	17b, 16a	16a/b, 17b	
17b	2.13 (ddd, 14.2, 13.4, 4.4)		16a/b, 17a	16a/b, 17a	
18		N.O.	,	,	
19	4.73 (d, 8.0)	79.8	20, 21	20, 21	
20	6.49 (dd. 15.4, 8.0)	133.6	19, 21	19, 21	19
21	6.50 (d. 15.4)	139.4	19.20	19, 20	19
22		152.4	,	,	
23	5.90 (d. 1.0)	121.5	22-Me	22-Me	21. 22-Me
24		N.O.			2
25a	1.94 (m)	35.6	25b. 26a/b	25b, 26a/b, 27a/b, 28, 29a/b	
25b	1.79 (m)		25a, 26a/b	25a, 26a/b, 27a/b, 28, 29a/b	
26a	1.28 (m)	30.2	25a/b	25a/b. 30	
26b	1.21 (m)		25a/b	25a/b. 30	
27a	1.28 (m)	23.2		25a/b. 30	
27b	1.21 (m)			25a/b. 30	
28	1.21 (m)	32.4		25a/b. 30	
29a	1.28 (m)	23.2	30	25a/b 30	
29b	1 21 (m)	20.2	30	25a/b 30	
30	0.84(t, 6.8)	14.1	29a/h	26a/b 27a/b 28a/b 29a/b	27 28 29
4-Me	1.08 (d. 6.8)	15.0	4	2 3 4 5 7	3 4 5
8-Me	1 77 (s)	12.0	9	9	7 8 9
12-Me	0.78 (d. 6.5)	17.7	12	10a/b 11 12 13a/b 14a/b	11 12 13
22-Me	2.28(d, 1.0)	14.4	23	23	21 22 23
1'	=.=o (u, 1.0)	NO			,,,
2'		147.8			
2'	7.42 (s)	117 /		5'	2' 5'
5 1'	1.72 (8)	11/.4		5	2,3
4 51	9.24 (-)	123.1		21	2/ 2/ 4/
2	8.34 (S)	152.1		5	2, 5, 4
6'		N.O.			

Table S16. NMR ((600 MHz. MeOH- d_{Λ}	. HPLC-DAD-SPE-NMR) data for reverom	vcin M (16).
	$(\circ$,)	Jem 111 (10).

(a) ¹³C assignments obtained from gHSQC and gHMBC data. (b) Overlapping resonances. N.O. = not observed

5. Bioassay

Cytotoxicity Testing (MTT assay)

Cells were seeded in a 96-well microtitre plate at 2×10^5 cells/mL in 100 µL of DMEM supplemented with 10% FBS and the plate was incubated for 3 - 5 h ($37 \,^{\circ}$ C; 5% CO₂). A solution of each compound in DMSO ($300 \,\mu$ M) was serially diluted to 300 nM with 10% aqueous DMSO. Aliquots ($10 \,\mu$ L) of each dilution (or of 10% aqueous DMSO for control wells) were added the plate in duplicate and the plate was incubated for 24 h ($37 \,^{\circ}$ C; 5% CO₂). A solution of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma, USA) in PBS was added to each well to a final concentration of 0.5 mg/mL and the plate was incubated for a further 2 h ($37 \,^{\circ}$ C; 5% CO₂). The medium was then carefully aspirated from each well and precipitated formazan crystals were dissolved in DMSO ($100 \,\mu$ L). Finally, the absorbance of each well was measured at 600 nm spectrophotometrically.

The results of the cytotoxicity testing are summarised in Table S17.

Compound		Cytotoxicity – IC ₅₀ (µM)							
Compound	AGS ^a	HeLa ^b	HT29 ^c	HFF-1 ^d					
Reveromycin A (1)	30	30	>30	>30					
Reveromycin B (2)	>30	>30	30	>30					
Reveromycin D (4)	>30	>30	>30	>30					
Reveromycin E (5)	17	20	30	>30					
Reveromycin F (6)	>30	>30	>30	>30					
Reveromycin G (7)	>30	>30	>30	>30					
Reveromycin A-4'Me (8)	2	10	>30	>30					
Reveromycin D-4'Me (9)	2	2	30	>30					
Reveromycin E-4'Me (10)	>30	>30	>30	>30					
Reveromycin H (11)	>30	>30	>30	>30					
Reveromycin K (14)	>30	>30	>30	>30					
Reveromycin L (15)	>30	>30	>30	>30					
Reveromycin M (16)	>30	>30	>30	>30					

 Table S17. Cytotoxicity of reveromycins

^aAGS - gastric adencarcinoma (ATCC CRL-1739)

^bHeLa - cervical adenocarcinoma (ATCC CCL-2)

°HT29 - colorectal adenocarcinoma (ATCC HTB-38)

^dHFF-1 = human foreskin fibroblast (ATCC SCRC-1041)

Antibacterial testing

The bacterium to be tested was streaked onto a tryptic soy agar plate and was incubated at 37 °C for 24 h. One colony was then transferred to fresh tryptic soy broth (15 mL) and the cell density was adjusted to 10^4 - 10^5 cfu/mL. The compounds to be tested were dissolved in DMSO and diluted with H₂O to give 300 µM stock solutions (10% DMSO). The stock solutions were then serially diluted with 10% DMSO to give final concentrations of 30 µM to 0.01 µM in 1% DMSO. An aliquot (20 µL) of each dilution was transferred to a 96-well microtiter plate and freshly prepared microbial broth (180 µL) was added to each well. The plates were incubated at 37 °C for 24 h and the optical density of each well was measured spectrophotometrically at 600 nm.

No significant antibacterial activity was observed against *Escherichia coli* (ATCC 11775), *Pseudomonas aeruginosa* (ATCC 10145), *Staphylococcus aureus* (ATCC 9144, ATCC 25923) or *Bacillus subtilis* (ATCC 6051, ATCC 6633).

Antifungal testing

The fungus to be tested was streaked onto a Sabouraud agar plate and was incubated at 26.5 °C for 48 h. One colony was then transferred to fresh Sabouraud broth (15 mL) and the cell density was adjusted to 10⁴-10⁵ cfu/mL. The pH of the broth was adjusted to either pH 3 (with 1 M HCl) or pH 7 (with 1 M NaOH). The compounds to be tested were dissolved in DMSO and diluted with H₂O to give 300 µM stock solutions (10% DMSO). The stock solutions were then serially diluted with 10% DMSO to give final concentrations of 30 µM to 0.01 µM in 1% DMSO. An aliquot (20 µL) of each dilution was transferred to a 96-well microtiter plate and freshly prepared microbial broth (180 µL) was added to each well. The plates were incubated at 26.5 °C for 48 h and the optical density of each well was measured spectrophotometrically at 600 nm.

The results of the antifungal testing are summarised in Table S18.

		C. alb	<i>icans</i> ^a			C. kr	rusei ^b			C. para	psilosis ^e	
Compound	MIC	(µM)	IC ₅₀	(µM)	MIC (μM)	IC ₅₀	(µM)	MIC	(µM)	IC ₅₀	(µM)
	pH 3	pH 7	pH 3	pH 7	pH 3	pH 7	pH 3	pH 7	pH 3	pH 7	pH 3	pH 7
Reveromycin A (1)	3.7	_	0.9	-	3.7	_	2.7	_	3.7	-	2.6	-
Reveromycin B (2)	30	-	10.1	-	30	-	9.4	-	30	-	10.4	-
Reveromycin E (5)	1.8	-	0.3	-	3.7	-	1.6	_	3.7	-	1.4	-
Reveromycin F (6)	15	-	6.1	-	30	-	15	_	30	-	15.3	-
Reveromycin G (7)	15	-	7.5	-	30	-	10.1	_	30	-	10.6	-
Reveromycin A-4'Me (8)	0.9	-	0.2	-	1.8	-	0.9	_	1.8	-	0.9	-
Reveromycin D-4'Me (9)	0.9	-	0.05	-	1.8	-	0.9	_	1.8	-	1.1	-
Reveromycin L (15)	30	-	2.3	-	15	-	10.1	_	15	-	8.5	-
Reveromycin M (16)	7.5	_	2.2	-	7.5	_	2.5	_	7.5	-	2.1	-

Table S18. Antifungal activities of reveromycins against three Candida sp. at pH 3 and pH 7

ATCC 10231. ATCC 6258. ATCC 22019. – = no activity

6. Taxonomy

Strain MST-MA568 16S rRNA sequence

AACGGTGAAGCCTTTCGGGGTGGATCAGTGGCGAACGGGTGAGTAACACGTGGGCAATGTGCCCTGCACTCTGGG ACAAGCCCTGGAAACGGGGTCTAATACCGGATATGACCTGGGGGGCGCATGCTTCCGGGTGGAAAGCTCCGGCGGT GCAGGATGAGCCCGCGCCTATCAGCTTGTTGGTGGGGGTGATGGCCTACCAAGGCGACGACGGGGAAGCCGGCCTG AGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGCAGCAGTGGGGAATATTGCAC AATGGGCGCAAGCCTGATGCAGCGACGCCGCGTGAGGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGG AAGAAGCGTGAGTGACGGTACCTGCAGAAGAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGG TGCGAGCGTTGTCCGGAATTATTGGGCCGTAAAGAGCTCGTAAGGCGGCTTGTCGCGTCGGATGTGAAAGCCCGGGG CTTAACTCCGGGTCTGCATTCGATACGGGCAGGCTAGGGTAGGGGAGATCGGAATTCCTGGTGTAGCGGT GAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGATCTCTGGGCCGATACTGACGCTGAGGGGAGCCAA AGCGTGGGGAGCGAACAGGATTAAATACCCTGGAA

Code	Organism Description
EU159564.1	Streptomyces sp. 919 16S ribosomal RNA gene
DQ347907.1	Uncultured bacterium clone ST60 16S ribosomal RNA gene
AY897204.1	Streptomyces sp. 123 16S ribosomal RNA gene
AY882020.1	Streptomyces yanglinensis strain 913 16S ribosomal RNA gene
AY882019.1	Streptomyces yanglinensis strain 317 16S ribosomal RNA gene
AY876940.1	Streptomyces yanglinensis strain 1307 16S ribosomal RNA gene
EU722758.1	Streptomyces sp. M-MN-1 16S ribosomal RNA gene
AY897205.1	Streptomyces sp. 157 16S ribosomal RNA gene
AY876942.1	Streptomyces guanduensis strain 701 16S ribosomal RNA gene

Organisms with >98% identity

Strain MST-RA7781 16S rRNA sequence

ACATGCAAGTCGAACGGTGAAGCCTTTCGGGGTGGATCAGTGGCGAACGGGTGAGTAACACGTGGGCAATCTGCC CTGCACTCTGGGACAAGCCCTGGAAACGGGGTCTAATACCGGATATGACCTGGGGGCGCATGCTTCTGGGTGGAA AGCTCCGGCGGTGCAGGATGAGCCCGCGGCCTATCAGCTTGTTGGTGGGGTGATGGCCTACCAAGGCGACGACGAC GTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGCAG GGAATATTGCACAATGGGCGCAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCT CTTTCAGCAGGGAAGAAGCGTGAGTGACGGTACCTGCAGAAGAAGCACCGGCTAACTACGTGCCAGCAGCGCGCG TAATACGTAGGGTGCGAGCGTTGTCCGGAATTATTGGGCGTAAAGAAGCTCGTAGGCGGCTTGTCGCGTCGGATGT GAAAGCCCGGGGCTTAACTCCGGGTCTGCATTCGATACGGGCAGGCTAGGTTCGGTAGGGGAGATCGGAATTCC TGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGATCTCTGGGCCGATACTGACG CTGAGGAGC

Organisms with >98% identity

Code	Organism Description
HM449821.1	Streptomyces sp. SUK09 16S ribosomal RNA gene
HM449820.1	Streptomyces sp. SUK08 16S ribosomal RNA gene
EU159564.1	Streptomyces sp. 919 16S ribosomal RNA gene
AY897204.1	Streptomyces sp. 123 16S ribosomal RNA gene
AY882020.1	Streptomyces yanglinensis strain 913 16S ribosomal RNA gene
AY882019.1	Streptomyces yanglinensis strain 317 16S ribosomal RNA gene
AY876940.1	Streptomyces yanglinensis strain 1307 16S ribosomal RNA gene
FJ418898.1	Streptomyces sp. FXJ1.139 16S ribosomal RNA gene
DQ347907.1	Uncultured bacterium clone ST60 16S ribosomal RNA gene
EU214970.1	Streptomyces sp. CNS-780_SF06 16S ribosomal RNA gene
AY897205.1	Streptomyces sp. 157 16S ribosomal RNA gene
EU683612.1	Streptomyces axinellae strain Pol001 16S ribosomal RNA gene
EU722758.1	Streptomyces sp. M-MN-1 16S ribosomal RNA gene
AY876942.1	Streptomyces guanduensis strain 701 16S ribosomal RNA gene