Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Electronic Supplementary Information

DBU-Catalyzed Transprotection of *N*-Fmoc-Cysteine Di- and Tripeptides into *S*-Fm-Cysteine Di- and Tripeptides

Alan R. Katritzky,*^{,a} Nader E. Abo-Dya,^{a,b} Abdelmotaal Abdelmajeid,^{a,c}

Srinivasa R. Tala,^a M. S. Amine,^c and Said A. El-Feky^b

^aCenter for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville,

Florida 32611-7200, USA.

E-mail: katritzky@chem.ufl.edu

^bDepartment of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig-44519, Egypt.

^cDepartment of Chemistry, Faculty of Science, Benha University, Benha, Egypt.

Table of Contents

- 1. Characterization data for compounds **3b-f**, **4b-f**, **9b-d**, **10a-c** and **11** S3

N–Fmoc–L–Met–L–Cys–OH (3b)^[1] White microcrystals; yield: 88%; 97.0–99.0 °C. $[\alpha]_D^{23}$ -37.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 8.22 (d, *J* = 7.5 Hz, 1H), 7.90 (d, *J* = 4.5 Hz, 2H), 7.74 (t, *J* = 5.7 Hz, 2H), 7.65 (d, *J* = 8.1 Hz, 1H), 7.43 (t, *J* = 7.2 Hz, 2H), 7.33 (t, *J* = 6.6 Hz, 2H), 4.44–4.42 (m, 1H), 4.35–4.18 (m, 4H), 2.90–2.79 (m, 2H), 2.47–2.42 (m, 1H), 2.05–1.95 (m, 3H), 1.92–1.85 (m, 2H), 1.24 (br s, 1H), 0.84 (m, 1H). ¹³C NMR (DMSO–*d*₆) δ 173.9, 171.6, 155.7, 143.8, 143.7, 140.6, 138.1, 129.2, 128.0, 127.6, 127.0, 126.2, 125.3, 125.2, 120.0, 65.6, 55.9, 50.3, 46.5, 37.4, 24.2, 22.8, 21.3. Anal. Calcd for C₂₃H₂₆N₂O₅S₂: C, 58.21; H, 5.52; N, 5.90. Found: C, 58.48; H, 5.53; N, 5.64.

N-**Fmoc-L**-Ala-L-Cys-OH (3c). White microcrystals (84 %), mp 167.0–169.0 °C. [α]_D²³-72.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 8.16 (d, *J* = 7.4 Hz, 1H), 7.89 (d, *J* = 7.3 Hz, 2H), 7.75–7.70 (m, 2H), 7.61 (d, *J* = 7.3 Hz, 1H), 7.42 (t, *J* = 7.1 Hz, 2H), 7.34 (d, *J* = 7.1 Hz, 2H), 4.44–4.40 (m, 1H), 4.25–4.20 (m, 3H), 4.14 (t, *J* = 6.7 Hz, 1H), 2.86–2.75 (m, 2H), 2.45–2.40 (m, 1H), 1.24 (d, *J* = 6.6 Hz, 3H), 1.09 (t, *J* = 6.9 Hz, 1H). ¹³C NMR (DMSO–*d*₆) δ 172.7, 171.8, 155.6, 143.9, 143.7, 140.7, 135.3, 129.5, 127.6, 127.1, 125.3, 123.9, 121.2, 120.1, 65.7, 51.5, 49.9, 46.6, 18.3. Anal. Calcd for C₂₁H₂₂N₂O₅S: C, 60.85; H, 5.35; N, 6.76. Found: C, 60.59; H, 5.44; N, 6.91. *N*-**Fmoc-L-Leu-L-Cys-OH (3d)**. White microcrystals (86 %), mp 68.0–70.0 °C. [α]_D²³-23.0 (*c* 1.0 in MeOH). ¹H NMR (CDCl₃) δ 7.74 (d, *J* = 7.1 Hz, 2H), 7.56 (d, *J* = 7.0 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 2H), 7.29 (t, *J* = 7.8 Hz, 2H), 5.75 (d, *J* = 8.5 Hz, 1H), 4.82 (s, 1H), 4.36 (d, *J* = 5.4 Hz, 2H), 4.20 (d, *J* = 6.6 Hz, 1H), 3.49 (q, *J* = 7.0 Hz, 1H), 3.10–2.95 (m, 1H), 1.64–1.55 (m, 2H), 1.51 (t, *J* = 9.1 Hz, 1H), 1.21 (t, *J* = 7.0 Hz, 1H), 1.00–0.85 (m, 6H). ¹³C NMR (CDCl₃) δ 172.6, 156.7, 143.7, 141.5, 128.0, 127.3, 125.2, 120.2, 67.6, 54.1, 53.7, 47.3, 41.4, 26.5, 24.9, 23.0, 22.3. Anal. Calcd for

C₂₄H₂₈N₂O₅S: C, 63.14; H, 6.18; N, 6.14. Found: C, 63.59; H, 6.48; N, 5.32.

N-**Fmoc**-**L**-**Gly**-**L**-**Cys**-**OH** (3e) ^[1]. White microcrystals; yield: 84%; 90.0–91.0 °C. [α]_D²³ 60.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 8.18 (d, *J* = 7.5 Hz, 1H) 7.89 (d, *J* = 7.5 Hz, 2H), 7.72 (d, *J* = 7.5 Hz, 2H), 7.61–7.57 (m, 1H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 4.50–4.42 (m, 1H), 4.30–4.24 (m, 3H), 3.74–3.70 (m, 2H), 2.88–2.79 (m, 2H), 2.42 (t, *J* = 8.7 Hz, 1H). ¹³C NMR (DMSO–*d*₆) δ 171.4, 169.1, 156.5, 144.0, 140.7, 127.6, 127.0, 125.2, 120.1, 65.8, 54.2, 46.6, 43.2, 25.7. Anal. Calcd for C₂₀H₂₀N₂O₅S: C, 59.99; H, 5.03; N, 7.00. Found: C, 59.65; H, 4.94; N, 7.01. *N*-**Fmoc**-**L**-**Lys**(N-Boc)-**L**-**Cys**-**OH** (3f). White microcrystals (78 %), mp 88.0–90.0 °C. [α]_D²³ +8.0 (*c* 1.0 in MeOH). ¹H NMR (CDCl₃) δ 7.75 (d, *J* = 7.4 Hz, 2H), 7.65– 7.52 (m, 2H), 7.38 (t, *J* = 7.0 Hz, 2H), 7.34–7.24 (m, 4H), 5.95 (br s, 1H), 4.85–4.78 (m, 1H), 4.45–4.25 (m, 3H), 4.20 (d, *J* = 5.6 Hz, 1H), 3.75 (s, 1H), 3.20–2.95 (m, 4H), 1.45–1.25 (m, 15H). ¹³C NMR (CDCl₃) δ 172.6, 156.7, 144.0, 143.8, 141.4, 127.9, 127.2, 125.3, 120.1, 79.8, 67.4, 55.0, 54.2, 47.2, 40.3, 34.8, 32.3, 31.8, 29.7, 29.2, 28.6, 26.6, 25.5, 22.8, 20.9, 14.3, 11.6. Anal. Calcd for C₂₉H₃₇N₃O₇S: C, 60.93; H, 6.52; N, 7.35. Found: C, 60.64; H, 6.73; N, 7.49.

N–**Fmoc**–**Gly**–**L**–**Leu**–**L**–**Cys**–**OH** (7a)^[1] White microcrystals; yield: 88%; 170.0– 172.0 °C. ¹H NMR (DMSO– d_6) δ 8.26 (d, J = 7.8 Hz, 1H), 8.15 (d, J = 8.1 Hz, 1H), 7.90 (d, J = 7.5 Hz, 2H), 7.73 (d, J = 7.2 Hz, 2H), 7.57 (t, J = 5.7 Hz, 1H), 7.43 (t, J = 7.2 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 4.49–4.37 (m, 2H), 4.32–4.15 (m, 3H), 3.66 (d, J= 5.4 Hz, 2H), 2.92–2.72 (m, 2H), 2.48–2.46 (m, 1H), 1.70–1.63 (m, 1H), 1.63–1.31 (m, 2H), 0.89–0.85 (m, 6H).¹³C NMR (DMSO– d_6) δ 172.1, 171.4, 168.8, 156.5, 143.8, 140.7, 127.6, 127.1, 125.2, 120.1, 65.7, 54.4, 50.8, 46.6, 43.3, 41.0, 25.3, 24.0, 23.0, 21.7. Anal. Calcd for C₂₆H₃₁N₃O₆S: C, 60.80; H, 6.08; N, 8.18. Found: C, 60.56; H, 6.21; N, 8.20. *N*–Fmoc–Phe–L–Ala–L–Cys–OH (7b). White microcrystals 96%, mp 196.0–198.3 °C. $[\alpha]_D^{23}$ -61.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 8.28 (d, *J* = 7.3 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.88 (d, *J* = 7.4 Hz, 2H), 7.70–7.56 (m, 3H), 7.45–7.15 (m, 10H), 4.50–4.35 (m, 2H), 4.32–4.25 (m, 1H), 4.14 (s, 3H), 3.10–3.00 (m, 1H), 2.90–2.70 (m, 3H), 2.44 (d, *J* = 7.8 Hz, 1H), 1.26 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (DMSO–*d*₆) δ 172.2, 171.4, 155.8, 143.7, 140.6, 138.2, 129.2, 128.0, 127.6, 127.0, 126., 2125.2, 120.0, 65.6, 56.0, 54.2, 48.2, 46.5, 37.4, 25.6, 18.1. Anal. Calcd for C₃₀H₃₁N₃O₆S: C, 64.15; H, 5.56; N, 7.48. Found: C, 63.86; H, 5.69; N, 7.53.

H–L–Met–L–Cys(S–Fm)–OH (4b). White microcrystals 76 %, mp 205.0–207.0 °C. [α]_D²³ -8.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 8.37 (br s, 1H), 7.85 (d, *J* = 7.5 Hz, 2H), 7.76–7.72 (m, 2H), 7.40–7.28 (m, 4H), 4.29 (br s, 3H), 4.18–4.10 (m, 1H), 3.56 (t, *J* = 6.3 Hz, 2H), 3.16–2.87 (m, 4H), 2.56–2.53 (m, 1H), 2.01 (br s, 3H), 1.90 (t, *J* = 6.3 Hz, 1H), 1.80–1.73 (m, 1H). ¹³C NMR (DMSO–*d*₆) δ 172.6, 169.8, 146.3, 140.7, 127.7, 127.3, 125.3, 120.2, 54.1, 52.7, 46.7, 38.0, 36.1, 35.3, 32.4, 28.9, 14,8. Anal. Calcd for C₂₂H₂₆N₂O₃S2.H₂O: C, 58.90; H, 6.29; N, 6.24. Found: C, 58.63; H, 6.12; N, 5.96

H–L–Ala–L–Cys(S–Fm)–OH (4c). White microcrystals 70 %, mp 202.0–204.0 °C. [α]_D²³ -104.0 (*c* 1.0 in MeOH). ¹H NMR (D₂O, D₂SO₄) δ 6.88 (br s, 2H), 6.78 (br s, 2H), 6.68–6.58 (m, 4H), 3.95–3.86 (m, 1H), 3.75–3.65 (m, 1H), 3.19–3.15 (m, 1H), 2.30–2.00 (m, 4H), 1.20–1.10 (m, 3H). ¹³C NMR (D₂O, D₂SO₄) δ 172.9, 170.7, 145.5, 140.5, 127.3, 127.0, 124.7, 119.6, 52.6, 49.0, 46.1, 35.4, 32.8, 16.6. Anal. Calcd for $C_{20}H_{22}N_2O_3S$: C, 64.84; H, 5.99; N, 7.56. Found: C, 64.86; H, 6.07; N, 7.47.

H–L–Leu–L–Cys(S–Fm)–OH (4d). White microcrystals 87 %, mp 207.0–209.0 °C. $[\alpha]_D^{23}$ -32.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 8.32–8.30 (m, 1H), 7.90–7.70 (m, 4H), 7.50–7.25 (m, 4H), 4.34–4.25 (m, 2H), 4.17–4.10 (m, 2H), 3.62–3.58 (m, 1H),

3.12–3.08 (m, 1H), 3.02 (dd, J = 12.7, 6.0 Hz, 1H), 2.95–2.80 (m, 1H), 1.69–1.65 (m, 1H), 1.55–1.50 (m, 1H), 1.45–1.35 (m, 1H), 0.95–0.82 (m, 6H). ¹³C NMR (DMSO– d_6) δ 172.1, 170.7, 146.0, 140.4, 139.4, 128.9, 127.3, 126.9, 125.0, 121.4, 120.0, 109.7, 53.6, 51.7, 46.4, 41.5, 35.9, 34.9, 23.7, 22.9, 21.9. Anal. Calcd for C₂₃H₂₈N₂O₃S.H₂O: C, 64.16; H, 7.02; N, 6.51. Found: C, 64.14; H, 7.05; N, 6.24.

H–Gly–Cys–(S–Fm)–OH (4e) White microcrystals 78 %, mp 230.0–232.0 °C. $[\alpha]_D^{23}$ - 10.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 8.38 (m, *J* = 5.7 Hz, 1H), 7.84–7.73 (m, 4H), 7.39–7.27 (m, 4H), 4.30–4.00 (br s, 3H), 4.24 (br s, 1H), 4.12 (m, 1H), 3.54 (d, *J* = 15 Hz, 1H), 3.41 (d, *J* = 14.9 Hz, 1H), 3.15–3.00 (m, 2H), 2.95–2.80 (m, 2H). ¹³C NMR (DMSO–*d*₆) δ 172.5, 166.8, 146.0, 140.3, 128.8, 127.2, 126.8, 124.9, 121.2, 119.9, 119.7, 53.9, 46.2, 40.9, 35.7, 35.2. Anal. Calcd for C₁₉H₂₀N₂O₃S.2H₂O: C, 58.15; H, 6.16; N, 7.14. Found: C, 58.00; H, 5.67; N, 6.97.

H–L–Lys(*N***–Boc)–L–Cys(S–Fm)–OH (4f)**. White microcrystals (69 %), mp 165.0– 167.0 °C. $[α]_D^{23}$ +96.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 8.40 (br s,1H), 7.85– 7.70 (m, 4H), 7.50–7.30 (m, 4H), 6.77 (s, 1H), 5.50–4.50 (m, 2H), 4.25–4.12 (m, 2H), 3.55–3.50 (m, 1H), 3.20–2.80 (m, 5H), 1.80–1.20 (m, 16H). ¹³C NMR (DMSO–*d*₆) δ 171.6, 168.9, 155.7, 146.0, 140.8, 127.7, 127.3, 125.2, 121.7, 120.3, 77.8, 52.2, 46.7, 36.1, 33.9, 31.0 , 29.4, 28.6, 21.5. Anal. Calcd for C₂₈H₃₇N₃O₅S.H₂O: C, 61.63; H, 6.83; N, 7.70. Found: C, 61.59; H, 7.12; N, 7.37.

H–Gly–L–Leu–L–Cys(S–Fm)–OH (8a) White microcrystals 80 %, mp 200.0–202.0 °C. $[\alpha]_D^{23}$ -34.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 8.74 (d, *J* = 7.2 Hz, 1H), 7.95 (d, *J* = 6.0 Hz, 1H), 7.84 (d, *J* = 7.5 Hz, 2H), 7.36 (dd, *J* = 7.2, 3.6 Hz, 2H), 7.37 (t, *J* = 7.2 Hz, 2H), 7.29 (t, *J* = 7.2 Hz, 2H), 4.31–4.25 (m, 1H), 4.12–4.09 (m, 2H), 3.54 (q, *J* = 16.5 Hz, 2H), 3.13–2.86 (m, 4H), 1.62–1.55 (m, 1H), 1.50–1.46 (m, 2H), 0.84 (t, *J* = 6.9 Hz. 6H), ¹³C NMR (DMSO–*d*₆) δ 172.3, 171.2, 167.5, 146.1, 140.3,

127.3, 126.9, 125.0, 124.9, 119.8, 53.5, 51.8, 46.5, 41.0, 36.0, 34.7, 24.2, 23.1, 21.4. Anal. Calcd for C₂₅H₃₁N₃O₄S.3H₂O: C, 57.34; H, 7.12; N, 8.02. Found: C, 56.89; H, 6.68; N, 7.82.

H–Phe–L–Ala–L–Cys(S–Fm)–OH (8b). White microcrystals 78 %, mp 218.0–220.0 °C. $[α]_D^{23}$ -12.8 (*c* 1.0 in MeOH).¹H NMR (DMSO–*d*₆) δ 8.20 (d, *J* = 6.3 Hz, 1H), 7.95–7.80 (m, 4H), 7.73 (t, *J* = 7.2 Hz, 1H), 7.45–7.32 (m,4H), 7.30–7.20 (m, 5H), 6.30–6.25 (m, 1H), 4.40–4.28 (m, 2H), 4.20–4.10 (m, 1H), 3.12–2.98 (m, 4H), 2.88–2.76 (m, 2H), 2.75–2.70 (m, 1H), 1.30–1.20 (m, 3H). ¹³C NMR (DMSO–*d*₆) δ 171.8, 167.5, 145.9, 140.6, 134.9, 129.6, 128.6, 127.4, 127.1, 125.0, 121.5, 120.0, 53.2, 52.3, 48.2, 46.5, 37.0, 35.8, 33.9, 18.7. Anal. Calcd for C₂₉H₃₁N₃O₄S.H₂O: C, 65.02; H, 6.21; N, 7.84. Found: C, 65.58; H, 6.27; N, 7.53.

Cbz–Ala–L–Gly–L–Cys(S–Fm)–OH (9b) White micrerystals 70 %, mp 155.0– 157.0 °C. $[\alpha]_D^{23}$ -19.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 12.88 (br s, 1H), 8.21–8.13 (m, 2H), 7.86 (d, *J* = 7.5 Hz, 2H), 7.72 (t, *J* = 7.8 Hz, 2H), 7.52 (d, *J* = 6.3 Hz, 1H), 7.41–7.29 (m, 9H), 5.04 (dd, *J* =18.0, 12.0 Hz, 2H), 4.49–4.45 (m, 1H), 4.16 (t, *J* = 6.0 Hz, 1H), 4.07 (t, *J* = 6.6 Hz, 1H), 3.76 (d, *J* = 6.0 Hz, 2H), 2.94 (dd, *J* = 13.8, 4.8 Hz, 1H), 2.79 (dd, *J* =13.8, 7.8, Hz, 1H), 1.22 (m, 3H). ¹³C NMR (DMSO–*d*₆) δ 172.6, 171.7, 168.6, 155.6, 145.7, 140.4, 136.8, 128.2, 127.6, 127.2, 126.8, 124.8, 119.8, 65.3, 61.2, 52.0, 50.0, 46.2, 41.6, 35.6, 33.8, 17.9. Anal. Calcd for C₃₀H₃₁N₃O₆S: C, 64.15; H, 5.56; N, 7.48. Found: C, 63.72; H, 5.95; N, 7.18.

Cbz–Gly–L–Ala–L–Cys(S–Fm)–OH (9c). White microcrystals 60 %, mp 168.0–170.0 °C. $[\alpha]_D^{23}$ +21.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 13.00 (s, 1H), 8.34 (d, *J* = 7.5 Hz, 1H), 8.03 (d, *J* = 7.6 Hz, 1H), 7.85 (d, *J* = 7.0 Hz, 2H), 7.73 (t, *J* = 6.4 Hz, 2H), 7.50–7.44 (m, 1H), 7.42–7.25 (m, 9H), 5.03 (s, 2H), 4.45–4.35 (m, 2H), 4.20–4.10 (m, 1H), 3.70–3.60 (m, 1H), 3.45 (br s, 1H), 3.22–3.15 (m, 2H), 2.95 (dd, *J* = 12.0, 9.0

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Hz, 1H), 2.85–2.80 (m, 1H), 1.38 (d, J = 6.4 Hz, 1H), 1.22 (d, J = 6.4 Hz, 2H). ¹³C NMR (DMSO– d_6) δ 172.2, 171.8, 168.5, 156.4, 145.8, 140.5, 137.0, 128.3, 127.6, 127.3, 126.9, 124.9, 119.9, 65.4, 52.3, 47.8, 46.4, 43.4, 35.7, 33.7, 18.6. Anal. Calcd for C₃₀H₃₁N₃O₆S.H₂O: C, 62.16; H, 5.74; N, 7.25. Found: C, 62.38; H, 5.45; N, 7.86.

Cbz–L–Leu–L–Met–L–Cys–OH (9d). White microcrystals 65 %, mp 131.0–133.0 °C. $[\alpha]_D^{23}$ -18.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 8.25 (d, *J* = 7.8 Hz, 1H), 8.02 (d, *J* = 7.8 Hz, 1H), 7.85 (d, *J* = 7.2 Hz, 2H), 7.72 (d, *J* = 7.5 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.41–7.28 (m, 9H), 5.02 (s, 2H), 4.44–4.42 (m, 2H), 4.15 (t, *J* = 5.7 Hz, 1H), 4.10–4.00 (m, 1H), 3.15 (d, *J* = 6 Hz, 2H), 2.94 (dd, *J* = 12.0, 9.0 Hz, 1H), 2.80 (dd, *J* = 12.0, 6.9 Hz, 1H), 2.45 (br s, 2H), 2.02 (m, 3H), 1.99–1.87 (m, 1H), 1.84–1.79 (m, 1H), 1.65–1.57 (m, 1H), 1.47–1.40 (m, 2H), 1.26 (d, *J* = 6.0 Hz, 1H), 0.84 (m, *J* = 4.2 Hz, 6H). ¹³C NMR (DMSO–*d*₆) δ 172.2, 171.8, 171.0, 155.9, 145.8, 140.5, 137.0, 128.3, 127.6, 127.4, 126.9, 124.9, 119.9, 65.3, 53.1, 52.2, 51.6, 46.4, 35.6, 33.7, 32.3, 29.3, 24.2, 23.0, 21.4, 14.7. Anal. Calcd for C₃₆H₄₃N₃O₆S₂: C, 63.79; H, 6.39; N, 6.20. Found: C, 63.55; H, 6.57; N, 6.19.

Cbz–L–Leu–Met–Gly–Cys(S–Fm)–OH (10a). White microcrystals 75 %, mp 80.0–82.0 °C. [α]_D²³ -70.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 12.85 (br s, 1H), 8.25 (t, *J* = 6.1 Hz, 1H), 8.13 (t, *J* = 3.0 Hz, 1H), 7.90–7.81 (m, 2H), 7.72 (t, *J* = 7.2 Hz, 2H), 7.42–7.25 (m, 11 H), 5.01 (s, 2H), 4.52–4.45 (m, 1H), 4.40–4.30 (m, 1H), 4.28–4.24 (m, 1H), 4.20–4.10 (m, 1H), 4.12–4.00 (m, 1H), 3.85–3.60 (m, 1H), 3.14 (d, *J* = 6.4 Hz, 2H), 2.92 (dd, *J* = 15.0, 9.0 Hz, 1H), 2.88–2.75 (m, 1H), 1.65–1.55 (m, 1H), 1.53–1.40 (m, 2H), 1.30–1.20 (m, 4H), 0.90–0.80 (m, 9H). ¹³C NMR (DMSO–*d*₆) δ 172.4, 171.9, 171.2, 168.6, 155.9, 145.8, 143.8, 140.5, 137.0, 128.3, 127.6, 127.4, 126.9, 125.2, 124.9, 119.9, 65.4, 62.8, 53.1, 52.2, 51.8, 46.4, 41.7, 35.7, 33.9, 32.1, 31.0, 29.4,

24.2, 23.1, 22.1, 21.4, 14.6, 14.0. Anal. Calcd for C₃₈H₄₆N₄O₇S₂: C, 62.10; H, 6.31. Found: C, 62.39; H, 6.68.

Cbz–L–Ala–Phe–Ala–Cys(S–Fm)–OH (10b). White microcrystals 72%, mp 149.0–151.0 °C. $[\alpha]_D^{23}$ -103.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 8.83 (d, *J* = 8.2 Hz, 1H), 8.30–8.20 (m, 2H), 8.13 (d, *J* = 7.7 Hz, 1H), 7.86 (t, *J* = 7.2 Hz, 3H), 7.75–7.70 (m, 2H), 7.45–7.28 (m, 10 H), 7.23–6.90 (m, 3H), 5.00 (s, 1H), 4.50–4.35 (m, 2H), 4.20–4.15 (m, 1H), 3.99 (t, *J* = 6.9 Hz, 1H), 3.70–3.45 (m, 2H), 3.18 (t, *J* = 7.2 Hz, 2H), 3.05–2.92 (m, 2H), 2.90–2.80 (m, 2H), 1.37 (d, *J* = 7.0 Hz, 1H), 1.23 (d, *J* = 7.0 Hz, 2H), 1.11 (d, *J* = 6.7 Hz, 2H), 0.96 (d, *J* =6.6 Hz, 1H). ¹³C NMR (DMSO–*d*₆) δ 172.0, 171.7, 171.3, 170.3, 169.6, 155.4, 145.7, 140.4, 137.6, 136.8, 129.2, 128.2, 127.8, 127.6, 127.3, 126.8, 126.0, 124.8, 119.8, 65.3, 53.4, 52.5, 52.2, 50.2, 47.9, 46.3, 37.3, 35.6, 33.8, 18.3, 17.1. Anal. Calcd for C₄₀H₄₂N₄O₇S.2H₂O: C, 63.31; H, 6.11; N, 7.38. Found: C, 62.91; H, 5.88; N, 7.31.

Cbz–L–Ala–Phe–Leu–Cys(S–Fm)–OH (10c). White microcrystals 79 %, mp 129.0–131.0 °C. $[\alpha]_D^{23}$ -118.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 8.30–8.18 (m, 1H), 7.95–7.90 (m, 1H), 7.85–7.80 (m, 1H), 7.70–7.60 (m, 1H), 7.50–7.15 (m, 16H), 7.10–6.95 (m, 1H), 6.64–6.55 (m, 1H), 5.00 (s, 2H), 4.40 (br s, 1H), 4.30–4.10 (m, 1H), 4.08–3.90 (m, 1H), 3.64 (br s, 2H), 3.40–3.30 (m, 2H), 3.28–3.10 (m, 1H), 3.05–2.90 (m, 2H), 2.75–2.65 (m, 2H), 1.47 (br s, 2H), 1.30–1.10 (m, 3H), 0.84 (s, 5H). ¹³C NMR (DMSO–*d*₆) δ 173.2, 172.7, 171.7, 169.2, 155.6, 148.3, 147.8, 145.8, 141.0, 140.5, 139.7, 137.4, 137.0, 136.5, 131.0, 129.2, 129.0, 128.3, 127.9, 127.7, 127.3, 126.7, 126.4, 125.3, 124.7, 120.3, 120.0, 119.4, 113.9, 65.4, 55.4, 53.5, 49.9, 43.9, 42.8, 36.7, 36.5, 34.9, 23.4, 23.1, 22.8, 21.9, 18.1. Anal. Calcd for C₄₃H₄₈N₄O₇S: C, 67.52; H, 6.32. Found: C, 67.38; H, 6.05.

Fmoc–Gly–L–Leu–Gly–L–Leu–Cys(S–Fm)–OH (11) White microcrystals 69 %, mp 115.0–117.0 °C. $[\alpha]_D^{23}$ -23.0 (*c* 1.0 in MeOH). ¹H NMR (DMSO–*d*₆) δ 8.27 (d, *J* = 7.5 Hz, 1H), 8.18– 8.14 (m, 1H), 7.96 (t, *J* = 7.8 Hz, 1H), 7.85–7.78 (m, 5H), 7.67 (t, *J* = 6.9 Hz, 4H), 7.45 (t, *J* = 6 Hz, 1H), 7.38–7.23 (m, 8H), 4.37–4.31 (m, 2H), 4.27–4.18 (m, 4H), 4.11 (t, *J* = 6.6 Hz, 1H), 3.65 (d, *J* = 5.7 Hz, 2H), 3.60 (d, *J* = 6.0 Hz, 2H), 3.10 (d, *J* = 5.7 Hz, 2H), 2.88 (dd, *J* = 13.8, 5.4 Hz, 1H), 2.74 (dd, *J* = 13.8, 8.1 Hz, 1H), 1.56–1.45 (m, 2H), 1.42–1.39 (m, 4H), 1.19 (br s, 1H), 0.81–0.79 (m, 13 H). ¹³C NMR (DMSO–*d*₆) δ 172.2, 172.0, 171.8, 168.9, 168.3, 156.4, 145.8, 143.8, 140.7, 140.5, 127.6, 127.3, 127.0, 126.9, 125.2, 124.9, 120.1, 119.9, 65.7, 52.3, 51.0, 50.6, 46.6, 46.4, 35.7, 33.6, 24.1, 23.11, 21.58. Anal. Calcd for C₄₈H₅₅N₅O₈S.H₂O: C, 65.51; H, 6.53; N, 7.96. Found: C, 65.43; H, 6.89; N, 7.68.

References

1. Katritzky, A. R.; Abo-Dya, Nader E.; Srinivasa R. Tala and Abdel-Samii, Zakaria K. *Org. Biomol. Chem.* **2010**, *8*, 2316-2319. Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

¹H, ¹³C NMR Spectra

IGHT	5.0	9.9	4.5	8.2	8.0	4.7	13.3	13.6	13.4	13.8	5.7	8.3	13.1	5.1	4.4	5.4	6.4	6.6	9.4	24.0	44.4	51.3	44.0	23.4	8.9	5.1	5.9	5.4
PPM HE	172.166	171.359	155.804	143.689	140.608	138.200	129.216	127.987	127.587	127.026	126.176	125.236	120.041	65.629	56.019	54.243	48.151	46.536	40.345	40.065	39.784	39.510	39.229	38.948	38.675	37.397	25.577	18.087
FREQUENCY	12990.352	12929.446	11755.815	10841.696	10609.194	10427.536	9749.626	9656.944	9626.755	9584.386	9520.302	9449.334	9057.417	4951.828	4226.783	4092.790	3633.082	3511.270	3044.148	3022.964	3001.779	2981.124	2959.939	2938.755	2918.100	2821.709	1929.835	1364.734
INDEX	1	2	Э	4	ŝ	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28

•

145.454 140.534 127.324 127.001 124.677 1124.677 1124.677 1124.677 1124.677 1124.677 1124.637 35.449 16.637

FNEQUENCY 13047,771 12882,001 12882,001 10603,590 9606,851 9582,488 9407,185 9026,391 3697,916 3474,948 2674,697 2473,442 2673,442

HEIGHT 10.:

PPM 172.928 170.731

TINDEX

S23

ndd

20

40

60

80

100

120

140

160

180

200

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

¹H-NMR spectrum of **4d** in the range of 0-4.5 ppm

1

