One-pot synthesis of cyclophane-type macrocycles using

manganese(III)-mediated oxidative radical cyclization

Yosuke Ito, Yuichi Tomiyasu, Takahiro Kawanabe, Keisuke Uemura, Yuu Ushimizu, and Hiroshi Nishino*

Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto 860-8555, JAPAN nishino@sci.kumamoto-u.ac.jp

Supplementary data

The synthetic procedures and spectroscopic data of the substrates $1_{(m)}$, $1_{(O)}$, $2_{(n)}$ -arom, $2_{(CH2)y}$ -arom, $4_{(m)}$, 6, and 8 with references, and the X-ray data collection and processing parameters of [22]paracyclophane $3_{(8)(1)}$ -para.

The terminal alkadienes $\mathbf{1}_{(m)}$ were synthesized by the reaction of the corresponding 1, ω -alkanedicarboxylates with phenylmagnesium bromide followed by acid-catalyzed dehydration.^{1,2}

1,1,10,10-Tetraphenyl-1,9-decadiene (1₍₆₎): $R_{\rm f} = 0.83$ (CHCl₃). Colorless microcrystals (from ethanol), m.p. 108-110 °C; IR (CHCl₃): v 1597 (C=C) cm⁻¹. ¹H NMR (300MHz, CDCl₃): TM 7.46-7.07 (20H, m, arom. H), 6.05 (2H, t, J = 7.5 Hz, =CH-), 2.07 (4H, dt, J = 7.5, 7.5 Hz, -CH₂-), 1.46-1.31 (4H, m, -CH₂-), 1.31-1.17 (4H, m, -CH₂-) ppm. ¹³C NMR (75MHz, CDCl₃): TM 142.8 (2C, >C=), 141.4, 140.3 (4C, arom. C), 130.2, 129.9, 128.1, 128.0, 127.2 (20C, arom. CH), 126.8, 126.7 (2C, =CH-), 29.8, 29.7, 29.0 (6C, -CH₂-) ppm. Anal. calcd for C₃₄H₃₄: C, 92.26; H, 7.74. Found: C, 92.20; H, 7.86.

1,1,12,12-Tetraphenyl-1,11-dodecanediene (**1**₍₈₎): $R_{\rm f} = 0.90$ (CHCl₃). Colorless microcrystals (from ethanol), m.p. 85-86 °C; IR (CHCl₃): v 1597 (C=C) cm⁻¹. ¹H NMR (300MHz, CDCl₃): TM 7.15-7.38 (20H, m, arom. H), 6.07 (2H, t, J = 7.5 Hz, =CH-), 2.10 (4H, q, J = 7.5 Hz, -CH₂-), 1.41 (8H, m, -CH₂-), 1.24 (4H, m, -CH₂-) ppm. ¹³C NMR (75MHz, CDCl₃): TM 142.8 (2C, >C=), 141.4, 140.3 (4C, arom.C), 130.3, 129.9, 128.1, 127.2 (20C, arom.CH), 126.8, 126.7 (2C, =CH-), 29.9, 29.7, 29.4, 29.2 (8C, -CH₂-) ppm. FAB HRMS (acetone/NBA): calcd for C₃₆H₃₈ 470.2974 (M⁺); found 470.2980.

1,1,20,20-Tetraphenyl-1,19-icosanediene (**1**₍₁₆₎): $R_{\rm f} = 0.91$ (CHCl₃). Colorless microcrystals (from ethanol), m.p. 64 °C. IR (CHCl₃): *v* 1597 (C=C) cm⁻¹. ¹H NMR (300MHz, CDCl₃): [™] 7.40-7.14 (20H, m, arom. H), 6.07 (2H, t, J = 7.5 Hz, =CH-), 2.10 (4H, q, J = 7.5 Hz, -CH₂-), 1.42 (4H, m, -CH₂-), 1.23 (24H, m, -CH₂-) ppm. ¹³C NMR (75MHz, CDCl₃): [™] 142.7 (2C, >C=), 141.4, 140.3 (4C, arom.C), 130.3, 129.9, 129.4, 128.7, 128.3, 128.05, 128.00, 127.2, 127.1 (20C, arom.CH), 126.75, 126.67 (2C, =CH-), 29.9, 29.7, 29.6, 29.5, 29.3 (16C, -CH₂-) ppm. FAB HRMS (acetone/NBA): calcd for C₄₄H₅₄ 582.4226 (M⁺); found 582.4202.

4-Oxa-1,1,7,7-tetraphenylheptadiene ($\mathbf{1}_{(O)}$) was prepared as follows. Alkylation of acetophenone with ethyl bromoacetate and subsequent reduction with lithium aluminum hydride (LAH) gave 1,1-diphenylethane-1,2-diol, which was condensed in 20%H₂SO₄ aqueous solution to give 4-oxa-1,1,7,7-tetraphenylheptadiene ($\mathbf{1}_{(O)}$).^{1b}

4-Oxa-1,1,7,7-tetraphenylheptadiene (1₍₀₎): $R_f = 0.35$ (CHCl₃:Hexane = 1:5 v/v). Colorless oil. IR (CHCl₃): $\frac{1}{7}$ 1599 (C=C) cm⁻¹. ¹H NMR (300MHz, CDCl₃): $\frac{1}{7}$ 7.30-7.09 (20H, m, arom. H), 6.20 (2H, t, J = 6.6 Hz, =CH-), 4.01 (4H, d, J = 6.6 Hz,-CH₂-) ppm. ¹³C NMR (75MHz, CDCl₃): $\frac{1}{7}$ 144.6 (2C, >C=), 141.8 (2C, arom. C), 139.1 (2C, arom. C), 129.7, 128.1, 128.0, 127.6, 127.4, 127.4 (20C, arom. CH), 125.5 (2C, =CH-), 68.0 (2C, -CH₂-) ppm. FAB HRMS (acetone/NBA/NaI): calcd for C₃₀H₂₆ONa 425.1881 (M⁺+Na); found 425.1895.

Preparation of the bis(3-oxobutanoate)s $2_{(1)}$ -para and $2_{(1)}$ -biphen was as follows. The corresponding phenols were alkylated with ethyl bromoacetate to give the corresponding diesters, which were reduced with LAH to afford the corresponding diols.³ The diols were converted by the condensation of diketene into bis(3-oxobutanoate)s $2_{(1)}$ -para and $2_{(1)}$ -biphen.^{1,3}

Other bis(3-oxobutanoate)s $2_{(n)}$ -arom were obtained by the reaction of the corresponding phenols with 2-(2-chloroethoxy)ethanol, 2-[2-(2-chloroethoxy)ethoxy]ethanol, 6-chloro-1-hexanol, or 8-chloro-1-octanol in the presence of potassium carbonate with a catalytic amount of lithium bromide,⁵ followed by the condensation of diketene.^{1,4}

Me Coole Me

p-Phenylenebis(1-oxapropyl) di(3-oxobutanoate) $(2_{(1)}$ -*para*)⁶: $R_f = 0.24$ (CHCl₃). Colorless microcrystals (from CHCl₃-hexane), m.p. 84-85 °C. IR (CHCl₃): v 1745, 1717 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 6.84 (4H, m, arom. H), 4.49-4.46 (4H, m, -CH₂O-), 4.17-4.13 (4H, m, -CH₂O-), 3.52, 3.51 (4H, s, -COCH₂CO-), 2.28, 2.27 (6H, s, -CH₃) ppm. ¹³C NMR (75MHz, CDCl₃): [™] 200.3 (2C, *C*=O), 167.0 (2C, -CO₂-), 152.9 (2C, arom. C), 115.7 (4C, arom. *C*H), 66.3 (2C, -CH₂O-), 63.6 (2C, -CH₂O-), 49.8 (2C, -COCH₂CO-), 30.1 (2C, -CH₃) ppm.

o-Phenylenebis(1,4-dioxahexyl) di(3-oxobutanoate) (2₍₂₎-*ortho*): $R_f = 0.30$ (CHCl₃:MeOH = 98:2 v/v). Colorless liquid. IR (CHCl₃): v 1744, 1717 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): [™] 6.92 (4H, m, arom. H), 4.32 (4H, t, J = 4.8 Hz, -C H_2 O-), 4.16 (4H, t, J = 4.8 Hz, -C H_2 O-), 3.86 (4H, t, J = 4.8 Hz, -C H_2 O-), 3.81 (4H, t, J = 4.8 Hz, -C H_2 O-), 3.48 (4H, s, -COC H_2 CO-), 2.23 (6H, s, -C H_3) ppm. ¹³C NMR (75MHz, CDCl₃): [™] 200.5 (2C, C=O), 167.1 (2C, -CO₂-), 148.9 (2C, arom. C), 121.7 (2C, arom. CH), 114.8 (2C, arom. CH), 69.7 (2C, -CH₂O-), 69.1 (2C, -CH₂O-), 68.9 (2C, -CH₂O-), 64.4 (2C, -CH₂O-), 49.9 (2C, -COCH₂CO-), 30.1 (2C, -CH₃) ppm. FAB HRMS (acetone/NBA/NaI): calcd for C₂₂H₃₀O₁₀Na 477.1737 (M⁺+Na); found 477.1759.

Me 0 0 0 0 0 0 0 0 0 0 0 Me

m-Phenylenebis(1,4-dioxahexyl) di(3-oxobutanoate) ($2_{(2)}$ -*meta*): $R_f = 0.28$ (CHCl₃:MeOH = 98:2 v/v). Colorless liquid. IR (CHCl₃): v 1744, 1717 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): ^{*TM*} 7.15 (1H, t, J = 8.1 Hz, arom. H), 6.53 (3H, m, arom. H), 4.31 (4H, t, J = 4.5 Hz, -CH₂O-), 4.09 (4H, t, J = 4.5 Hz, -CH₂O-), 3.84-3.81 (4H, m, -CH₂O-), 3.78-3.75 (4H, m, -CH₂O-), 3.47 (4H, s, -COCH₂CO-), 2.23 (6H, s, -CH₃) ppm. ¹³C NMR (75MHz, CDCl₃): ^{*TM*} 200.2 (2C, *C*=O), 166.8 (2C, -CO₂-), 159.5 (2C, arom. C), 129.5 (1C, arom. CH), 106.7 (2C, arom. CH), 101.4 (1C, arom. CH), 69.2 (2C, -CH₂O-), 68.6 (2C, -CH₂O-), 67.0 (2C, -CH₂O-), 63.9 (2C, -CH₂O-), 49.5 (2C, -COCH₂CO-), 29.7 (2C, -CH₃) ppm. FAB HRMS (acetone/NBA): calcd for C₂₂H₃₀O₁₀ 454.1839 (M⁺); found 454.1833.

p-Phenylenebis(1,4-dioxahexyl) di(3-oxobutanoate) $(2_{(2)}$ -*para*)⁷: $R_f = 0.24$ (CHCl₃). Colorless liquid. IR (CHCl₃): v 1744, 1717 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): ^{*m*} 6.84 (4H, m, arom. H), 4.33 (4H, t, J = 4.8 Hz, -CH₂O-), 4.07 (4H, t, J = 4.8 Hz, -CH₂O-), 3.84-3.77 (8H, m, -CH₂O-), 3.48 (4H, s, -COCH₂CO-), 2.26 (6H, s, -CH₃) ppm. ¹³C NMR (75MHz, CDCl₃): ^{*m*} 200.4 (2C, C=O), 167.0 (2C, -CO₂-), 152.8 (2C, arom. C), 115.4 (4C, arom. CH), 69.6 (2C, -CH₂O-), 68.8 (2C, -CH₂O-), 67.8 (2C, -CH₂O-), 64.1 (2C, -CH₂O-), 49.8 (2C, -COCH₂CO-), 30.0 (2C, -CH₃) ppm.

o-Phenylenebis(1,4,7-trioxanonanyl) di(3-oxobutanoate) (2₍₃₎-*ortho*): $R_f = 0.24$ (CHCl₃:MeOH = 98:2 v/v). Colorless liquid. IR (CHCl₃): v 1744, 1717 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): [™] 6.92 (4H, m, arom. H), 4.30 (4H, t, J = 4.8 Hz, -CH₂O-), 4.17 (4H, t, J = 4.8 Hz, -CH₂O-), 3.86 (4H, t, J = 4.8 Hz, -CH₂O-), 3.75-3.71 (8H, m, -CH₂O-), 3.68-3.66 (4H, m, -CH₂O-), 3.49 (4H, s, -CO₂-CO₂-), 2.26 (6H, s, -CH₃) ppm. ¹³C NMR (75MHz, CDCl₃): [™] 200.6 (2C, C=O), 167.1 (2C, -CO₂-), 148.9 (2C, arom. C), 121.7 (2C, arom. CH), 114.8 (2C, arom. CH), 70.8 (2C, -CH₂O-), 70.6 (2C, -CH₂O-), 69.8 (2C, -CH₂O-), 68.9 (2C, -CH₂O-), 68.8 (2C, -CH₂O-), 64.3 (2C, -CH₂O-), 50.0 (2C, -COCH₂CO-), 30.1 (2C, -CH₃) ppm. FAB HRMS (acetone/NBA): calcd for C₂₆H₃₈O₁₂ 542.2363 (M⁺); found 542.2355.

Me Correction Me

p-Phenylenebis(1,4,7-trioxanonanyl) di(3-oxobutanoate) (2₍₃₎-*para*): $R_f = 0.21$ (CHCl₃:MeOH = 98:2 v/v). Colorless microcrystals (from CHCl₃-hexane), m.p. 59-60 °C. IR (CHCl₃): v 1744, 1717 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): TM 6.84 (4H, m, arom. H), 4.31 (4H, t, J = 4.8 Hz, -CH₂O-), 4.07 (4H, t, J = 4.8 Hz, -CH₂O-), 3.83 (4H, t, J = 4.8 Hz, -CH₂O-), 3.74-3.66 (12H, m, -CH₂O-), 3.48 (4H, s, -COCH₂CO-), 2.26 (6H, s, -CH₃) ppm. ¹³C NMR (75MHz, CDCl₃): TM 200.5 (2C, C=O), 167.1 (2C, -CO₂-), 153.0 (2C, arom. C), 115.5 (4C, arom. CH), 70.7 (2C, -CH₂O-), 70.6 (2C, -CH₂O-), 69.9 (2C, -CH₂O-), 68.9 (2C, -CH₂O-), 68.0 (2C, -CH₂O-), 64.3 (2C, -CH₂O-), 49.9 (2C, -COCH₂CO-), 30.1 (2C, -CH₃) ppm. FAB HRMS (acetone/NBA): calcd for C₂₆H₃₈O₁₂ 542.2363 (M⁺); found 542.2349.

4,4'-Biphenylenebis(1-oxapropyl) di(3-oxobutanoate) (2₍₁₎-*biphen*): $R_{\rm f} = 0.51$ (CHCl₃:MeOH = 95:5 v/v). Colorless microcystals (from CHCl₃-hexane), m.p. 99-100 °C. IR (CHCl₃): v 1746, 1717 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): TM 7.46 (4H, m, arom. H), 6.95 (4H, m, arom. H), 4.54-4.50 (4H, m, -CH₂O-), 4.24-4.20 (4H, m, -CH₂O-), 3.514, 3.506 (4H, s, -COCH₂CO-), 2.28, 2.27 (6H, s, -CH₃) ppm. ¹³C NMR (75MHz, CDCl₃): TM 200.3 (2C, C=O), 167.1 (2C, -CO₂-), 157.6 (2C, arom. C), 133.9 (2C, arom. C), 127.8 (4C, arom. CH), 114.9 (4C, arom. CH), 65.8 (2C, -CH₂O-), 63.6 (2C, -CH₂O-), 49.9 (2C, -COCH₂CO-), 30.2 (2C, -CH₃) ppm. Anal Calcd for C₂₄H₂₆O₈•1/3H₂O: C, 64.28; H, 5.99. Found: C, 64.38; H, 5.89.

4,4'-Biphenylenebis(1,4-dioxahexyl) di(3-oxobutanoate) (**2**₍₂₎-*biphen*): $R_f = 0.15$ (CHCl₃). Colorless microcrystals (from CHCl₃-hexane), m.p. 84-85 °C. IR (CHCl₃): v 1744, 1717 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): [™] 7.46 (4H, m, arom. H), 6.95 (4H, m, arom. H), 4.34 (4H, td, J = 4.8, 1.5 Hz, -*CH*₂O-), 4.15 (4H, td, J = 4.8, 1.5 Hz, -*CH*₂O-), 3.88 (4H, td, J = 4.5, 1.5 Hz, -*CH*₂O-), 3.81 (4H, td, J = 4.5, 1.5 Hz, -*CH*₂O-), 3.81 (4H, td, J = 4.5, 1.5 Hz, -*CH*₂O-), 3.81 (4H, td, J = 4.5, 1.5 Hz, -*CH*₂O-), 167.1 (2C, -*C*O₂-), 157.8 (2C, arom. C), 133.6 (2C, arom. C), 127.7 (4C, arom. CH), 114.9 (4C, arom. CH), 69.7 (2C, -*C*H₂O-), 69.1 (2C, -*C*H₂O-), 67.5 (2C, -*C*H₂O-), 64.3 (2C, -*C*H₂O-), 50.0 (2C, -*C*OCH₂CO-), 30.2 (2C, -*C*H₃) ppm. Anal Calcd for C₂₈H₃₄O₁₀ · 1/5H₂O: C, 62.96; H, 6.49. Found: C, 63.12; H, 6.43.

4,4'-Biphenylenebis(1,4,7-trioxanonanyl) di(3-oxobutanoate) (**2**₍₃₎-*biphen*): $R_f = 0.12$ (CHCl₃:MeOH = 98:2 v/v). Colorless microcrystals (from CHCl₃-hexane), m.p. 84-85 °C. IR (CHCl₃): v 1744, 1717 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): TM 7.46 (4H, m, arom. H), 6.96 (4H, m, arom. H), 4.31 (4H, t, J = 4.5, $-CH_2O$ -), 4.16 (4H, t, J = 4.5 Hz, $-CH_2O$ -), 3.87 (4H, t, J = 4.5 Hz, $-CH_2O$ -), 3.74-3.67 (12H, m, $-CH_2O$ -), 3.48 (4H, s, $-COCH_2CO$ -), 2.26 (6H, s, $-CH_3$) ppm. ¹³C NMR (75MHz, CDCl₃): TM 200.5 (2C, C=O), 167.1 (2C, $-CO_2$ -), 157.9 (2C, arom. C), 133.5 (2C, arom. C), 127.7 (4C, arom. CH), 114.9 (4C, arom. CH), 70.8 (2C, $-CH_2O$ -), 70.6 (2C, $-CH_2O$ -), 69.8 (2C, $-CH_2O$ -), 68.9 (2C, $-CH_2O$ -), 67.5 (2C, $-CH_2O$ -), 64.3 (2C, $-CH_2O$ -), 50.0 (2C, $-COCH_2CO$ -), 30.1 (2C, $-CH_3$). Anal Calcd for C₃₂H₄₂O₁₂•1/5H₂O: C, 61.76; H, 6.87. Found: C, 61.86; H, 6.89.

~^O _ Me

o-Phenylenebis(1-oxaheptyl) di(3-oxobutanoate) ($2_{(CH2)6}$ -*ortho*): $R_f = 0.30$ (CHCl₃:MeOH = 98:2 v/v). Colorless oil. IR (CHCl₃): v 1717 1734 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): TM 6.89 (4H,

m, arom. H), 4.15 (4H, t, J = 6.6 Hz, $-CH_2O_-$), 4.00 (4H, t, J = 6.6 Hz, $-CH_2O_-$), 3.45 (4H, s, $-COCH_2CO_-$), 2.27 (6H, s, $-CH_3$), 1.85-1.80, 1.71-1.66, 1.52-1.43 (16H, m, $-CH_2$ -) ppm. ¹³C NMR (75MHz, CDCl₃): TM 200.6 (2C, C=O), 167.2 (2C, $-CO_2$ -), 149.0 (2C, arom. C), 121.1 (2C, arom. CH), 114.0 (2C, arom. CH), 68.9 (2C, $-CH_2O_-$), 65.3 (2C, $-CH_2O_-$), 50.0 (2C, $-COCH_2CO_-$), 30.1 (2C, $-CH_3$), 29.1, 28.4, 25.64, 25.57 (8C, $-CH_2$ -) ppm. FAB HRMS (acetone/NBA): calcd for C₂₆H₃₈O₈ 478.2567 (M⁺); found 478.2545.

p-Phenylenebis(1-oxaheptyl) di(3-oxobutanoate) ($2_{(CH2)6}$ -*para*): $R_f = 0.36$ (CHCl₃:MeOH = 98:2 v/v). Colorless microcrystals (from CHCl₃-hexane), m.p. 42-43 °C. IR (CHCl₃): v 1717, 1734 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): TM 6.81 (4H, m, arom. H), 4.15 (4H, t, J = 6.6 Hz, -CH₂O-), 3.90 (4H, t, J = 6.6 Hz, -CH₂O-), 3.45 (4H, s, -COCH₂CO-), 2.27 (6H, s, -CH₃), 1.79-1.66, 1.52-1.42 (16H, m, -CH₂-) ppm. ¹³C NMR (75MHz, CDCl₃): TM 200.7 (2C, C=O), 167.2 (2C, -CO₂-), 153.1 (2C, arom. C), 115.3 (4C, arom. CH), 68.3 (2C, -CH₂O-), 65.4 (2C, -CH₂O-), 50.1 (2C, -COCH₂CO-), 30.1 (2C, -CH₃), 29.2, 28.4, 25.7, 25.6 (8C, -CH₂-) ppm. FAB HRMS (acetone/NBA): calcd for C₂₆H₃₈O₈ 478.2567 (M⁺); found 478.2567.

p-Phenylenebis(1-oxanonyl) di(3-oxobutanoate) ($2_{(CH2)8}$ -*para*): $R_f = 0.35$ (CHCl₃:MeOH = 98:2 v/v). Colorless microcrystals (from CHCl₃-hexane), m.p. 58-59 °C. IR (CHCl₃): v 1717, 1740 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃) TM 6.81 (4H, m, arom. H), 4.14 (4H, t, J = 6.6 Hz, -CH₂O-), 3.89 (4H, t, J = 6.6 Hz, -CH₂O-), 3.45 (4H, s, -COCH₂CO-), 2.27 (6H, s, -CH₃), 1.77-1.63, 1.44-1.35 (24H, m, -CH₂-) ppm. ¹³C NMR (75MHz, CDCl₃): TM 200.5 (2C, C=O), 167.0 (2C, -CO₂-), 153.0 (2C, arom. C), 115.2 (4C, arom. CH), 68.4 (2C, -CH₂O-), 65.3 (2C, -CH₂O-), 49.9 (2C, -COCH₂CO-), 30.0 (2C, -CH₃), 29.2, 29.1, 28.9, 28.3, 25.8, 25.6 (12C, -CH₂-) ppm. FAB HRMS (acetone/NBA): calcd for C₃₀H₄₆O₈ 534.3193 (M⁺); found 534.3204.

The oxamethylene-tethered terminal dienes $4_{(m)}$ were prepared by the Williamson ether synthesis of the corresponding diols with 1,1-diphenyl-3-bromopropene which was synthesized by the bromination of 1,1-diphenylpropene.^{8,9}

$$H - O \left[\begin{array}{c} 0 \\ 1 \\ x \end{array} \right]_{x} \left[\begin{array}{c} 1 \\ 1 \\ y \end{array} \right]_{x} \left[\begin{array}{c} 1 \\ 1 \\ y \end{array} \right]_{ph} \left[\begin{array}{c} 1 \\ Br \\ Ph \end{array} \right]_{y} reflux, 2h} Ph \left[\begin{array}{c} Ph \\ 0 \\ y \end{array} \right]_{ph} \left[\begin{array}{c} Ph \\ 0 \\ y \end{array} \right]_{y} reflux, 2h} Ph \left[\begin{array}{c} 1 \\ 0 \\ y \end{array} \right]_{x} \left[\begin{array}{c} Ph \\ 0 \\ y \end{array} \right]_{y} \left[\begin{array}{c} Ph \\ 0 \\ y \end{array}$$

Ph Ph

p-Phenylenebis(1,4-dioxa-7,7-diphenyl-6-heptene) (4₍₁₎): $R_f = 0.50$ (CHCl₃). Yellow oil. IR

(CHCl₃): v 1599 (C=C) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): TM 7.39-7.17 (20H, m, arom. H), 6.82 (4H, m, arom. H), 6.26 (2H, t, J = 6.6 Hz, =CH-), 4.15 (4H, d, J = 6.6 Hz, =CHCH₂-), 4.05 (4H, t, J = 4.8 Hz, -OCH₂-), 3.74 (4H, J = 4.8 Hz, -OCH₂-) ppm. ¹³C NMR (75 MHz, CDCl₃): TM 153.0 (2C, >C=), 144.9 (2C, arom. C), 141.8 (2C, arom. C), 139.2 (2C, arom. C), 129.8, 128.2, 128.1, 127.6, 127.54, 127.50 (20C, arom. CH), 125.4 (2C, =CH-), 115.5 (4C, arom. CH), 69.0, 68.7, 67.9 (6C, -OCH₂-) ppm. FAB HRMS (acetone/NBA): calcd for C₄₀H₃₈O₄ 582.2770 (M⁺); found 582.2787.

$\underset{\mathsf{Ph}}{\overset{\mathsf{Ph}}{\longrightarrow}} 0 \overset{\mathsf{Ph}}{\longrightarrow} 0 \overset{\mathsf{$

p-Phenylenebis(1,4,7-trioxa-10,10-diphenyl-9-decene) (4₍₂₎): $R_f = 0.17$ (CHCl₃). Yellow oil. IR (CHCl₃): v 1599 (C=C) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): TM 7.34-7.14 (20H, m, arom. H), 6.82 (4H, m, arom. H), 6.25 (2H, t, J = 6.6 Hz, =CH-), 4.10 (4H, d, J = 6.6 Hz, =CHCH₂-), 4.05 (4H, t, J = 4.8 Hz, -OCH₂-), 3.80 (4H, J = 4.8 Hz, -OCH₂-), 3.71-3.67 (4H, m, -OCH₂-), 3.60-3.57 (4H, m, -OCH₂-) ppm. ¹³C NMR (75 MHz, CDCl₃): TM 152.9 (2C, >C=), 144.4 (2C, arom. C), 141.7 (2C, arom. C), 139.1 (2C, arom. C), 129.6, 128.03, 128.00, 127.5, 127.4 (20C, arom. CH), 125.4 (2C, =CH-), 115.4 (4C, arom. CH), 70.7, 69.7, 69.4, 68.8, 67.9 (10C, -OCH₂-) ppm. FAB HRMS (acetone/NBA/NaI): calcd for C₄₄H₄₆O₆Na 693.3192 (M⁺ +Na); found 693.3229.

p-Phenylenebis(1,4,7,10-tetraoxa-13,13-diphenyl-12-tridecene) (4₍₃₎): $R_f = 0.18$ (CHCl₃). Yellow oil. IR (CHCl₃): v 1599 (C=C) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): ^{*TM*} 7.38-7.14 (20H, m, arom. H), 6.82 (4H, m, arom. H), 6.23 (2H, t, J = 6.6 Hz, =CH-), 4.09 (4H, d, J = 6.6 Hz, =CHCH₂-), 4.05 (4H, t, J = 4.8 Hz, -OCH₂-), 3.81 (4H, J = 4.8 Hz, -OCH₂-), 3.73-3.70 (6H, m, -OCH₂-), 3.68-3.63 (6H, m, -OCH₂-), 3.59-3.55 (4H, m, -OCH₂-) ppm. ¹³C NMR (75 MHz, CDCl₃): ^{*TM*} 153.0 (2C, >C=), 144.5 (2C, arom. C), 141.8 (2C, arom. C), 139.2 (2C, arom. C), 130.1, 129.7, 128.9, 128.5, 128.1, 127.6, 127.5 (20C, arom. CH), 125.6 (2C, =CH-), 115.5 (4C, arom. CH), 70.7, 70.6, 69.8, 69.5, 68.9, 68.0 (14C, -OCH₂-) ppm. FAB HRMS (acetone/NBA/NaI): calcd for C₄₈H₅₄O₈Na 781.3716 (M⁺ +Na); found 781.3727.

p-Phenylenebis(7,7-diphenyl-6-heptene) **6** and *p*-phenylenebis(heptyl) bis(3-oxobutanoate) **8** were prepared follows. The reaction of terephthaloyl dichloride as with 1-morpholino-1-cyclohexene followed by the decomposition with sodium hydroxide in ethanol, the Wolff-Kishner reduction,¹⁰ and then esterification gave diethyl *p*-phenylenebis(heptanoate). The *p*-phenylenebis(heptanoate) underwent the Grignard reaction followed by dehydration to give *p*-Phenylenebis(7,7-diphenyl-6-heptene) **6**. While the reduction of the *p*-phenylenebis(heptanoate) followed by esterification with diketene to give *p*-phenylenebis(heptyl) bis(3-oxobutanoate) $\mathbf{8}$.^{1,4}

p-Phenylenebis(7,7-diphenyl-6-heptene) (6): $R_{\rm f} = 0.50$ (CHCl₃). Colorless microcrystals (from CHCl₃-hexane), m.p. 76-77 °C. IR (CHCl₃): v 1599 (C=C) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): [™] 7.38-7.14 (20H, m, arom. H), 7.04 (4H, m, arom. H), 6.06 (2H, t, J = 6.6 Hz, =CH-), 2.53 (4H, t, J = 7.3 Hz, -CH₂-), 2.09 (4H, q, J = 7.2 Hz, =CHCH₂-), 1.57-1.37 (8H, m, -CH₂-), 1.35-1.30 (4H, m, -CH₂-) ppm. ¹³C NMR (75 MHz, CDCl₃): [™] 142.8 (2C, >C=), 141.4 (2C, arom. C), 140.2 (2C, arom. C), 139.9 (2C, arom. C), 130.2, 130.0 (4C, arom. C), 128.2, 128.1, 128.0, 127.7, 127.2, 126.8 (20C, arom.CH), 126.7 (2C, =CH-), 35.4, 31.4, 29.8, 29.6, 28.9 (10C, -CH₂-) ppm. FAB HRMS (acetone/NBA): calcd for C₄₄H₄₆ 574.3600 (M⁺); found 574.3601.

p-Phenylenebis(heptyl) bis(3-oxobutanoate) (8): $R_f = 0.27$ (CHCl₃). Colorless oil. IR (CHCl₃): v 1740, 1717 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): TM 7.07 (4H, m, arom. H), 4.12 (4H, t, J = 6.6 Hz, -CH₂O-), 3.44 (4H, s, -COCH₂CO-), 2.56 (4H, t, J = 7.2 Hz, -PhCH₂-), 2.20 (6H, s, -CH₃), 1.61-1.35, 1.34-1.20 (20H, m, -CH₂-) ppm. ¹³C NMR (75MHz, CDCl₃): TM 200.4 (2C, C=O), 167.0 (2C, -CO₂-), 139.7 (2C, arom. C), 128.1 (4C, arom. CH), 65.3 (2C, -CH₂O-), 49.9 (2C, -COCH₂CO-), 35.3, 31.3 (4C, -CH₂-), 30.0 (2C, -CH₃), 29.0, 28.9, 28.3, 25.6 (8C, -CH₂-) ppm. FAB HRMS (acetone/NBA): calcd for C₂₈H₄₃O₆ 475.3060 (M+H); found 475.3062.

References in Supplementary Data

- (a) J. Ouyang, H. Nishino, K. Kurosawa, J. Heterocycl. Chem. 1995, 32, 1783-1791. (b) T. Yoshinaga, H. Nishino, K. Kurosawa, Tetrahedron Lett. 1998, 39, 9197-9200. (c) F. A. Chowdhury, H. Nishino, K. Kurosawa, Heterocycl. Commun. 1999, 5, 111-112.
- 2. K. Mizuno, T. Tamai, I. Hashida, Y. Otsuji, Y. Kuriyama, K. Tokumaru, J. Org. Chem. 1994, 59, 7329-7334.
- 3. S. K. Armstrong, R. J. Cross, L. J. Farrugia, D. A. Nichols, A. Perry, *Eur. J. Inorg. Chem.* 2002, 141-151.
- (a) F. Cohen, S. K. Collins, L. E. Overman, Org. Lett. 2003, 5, 4485-4488. (b) G.-Y. Li, C.-M. Che, Org. Lett. 2004, 6, 1621-1623.
- S. Nygaard, K. C.-F. Leung, I. Aprahamian, T. Ikeda, S. Saha, B. W. Laursen, S.-Y. Kim, S. W. Hansen, P. C. Stein, A. H. Flood, J. F. Stoddart, J. O. Jeppesen, *J. Am. Chem. Soc.* 2007, 129, 960-970.
- 6. F. Seyama, T. Tsuchida, M. Kondo, *Jpn. Kokai Tokkyo Koho*, **1990**, *8*, 507; Japan Patent 02175187.
- 7. B. Bruno, T. Gunther United States Patent Office, 1962, US Patent 2771484.
- 8. K. Maruyama, Y. Kubo, J. Org. Chem. 1981, 46, 3612-3622.
- 9. S. Jogo, H. Nishino, M. Yasutake, T. Shinmyozu, Tetrahedron Lett. 2002, 43, 9031-9034.
- 10. S. Hunig, E. Lucke, W. Brenninger, Org. Synth. 1973, Col. Vol. 5, 533-539 and 808-809.

A. Crystal Data	
Empirical Formula	$C_{54}H_{56}O_8$
Formula Weight	833.03
Crystal Color, Habit	colorless, block
Crystal Dimensions	0.90 X 0.80 X 0.70 mm
Crystal System	monoclinic
Lattice Type	C-centered
No. of Reflections Used for Unit	
Cell Determination (2q range)	25 (30.1 - 34.2°)
Omega Scan Peak Width at Half-height	0.27°
Lattice Parameters	a = 14.5489(17) Å
	b = 31.423(9) Å
	c = 11.6090(13) Å
	$\beta = 118.413(8)^{\circ}$
	$V = 4668.0(14) \text{ Å}^3$
Space Group	C2/c (#15)
Z value	4
Dcalc	1.185 g/cm^3
F000	1776.00
m(Mo $K\alpha$)	0.784 cm^{-1}
B. Intensity Measurements	
Diffractometer	Rigaku AFC7R
Radiation	Mo $K\alpha$ ($\lambda = 0.71069$ Å)
	graphite monochromated
Attenuator	Zr foil (factor = 8.43)
Take-off Angle	6.0°
Detector Aperture	3.0 mm horizontal
	3.0 mm vertical
Crystal to Detector Distance	235 mm
Voltage, Current	50 kV, 100 mA
Temperature	25.0 °C
Scan Type	ω
Scan Rate	16.0°/min (in w) (up to 2 scans)
Scan Width	$(1.73 + 0.30 \tan \theta)^{\circ}$
2 <i>θ</i> max	55.0°
No. of Reflections Measured	Total: 6419
	Unique: 5364 ($R_{int} = 0.124$)
Corrections	Lorentz-polarization

Absorption (trans. factors: 0.735 - 0.947) Decay (36.48% decline) Secondary Extinction (coefficient: 2.45440e+002)

C. Structure Solution and Refinement	
Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares on F^2
Function Minimized	$\Sigma \mathrm{w} (F \mathrm{o}^2 - F \mathrm{c}^2)^2$
Least Squares Weights	$1/\sigma^2(Fo^2) = 1/\sigma^2(Fo)/(4Fo^2)$
$2\theta_{\max}$ cutoff	55.0°
Anomalous Dispersion	All non-hydrogen atoms
No. Observations $(I \ge 2.00\sigma(I))$	2891
No. Variables	309
Reflection/Parameter Ratio	9.36
Residuals: R^1 ($I > 2.00 \sigma(I)$)	0.0878
Residuals: $wR^2 (I > 2.00\sigma(I))$	0.1042
Goodness of Fit Indicator	4.749
Max Shift/Error in Final Cycle	0.001
Maximum peak in Final Diff. Map	0.86 e ⁻ /Å ³
Minimum peak in Final Diff. Map	$-0.77 \text{ e}^{-1}/\text{Å}^{3}$

Figure 3. ORTEP Drawing of [22]paracyclophane 3(8)(1)-para