Supporting Information

Highly Diastereo- and Enantioselective Direct Aldol Reactions Promoted by Simple Prolinamides in Water

Rafael Pedrosa,* José M. Andrés,* Rubén Manzano, David Román and Silvia Téllez

Centro de Innovación en Química y Materiales Avanzados (CINQUIMA) and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain E-mail: pedrosa@qo.uva.es

Table of Contents

1. Experimental Section
General Information S2
Procedure for the preparation of diamine 4
Procedures for the preparation of catalyst I, ent-I, II and III
2. NMR Spectra and High resolution MS for New Compounds
3. NMR Spectra of the aldol reaction mixtures
4. HPLC Profiles of the Aldol Products S39
5. References and notesS59

1. Experimental section

General information

¹H–NMR (300 MHz) and ¹³C–NMR (75 MHz) spectra were recorded on a Bruker AC– 300 spectrometer in CDCl₃. Chemical shifts for protons are reported in ppm from tetramethylsilane with the residual CHCl₃ resonance as internal reference. Chemical shifts for carbons are reported in ppm from tetramethylsilane and are referenced to the carbon resonance of the solvent. Data are reported as follows: chemical shift, multiplicity (s=singlet, d=doublet, t=triplet, q=quartet m=multiplet, br=broad), coupling constants in Hertz, and integration. Specific rotations were measured on a Perkin-Elmer digital polarimeter using a 5-mL cell with a 1-dm path length, and a sodium lamp, and concentration is given in g per 100 mL. Infrared spectra were recorded on a Perkin-Elmer FT-IR spectrometer and are reported in frequency of absorption. Melting points were obtained with open capillary tubes and are uncorrected. Flash chromatography was carried out using silica gel (230-240 mesh). Chemical yields refer to pure isolated substances. TLC analysis was performed on glass-backed plates coated with silica gel 60 and an F₂₅₄ indicator, and visualized by either UV irradiation or by staining with phosphomolybdic acid solution. Chiral HPLC analysis was performed on a Hewlett-Packard 1090 Series II instrument equipped with a quaternary pump, using a Daicel Chiralcel OD Column (250×4.6 mm) or Chiralpak AS-H, AD-H Column (250×4.6 mm). UV detection was monitored at 220 nm or at 254 nm. Racemic samples were prepared by using racemic proline as the catalyst in DMF¹ or DMSO.²

Organic compounds were purchased from Aldrich and used as received. Solvents were dried and stored over microwave–activated 4Å molecular sieves. All reactions were carried out under argon atmosphere.

Procedure for preparation of diamine 4

Scheme 1. *Reagents and conditions*: (i) ClCO₂Et, Bn₂NH, NMM (2 equiv), THF, -15 °C to rt. (ii) TFA, CH₂Cl₂, rt. (iii) LAH (3 equiv), Et₂O, 0 °C.

(S)-2-tert-Butoxycarbonylamino-N,N-dibenzyl-3-phenylpropanamide (2).³ To a cold solution of Boc-L-phenylalanine (3.98 g, 15 mmol) and N-methylmorpholine (NMM) (1.66 mL, 15 mmol) in dry THF (45 mL) at -15 °C, ethyl chloroformate (1.43 mL, 15 mmol) in THF (8 mL) was added dropwise in 15 min. After stirring for another 15 min, dibenzylamine (3 mL, 15 mmol) was added in one portion. Then the reaction mixture was allowed to warm to room temperature and stirred overnight. After evaporation of the solvent in vacuo, the residue was diluted with EtOAc (60 mL) and the organic phase was washed with 10% Na₂CO₃ (50 mL), 0.1 M HCl (2 x 50 mL), brine (50 mL) and dried over anhydrous MgSO₄. Removal of the solvent *in vacuo* gave crude Boc-α-amino amide 2, which was purified by recristallisation from hexane-ethyl acetate. Yield: 5.00 g (11.2 mmol, 75%). Colorless solid, mp 111-112 °C.[Lit. mp 108-110 °C.]; $[\alpha]_D^{25} = -9.4$ $(c \ 1.0, \text{CHCl}_3)$ [Lit. $[\alpha]_D^{25} = -10.3$ $(c \ 1.0, \text{CHCl}_3)$]; ¹H-NMR (300 MHz, CDCl₂): $\delta =$ 1.41 (s, 9H); 3.00 (m, 2H); 4.29 (m, 3H); 4.70 (d, J = 14.5 Hz, 1H); 4.92 (m, 1H); 5.37 (d, J = 8.8 Hz, 1H); 7.15 (m, 15H). ¹³C-NMR (75 MHz, $CDCl_3$): $\delta = 28.4$ (<u>CH</u>₃); 40.1 (CH₂); 48.4 (CH₂); 49.9 (CH₂); 51.8 (CH); 79.9 (C); 126.9, 127.1, 127.6, 127.8, 128.5, 128.6, 129.0, 129.7 (CHar); 136.2, 136.7 (Car); 155.2 (NCO₂); 172.8 (CON). IR (KBr): $v = 3343, 1684, 1635, 1527, 1170, 754, 701 \text{ cm}^{-1}$. HRMS calcd for $C_{28}H_{32}N_2O_3 + Na^+$, 467.2311; found, 467.2287.

(*S*)-2-Amino-*N*,*N*-dibenzyl-3-phenylpropanamide (3).³ Boc-amino amide 2 (4.20 g, 9.45 mmol) was dissolved in mixture of TFA/CH₂Cl₂ (1:4) (18 mL), and stirred for 4 h at room temperature. The mixture was cooled to 0 °C, basified with 2N ammonia solution and extracted with dichloromethane (3×20 mL). After the removal of the solvent at reduced pressure, the crude amino amide **3** was purified by recristallisation from hexane-ethyl acetate. Yield: 2.84 g (8.22 mmol, 87%). Colorless solid, mp 108-109 °C. [Lit. mp 99-101 °C]; $[\alpha]_D^{25}$ = +33.2 (*c* 1, CHCl₃) [Lit. $[\alpha]_D^{25}$ = +32.7 (*c* 1.14, CHCl₃)]; ¹H-NMR (300 MHz, CDCl₃): δ = 1.64 (br s, 2H); 2.83 (dd, J = 13.2 Hz, J = 7.5 Hz, 1H); 3.06 (dd, J = 13.2 Hz, J = 7.0 Hz, 1H); 3.91 (m, 1H); 4.26 (m, 3H); 4.95 (d, J = 14.9 Hz, 1H); 7.20 (m, 15H). ¹³C-NMR (75 MHz, CDCl₃): δ = 42.9 (<u>CH</u>₂); 48.7 (<u>CH</u>₂); 49.4 (<u>CH</u>₂); 53.4 (<u>CH</u>); 126.3, 126.6, 127.4, 127.7, 128.3, 128.5, 129.0, 129.4 (<u>CH</u>₃); 136.4, 136.9, 137.7 (<u>C</u>ar); 175.6 (<u>C</u>ON). IR (KBr): ν = 3363, 1624, 1451, 1077, 747, 700 cm⁻¹. HRMS calcd for C₂₃H₂₄N₂O + Na⁺, 367.1786; found, 367.1761.

(*S*)-*N^I*, *N^I*-Dibenzyl-3-phenylpropane-1,2-diamine (4). ³ A solution of amino amide **3** (2.80 g, 8.13 mmol) in anhydrous ether (20 mL) was added dropwise to a suspension of LiAlH₄ (0.92 g, 24.4 mmol, 3 equiv) in 25 mL of the same solvent at 0 °C, and the mixture was stirred at under nitrogen atmosphere for 4 h. Then, the suspension was sequentially treated at 0 °C with water (0.9 mL), 15% NaOH solution (0.9 mL) and water (2.7 mL), and stirred for 2h. The white solids were removed by filtration, the solvent of the filtrate was evaporated on the rotavapor and the residue was purified by flash column chromatography on silica gel (ethyl acetate). Yield: 1.13 g (3.42 mmol, 42 %). Colorless oil. $[\alpha]_D^{25}$ = +43.8 (*c* 1.2, CHCl₃) [Lit. $[\alpha]_D^{25}$ = +54.3 (*c* 1.17, CHCl₃)]; ¹H-NMR (300 MHz, CDCl₃): δ = 1.58 (br s, 2H); 2.40 (m, 3H); 2.75 (m, 1H); 3.18 (m, 1H); 3.49 (d, J = 13.4 Hz, 2H); 3.70 (d, J = 13.4 Hz, 2H); 7.28 (m, 15H). ¹³C-NMR (75 MHz, CDCl₃): δ = 42.1 (<u>CH</u>₂); 50.4 (<u>CH</u>); 59.0 (<u>CH</u>₂); 60.8 (<u>CH</u>₂); 126.0, 126.9, 128.2, 128.3, 128.9, 129.1 (<u>C</u>Har); 139.2, 139.5 (<u>C</u>ar). IR (film): v = 3360, 1601, 1493, 1452, 1068, 1027, 745, 699 cm⁻¹. HRMS calcd for C₂₃H₂₆N₂ + H⁺, 331.2174; found, 331.2150.

Procedures for preparation of catalyst I, ent-I, II and III

Scheme 2. *Reagents and conditions*: (i) *p*-CH₃C₆H₄COCl, MeOH, 0 °C, 60s. (ii) Boc-*L*-proline, DCC, DCM, 0 °C to rt. (iii) TFA, DCM, rt. (iv) Boc-*D*-proline, DCC, DCM, 0 °C to rt .

N-(2-Aminoethyl)-4-methylbenzamide (5).⁴ Ethylenediamine (1.6 mL, 24 mmol, 1.2 equiv) was added all at once to a vigorously stirred solution of the *p*-toluoyl chloride (2.6 mL, 20 mmol) in methanol (100 mL) in an ice-water bath. Stirring was continued for 60 s, then the reaction was quenched with 10% NaOH solution (10 mL). The heterogeneous mixture was stirred at room temperature for 5 min and the methanol was eliminated under vacuum. The resulting aqueous phase was diluted with water and extracted with chloroform (3 x 25 mL). The combined organic layers were washed with water, dried with anhydrous MgSO₄ and the solvents were eliminated under vacuum. The residue was purified through flash column chromatography on silica gel (DCM/methanol: 3/2). to give **5** (2.24 g, 12.6 mmol, 63%) as a colorless oil. ¹H-NMR

(300 MHz, CDCl₃): $\delta = 2.33$ (s, 5H); 2.87 (m, 2H); 3.45 (m, 2H); 7.15 (d, J = 8.3 Hz, 2H); 7.25 (br s, 1H), 7.68 (d, J = 8.3 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃): $\delta = 21.5$ (CH₃); 41.3 (CH₂); 42.2 (CH₂); 127.1, 129.2 (CHar); 131.7, 141.9 (Car); 168.0 (CON). IR (KBr): $\nu = 3293$, 2924, 1636, 1544, 1505, 1305, 838, 752 cm⁻¹. HRMS calcd for C₁₀H₁₄N₂O+ Na⁺, 201.1004; found, 201.0996.

(S)-tert-Butyl 2-(2-(4-methylbenzamido)ethylcarbamoyl)pyrrolidine-1-carboxylate

(6). Boc-*L*-Proline (1.50 g, 6.96 mmol, 1.25 equiv) and N, N'-dicyclohexylcarbodiimide (DCC) (1.43 g, 6.96 mmol, 1.25 equiv) were dissolved in dichloromethane (15 mL) and cooled down to 0 °C. After the solution was stirred for 30 min, a solution of **5** (0.99 g, 5.57 mmol, 1 equiv) in dichloromethane (15 mL) was added dropwise over 10 min. After the addition was complete, the mixture was warmed to room temperature and stirred for another 10 h. After filtration and removal of solvent at reduced pressure, the residue was purified through flash column chromatography on silica gel (eluent, ethyl acetate) to provide 1.82 g (4.85 mmol, 87%) of prolinamide **6** as a colorless oil. $[\alpha]_D^{23} = -21.9$ (c 1.0, CHCl₃). ¹H-NMR (300 MHz, CDCl₃, 330K): $\delta = 1.39$ (s, 9H); 1.83 (m, 2H); 2.00 (m, 2H); 2.34 (s, 3H); 3.50 (m, 6H); 4.17 (m, 1H); 6.97 (br s, 1H); 7.16 (d, J = 7.9 Hz, 2H); 7.23 (br s, 1H); 7.70 (d, J = 7.9 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃, 330K): $\delta = 21.4$ (CH₃); 24.4 (CH₂); 28.5 (CH₃); 29.9 (CH₂); 39.9 (CH₂); 41.0 (CH₂); 47.3 (CH₂); 61.0 (CH); 127.3, 129.2 (CHar); 131.8, 141.7 (Car); 155.3 (NCO₂); 168.0 (CON); 174.2 (CON). IR (KBr): v = 3313, 2976, 1651, 1538, 1393, 1162, 1123, 753.1 cm⁻¹. HRMS calcd for C₂₀H₂₉N₃O₄+ Na⁺, 398.2056; found, 398.2054.

(S)-N-(2-(4-Methylbenzamido)ethyl)pyrrolidine-2-carboxamide (I). This compound was obtained by reaction of compound 6 (1.31 g, 3.5 mmol) with TFA/DCM (1:4) by the procedure described for the preparation of 3 and was purified by flash column

chromatography on silica gel (EtOAc/methanol: 5/1). Yield: 0.77 g (2.8 mmol, 80%). Colorless solid, mp 142-143 °C (from EtOAc). $[\alpha]_D^{23} = -65.4$ (c 1.0, CHCl₃). ¹H-NMR (300 MHz, CDCl₃): $\delta = 1.64$ (m, 2H); 1.81 (m, 1H); 2.09 (m, 2H); 2.36 (s, 3H); 2.86 (dt, J = 10.1 Hz, J = 6.1 Hz, 1H); 2.97 (dt, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 4H); 3.72 (dd, J = 9.2 Hz, J = 5.3 Hz, 1H); 7.20 (d, J = 8.2 Hz, 2H); 7.57 (br s, 1H); 7.72 (d, J = 8.2 Hz, 2H); 8.13 (br s, 1H). ¹³C-NMR (75 MHz, CDCl₃): $\delta = 21.4$ (CH₃); 26.1 (CH₂); 30.8 (CH₂); 38.7 (CH₂); 41.7 (CH₂); 47.2 (CH₂); 60.4 (CH); 127.1, 129.1 (CHar); 131.3, 141.6 (Car); 167.7 (CON); 177.5 (CON). IR (KBr): v = 3328, 3290, 2939, 1637, 1540, 1216, 835 cm⁻¹. HRMS calcd for C₁₅H₂₁N₃O₂+ H⁺, 276.1712; found, 276.1702.

(*R*)-*tert*-Butyl 2-(2-(4-methylbenzamido)ethylcarbamoyl)pyrrolidine-1-carboxylate (*ent*-6). This compound was obtained by reaction of *p*-toluoylethylenediamine (0.66 g, 3.71 mmol) with Boc-*D*-proline (1.00 g, 4.64 mmol, 1.25 equiv) in the presence of DCC (0.95 g, 4.64 mmol, 1.25 equiv) by the procedure described for the preparation of **6** and was purified by flash column chromatography on silica gel (EtOAc). Yield: 1.12 g (2.97 mmol, 80%). Colorless oil. $[\alpha]_D^{23} = +21.7$ (c 1.0, CHCl₃). ¹H-NMR (300 MHz, CDCl₃, 330K): $\delta = 1.39$ (s, 9H); 1.83 (m, 2H); 2.00 (m, 2H); 2.34 (s, 3H); 3.50 (m, 6H); 4.17 (m, 1H); 6.97 (br s, 1H); 7.16 (d, J = 7.9 Hz, 2H); 7.23 (br s, 1H); 7.70 (d, J = 7.9 Hz, 2H).

(*R*)-*N*-(2-(4-Methylbenzamido)ethyl)pyrrolidine-2-carboxamide (*ent*-I). This compound was obtained by reaction of compound *ent*-6 (0.94 g, 2.50 mmol) with TFA/DCM (1:4) by the procedure described for the preparation of **3** and was purified by flash column chromatography on silica gel (EtOAc/methanol: 5/1). Yield: 0.50 g (1.83 mmol, 73%). Colorless solid, mp 142-143 °C (from EtOAc). $[\alpha]_D^{23} = +65.1$ (c 1.0, CHCl₃). HRMS calcd for C₁₅H₂₁N₃O₂+ H⁺, 276.1712; found, 276.1715. ¹H-NMR (300 MHz, CDCl₃): $\delta = 1.64$ (m, 2H); 1.81 (m, 1H); 2.09 (m, 2H); 2.36 (s, 3H); 2.86 (dt, J = 10.1 Hz, J = 6.1 Hz, 1H); 2.97 (dt, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 4H); 3.72 (dd, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 2H); 3.72 (dd, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 2H); 3.72 (dd, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 2H); 3.72 (dd, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 2H); 3.72 (dd, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 2H); 3.72 (dd, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 2H); 3.72 (dd, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 2H); 3.72 (dd, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 2H); 3.72 (dd, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 2H); 3.72 (dd, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 2H); 3.72 (dd, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 2H); 3.72 (dd, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 2H); 3.72 (dd, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 2H); 3.72 (dd, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 2H); 3.72 (dd, J = 10.1 Hz, J = 6.6 Hz, 1H); 3.52 (m, 2H); 3.52 (m,

J = 9.2 Hz, J = 5.3 Hz, 1H); 7.20 (d, J = 8.2 Hz, 2H); 7.57 (br s, 1H); 7.72 (d, J = 8.2 Hz, 2H); 8.13 (br s, 1H).

Scheme 3. *Reagents and conditions*: (i) *p*-CH₃C₆H₄COCl, MeOH, 0 °C, 60 s. (ii) Boc-*L*-proline, DCC, DCM, 0 °C to rt. (iii) TFA, DCM, rt.

N-(3-Aminopropyl)-4-methylbenzamide (7).⁵ Propane-1,3-diamine (2 mL, 24 mmol, 1.2 equiv) was added all at once to a vigorously stirred solution of the *p*-toluoyl chloride (2.6 mL, 20 mmol) in methanol (100 mL) in an ice-water bath. Stirring was continued for 60 s, then the reaction was quenched with 10% NaOH solution (10 mL). The heterogeneous mixture was stirred at room temperature for 5 min and the methanol was eliminated under vacuum. The resulting aqueous phase was diluted with water and extracted with chloroform (3 x 25 mL). The combined organic layers were washed with water, dried with anhydrous MgSO₄ and the solvents were eliminated under vacuum. The residue was purified through flash column chromatography on silica gel (DCM/methanol: 3/2) to give 7 (1.52 g, 7.9 mmol, 40%) as a colorless oil. ¹H-NMR (300 MHz, CDCl₃): δ = 1.56 (br s, 2H); 1.68 (m, 2H); 2.34 (s, 3H); 2.83 (t, J = 6.1 Hz, 2H); 3.51 (m, 2H); 7.16 (d, J = 8.2 Hz, 2H); 7.67 (d, J = 8.2 Hz, 2H); 7.83 (br s, 1H). ¹³C-NMR (75 MHz, CDCl₃): δ = 21.5 (CH₃); 31.7 (CH₂); 39.1 (CH₂); 40.7 (CH₂); 127.0, 129.1 (CHar); 131.9, 141.6 (Car); 167.5 (CON).

(*S*)-*tert*-Butyl 2-(3-(4-methylbenzamido)propylcarbamoyl)pyrrolidine-1carboxylate (8). This compound was obtained by reaction of compound 7 (1.46 g, 7.6 mmol) with Boc-*L*-proline in the presence of DCC by the procedure described for the preparation of **6** and was purified by flash column chromatography on silica gel (EtOAc). Yield: 1.66 g (4.3 mmol, 56%). Colorless solid, mp. 131-132 °C. $[\alpha]_D = -43.4$ (*c* 0.7, CHCl₃). ¹H-NMR (300 MHz, CDCl₃, 330K): $\delta = 1.44$ (s, 9H); 1.71 (m, 3H); 1.88 (m, 3H); 2.37 (s, 3H); 3.40 (m, 6H); 4.25 (m, 1H); 6.95 (br s, 1H); 7.20 (d, J = 8.3 Hz, 2H); 7.31 (br s, 1H); 7.75 (d, J = 8.3 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃, 330K): $\delta = 21.5$ (<u>CH</u>₃); 24.4 (<u>CH</u>₂); 28.6 (<u>CH</u>₃); 30.0 (<u>CH</u>₂); 36.1 (<u>CH</u>₂); 47.3 (<u>CH</u>₂); 60.9 (<u>CH</u>₁); 80.6 (<u>C</u>); 127.2, 129.3 (<u>CH</u>ar); 132.0, 141.7 (<u>C</u>ar); 155.0 (N<u>C</u>O₂); 167.6 (<u>C</u>ON); 173.8 (<u>C</u>ON). IR (KBr): $\nu = 3328$, 3274, 1707, 1634, 1543, 1385, 1167, 838, 754, 701 cm⁻¹. HRMS calcd for C₂₁H₃₁N₃O₄+ Na⁺, 412.2212; found, 412.2195.

(*S*)-*N*-(3-(4-Methylbenzamido)propyl)pyrrolidine-2-carboxamide (II). This compound was prepared by reaction of compound **8** (1.36 g, 3.5 mmol) with TFA in DCM by the procedure described for the preparation of **3** and was purified by flash column chromatography on silica gel (EtOAc/methanol: 5/1).Yield: 0.67 g (2.3 mmol, 66%). Colorless oil. $[\alpha]_D = -65.9 (c \ 0.8, CHCl_3)$. ¹H-NMR (300 MHz, CDCl_3): $\delta = 1.66$ (m, 4H); 1.84 (m, 1H); 2.11 (m, 1H); 2.32 (s, 3H); 2.89 (m, 1H); 2.97 (m, 1H); 3.35 (m, 4H); 3.75 (m, 1H); 7.16 (d, J = 7.9 Hz, 2H); 7.75 (d, J = 7.9 Hz, <u>3H</u>); 8.00 (br s, 1H). ¹³C-NMR (75 MHz, CDCl_3): $\delta = 21.5$ (CH₃); 26.1 (CH₂); 29.7 (CH₂); 30.9 (CH₂); 35.6 (CH₂); 35.9 (CH₂); 47.2 (CH₂); 60.5 (CH); 127.1, 129.1 (CHar); 131.7, 141.6 (Car); 167.4 (CON); 176.2 (CON). IR (KBr): $\nu = 3312$, 1643, 1548, 1439, 1305, 1119, 838, 753 cm⁻¹. HRMS calcd for C₁₆H₂₃N₃O₂ + H⁺, 290.1869; found, 290.1880.

Scheme 4. *Reagents and conditions*: (i) *p*-CH₃C₆H₄COCl, Et₃N, DCM, 0 °C to rt. (ii) H₂, Pd(OH)₂-C, MeOH. (iii) Boc-*L*-proline, DCC, DCM, 0 °C to rt. (iv) TFA, DCM, rt.

(S)-N-(1-Dibenzylamino)-3-phenylpropan-2-yl)-4-methylbenzamide (9). Diamine 4 (1.16 g, 3.5 mmol) was added to dichloromethane (15 mL). The mixture was cooled down to 0 °C and p-toluoyl chloride (0.56 mL, 4.2 mmol, 1.2 equiv) was added dropwise. After the addition was complete, the mixture was allowed to warm to room temperature and stirred for 5h. The resulting solution was basified with 2M ammonia solution (10 mL) and the aqueous phase was extracted with dichloromethane (3 x 10 \pm mL). The combined organic layers were washed with water, dried with anhydrous MgSO₄ and the solvents were eliminated under vacuum. The residue was purified through flash column chromatography on silica gel (hexane/EtOAc: 8:1). to give 9 (1.71 g, 3.82 mmol, 91%) as a colorless solid. Mp 108-110 °C. $[\alpha]_D^{25} = -17.8$ (c 1.2, CHCl₃); ¹H-NMR (300 MHz, CDCl₃): $\delta = 2.44$ (s, 3H); 2.51 (m, 2H); 2.80 (dd, J = 13.6 Hz, J = 7.5 Hz, 1H); 3.07 (dd, J = 13.6 Hz, J = 5.3 Hz, 1H); 3.48 (d, J = 13.4 Hz, 2H); 3.69 (d, J = 13.4 Hz, 2H); 4.48 (m, 1H); 6.03 (d, J = 6.2 Hz, 1H); 7.25 (m, 17H); 7.58 (d, J = 7.9 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃): $\delta = 21.4$ (<u>CH</u>₃); 38.5 (<u>CH</u>₂); 48.6 (<u>CH</u>); 55.4 (<u>CH</u>₂); 58.4 (<u>CH</u>₂); 126.2, 126.7, 126.8, 127.0, 128.2, 128.7, 129.1, 129.4 (<u>CH</u>ar); 131.8, 137.9, 138.0, 141.6 (Car); 167.1 (CON). IR (KBr): v = 3335, 1635, 1533, 1076, 834, 755, 742, 700 cm⁻¹. HRMS calcd for $C_{31}H_{32}N_2O + H^+$, 449.2593; found, 449.2579.

(*S*)-*N*-(1-Amino)-3-phenylpropan-2-yl)-4-methylbenzamide (10). To a solution of *p*toluamide **9** (1.25 g, 2.80 mmol) in MeOH (30 mL) was added Pd(OH)₂-C (310 mg) in one portion. The mixture was stirred under hydrogen for 24 h and the catalyst was removed by filtration and washed with methanol. The solvent was evaporated under reduced pressure and the residue was washed with ethyl acetate to give **10** as a colorless solid: 465 mg (1.73 mmol, 62%). Mp 237-239 °C (dec). $[\alpha]_D^{25}$ = -64.3 (*c* 0.8, MeOH); ¹H-NMR (300 MHz, CD₃OD): δ = 2.38 (s, 3H); 3.00 (d, J = 7.5 Hz, 2H); 3.16 (m, 2H); 3.30 (br s, 2H); 4.56 (m, 1H); 7.27 (m, 7H); 7.67 (d, J = 7.9 Hz, 2H). ¹³C-NMR (75 MHz, CD₃OD): δ = 21.6 (CH₃); 39.3 (CH₂); 44.5 (CH₂); 51.6 (CH); 128.0, 128.8, 129.8, 130.2, 130.5 (CHar); 132.4, 138.8, 143.8 (Car); 171.1 (CON). IR (KBr): v = 3323, 1640, 1540, 1048, 746, 701 cm⁻¹. HRMS calcd for C₁₇H₂₀N₂O + H⁺, 269.1654; found, 269.1660.

(*S*)-*tert*-Butyl 2-((*S*)-2-(4-methylbenzamido)-3 phenylpropylcarbamoyl)pyrrolidine -1-carboxylate (11). This compound was obtained by reaction of compound 10 (295 mg, 1.10 mmol, 1 equiv) with Boc-*L*-proline (296 mg, 1.37 mmoles, 1.25 equiv) in the presence of DCC (284 mg, 1.37 mmoles, 1.25 equiv) by the procedure described for the preparation of **6** and was purified by flash column chromatography on silica gel (hexane/EtOAc: 1/1). Yield: 179 mg (0.38 mmol, 88%). Colorless solid, mp 104-105 $^{\circ}$ C. [α]_D²⁵= -60.0 (*c* 0.8, CHCl₃); ¹H-NMR (300 MHz, CDCl₃): δ = 1.41 (s, 9H); 1.91 (m, 3H); 2.18 (m, 1H); 2.37 (s, 3H); 2.83 (dd, 1H, J = 13.6 Hz, J = 7.9 Hz, 1H); 3.13 (dd, 1H, J = 13.6 Hz, J = 5.7 Hz, 1H); 3.44 (m, 4H); 4.23 (m, 1H); 4.38 (m, 1H); 6.90 (br s, 2H); 7.19 (d, J = 8.3 Hz, 2H); 7.27 (m, 5H); 7.65 (d, J = 8.3 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃): δ = 21.0 (CH₃); 24.1 (CH₂); 28.2 (CH₃); 33.8 (CH₂); 38.4 (CH₂); 42.5 (CH₂); 47.0 (CH₂); 52.8 (CH); 60.5 (CH); 80.3 (C); 126.5, 126.9, 128.5, 128.9, 129.1 (CHar); 131.8, 137.7, 141.4 (Car); 155.4 (NCO₂); 167.2 (CON); 174.0 (CON). IR (KBr): v = 3325, 1638, 1543, 1400, 1163, 751, 701 cm⁻¹. HRMS calcd for C₂₇H₃₅N₃O₄ + Na⁺, 488.2525; found, 488.2503.

(S)-N-((S)-2-(4-methylbenzamido)-3-phenylpropyl)pyrrolidine-2-carboxamide

(III). This compound was prepared by reaction of compound 11 (150 mg, 0.32 mmol) with TFA in DCM by the procedure described for the preparation of **3** and was purified by flash column chromatography on silica gel (EtOAc/methanol: 5/1). Yield: 102 mg

(0.28 mmol, 87%). Colorless solid, mp. 181-182 °C (from EtOAc). $[\alpha]_D^{25}$ = -34.3 (*c* 0.8, CHCl₃); ¹H-NMR (300 MHz, CDCl₃): δ = 1.70 (m, 2H); 1.90 (m, 1H); 2.11 (m, 1H); 2.38 (s, 3H); 2.68 (m, 2H); 2.95 (m, 2H); 3.25 (m, 2H); 3.40 (m, 1H); 3.70 (dd, J = 9.0 Hz, J = 5.0 Hz, 1H); 4.34 (m, 1H); 7.22 (d, J = 7.9 Hz, 2H); 7.29 (m, 5H); 7.66 (d, J = 6.6 Hz, 1H); 7.72 (d, J = 7.9 Hz, 2H); 8.09 (br s, 1H). ¹³C-NMR (75 MHz, CDCl₃): δ = 21.4 (CH₃); 26.1 (CH₂); 30.6 (CH₂); 38.5 (CH₂); 41.6 (CH₂); 47.1 (CH₂); 53.4 (CH); 60.2 (CH); 126.5, 127.0, 128.6, 129.1, 129.2 (CHar); 131.3, 137.8, 141.6 (Car); 167.2 (CON); 177.2 (CON). IR (KBr): ν = 3322, 1660, 1633, 1544, 1509, 1111, 699 cm⁻¹. HRMS calcd for C₂₂H₂₇N₃O₂ + H⁺, 366.2182; found, 366.2180.

2. NMR Spectra and High resolution MS for New Compounds

-2.326388 -8.016815 -2.828964 -9.74871 10.5

3.5

290.190326

290.190829

C21 H24 N C5 H20 N13 O

-2.027884 -7.533938

0.5

269.168028

C5 H21 N8 O4

-3.626548 -9.902688

14.5

C27 H28 N

366.221627

DAVID 104B

4. HPLC profiles of the Aldol Products (*anti*-1a-i, *Table 3*) catalyzed by catalyst I.

Racemic molecule

#	Time	Area	Height	Width	Area%
1	31.453	28441.6	265.5	1.4739	51.302
2	46.309	26998.2	188.5	1.6997	48.698

HPLC profile for Entry 1, Table 3. 97:3 er

#	Time	Area	Height	Width	Area%	Symmetry
1	30.223	17086.3	176.9	1.6094	96.452	0.448
2	44.842	628.4	7.2	1.0347	3.548	0.616

Racemic molecule

#	tR	Area	Height	Area%	Height%	Quantity	NTP	Resolution
1	21,492	179485	7981	50,209	55,678	N/A	21045	7,130
2	26,242	177990	6353	49,791	44,322	N/A	19942	N/A

HPLC profile for Entry 2, Table 3. 97:3 er

#	tR	Area	Height	Area%	Height%	Quantity	NTP	Resolution
1	20,992	8414	403	2,580	3,334	N/A	22535	7,495
2	25,758	317761	11698	97,420	96,666	N/A	20703	N/A

Racemic molecule

#	Time	Area	Height	Width	Area%
1	18.338	895.7	17.1	0.8741	50.139
2	24.613	890.7	13.2	1.1223	49.861

HPLC profile for Entry 3, Table 3. 97:3 er

#	Time	Area	Height	Width	Area%	Symmetry
1	18.793	10661	171.3	1.0375	96.576	0.501
2	25.835	378	6.2	0.7285	3.424	0.71

Racemic molecule

#	Time	Area	Height	Width	Area%
1	17.044	3900.1	91.9	0.6232	50.216
2	19.803	3866.5	72.2	0.7784	49.784

HPLC profile for Entry 4, Table 3. 97:3 er

#	Time	Area	Height	Width	Area%	Symmetry
1	17.999	18980.6	387.9	0.7533	97.400	0.508
2	21.466	506.6	10.6	0.5681	2.600	0.613

Racemic molecule

#	Time	Area	Height	Width	Area%
1	15.85	9188	221.2	0.6286	50.421
2	21.872	9034.6	148.2	0.8647	49.579

HPLC profile for Entry 5, Table 3. 99:1 er

#	Time	Area	Height	Width	Area%	Symmetry
1	15.164	17360.6	404.7	0.6476	98.763	0.499
2	20.937	217.5	4.9	0.5368	1.237	0.669

Racemic molecule

#	Time	Area	Height	Width	Area%
1	14.931	27504.8	753.9	0.5696	49.915
2	22.24	27598.7	419.6	0.9722	50.085

HPLC profile for Entry 6, Table 3. 97:3 er

#	Time	Area	Height	Width	Area%	Symmetry
1	13.377	33480.8	940.7	0.5528	97.248	0.5
2	19.457	947.4	21.9	0.5686	2.752	0.633

Racemic molecule

#	Time	Area	Height	Width	Area%
1	9.912	5798	230.3	0.3897	48.943
2	13.608	6048.3	131.6	0.6707	51.057

HPLC profile for Entry 7, Table 3. 97:3 er

#	Time	Area	Height	Width	Area%	Symmetry
1	9.603	2962	124.9	0.3696	96.851	0.606
2	13.329	96.3	3.4	0.3671	3.149	0.693

Racemic molecule

#	Time	Area	Height	Width	Area%
1	12.176	18945	495.3	0.571	50.090
2	16.225	18876.6	363.5	0.7722	49.910

HPLC profile for Entry 9, Table 3. 92:8 er

#	Time	Area	Height	Width	Area%	Symmetry
1	11.742	12897	457.2	0.4701	92.201	0.569
2	15.594	1090.9	31	0.5861	7.799	0.649

Racemic molecule

#	Time	Area	Height	Width	Area%	Symmetry
1	39.886	10282.2	126.4	1.1446	50.706	1.322
2	44.494	9995.7	120.3	1.1483	49.294	0.563

HPLC profile for Entry 10, Table 3. 96:4 er

#	Time	Area	Height	Width	Area%	Symmetry
1	40.332	15152.3	191.4	1.1094	96.197	1.391
2	45.322	599.1	8.8	0.8113	3.803	0.586

HPLC profiles of the Aldol Products (*anti*-1j-n, *Table 4*) promoted by catalyst I.

Racemic molecule

#	tR	Area	Height	Area%	Height	NTP	Resolution	Symmetry
					%			Factor
1	32,683	4771058	139979	41,636	50,160	21131	8,929	1,067
2	42,033	4853074	106183	42,352	38,050	19610	6,821	1,217
3	50,717	905050	17404	7,898	6,236	22505	2,473	1,142
4	54,225	929682	15497	8,113	5,553	21118	N/A	1,628

HPLC profile for Entry 1, Table 4. 93:7 er

#	tR	Area	Height	Area%	Height%	NTP	Resolution
1	28,500	8078377	264159	39,839	50,355	20115	8,672
2	36,600	5193249	127388	25,611	24,283	18747	8,947
3	46,917	485448	10552	2,394	2,012	22786	1,349
4	48,683	6520497	122491	32,156	23,350	19827	N/A

Racemic molecule

#	tR	Area	Height	Area%	Height%	NTP	Resolution
1	33,350	2909053	65001	48,572	50,891	12880	2,409
2	36,317	3080088	62725	51,428	49,109	12592	N/A

HPLC profile for Entry 3, Table 4. 96:4 er

#	tR	Area	Height	Area%	Height%	NTP	Resolution
1	32,558	6158191	134793	96,481	96,861	11663	2,643
2	35,942	224632	4368	3,519	3,139	11156	N/A

Racemic molecule

#	tR	Area	Height	Area%	Height%	NTP	Resolution
1	15,217	481950	23056	9,987	14,251	12206	3,331
2	17,158	440709	18896	9,132	11,679	12329	5,875
3	21,325	1924293	63022	39,875	38,952	11253	4,122
4	24,867	1978889	56819	41,006	35,118	11718	N/A

HPLC profile for Entry 4, Table 4. 90:10 er

#	tR	Area	Height	Area%	Height%	.NTP	Resolution
1	14,425	586742	29561	15,785	23,316	12120	3,353
2	16,300	253235	11280	6,813	8,897	11914	5,928
3	20,342	290595	9998	7,818	7,886	11167	4,150
4	23,800	2586478	75948	69,584	59,902	11160	N/A

Racemic molecule

#	tR	Area	Height	Area%	Height%	NTP	Resolution
1	35,492	1644872	36227	13,632	22,305	14293	7,801
2	46,475	4153949	66928	34,427	41,208	12914	10,311
3	67,942	2105686	21041	17,451	12,955	11455	5,568
4	82,992	4161502	38220	34,489	23,532	13272	N/A

HPLC profile for Entry 6, Table 4. 97:3 er

#	tR	Area	Height	Area%	Height%	NTP	Resolution
1	34,892	105272	2455	1,685	3,947	14981	7,776
2	45,517	195442	3178	3,128	5,111	12954	10,505
3	66,217	118269	1328	1,893	2,135	12685	5,555
4	80,450	5829813	55223	93,295	88,806	13337	N/A

Racemic molecule

#	tR	Area	Height	Area%	Height%	NTP	Resolution
1	66,225	1214203	13767	30,276	34,429	12601	1,504
2	69,900	1239269	12893	30,901	32,243	12109	4,186
3	81,342	773957	6947	19,299	17,373	12245	3,015
4	90,633	782982	6380	19,524	15,955	12523	N/A

HPLC profile for Entry 9, Table 4. 94:6 er

#	tR	Area	Height	Area%	Height%	NTP	Resolution	Symmetry
								Factor
1	58,975	284593	3139	5,697	7,368	9847	2,044	1,123
2	64,175	779936	7317	15,612	17,174	8879	3,686	1,376
3	74,958	3685239	30182	73,770	70,840	9104	3,178	1,661
4	85,042	245821	1967	4,921	4,618	11164	N/A	1,219

References and Notes

(1) Phikho, P. M.; Laurikainen, K. M.; Usano, A.; Nyoeng, A. I.; Kaavi, J. A. *Tetrahedron* **2006**, *62*, 317.

(2) Sakthievel, K.; Notz, W.; Bui, T.; Barbas, C. F. III J. Am. Chem. Soc. 2001, 123, 5260.

(3) Kojima, S.; Chanayashi, T.; Umeda, Y.; Iwamoto, A.; Tanabe, K.; Ohkata, K. *Heterocycles* **2008**, *75*, 1493.

(4) Hill, A.J.; Aspinal, S.R. J. Am. Chem. Soc. 1939, 61, 822.

(5) a) Elliot, R.L.; Or, Y.S.; Chu, D.T.; Griesgraber, G.W.; Plattner, J.J.; Pireh, D. From *PCT Int. Appl.* 1997, WO 9742205 A1 19971113. (b) Graser, F.. From *Ger. Offen.* 1997, DE 2616486 19771103.

Scheme 1

Scheme 2

Scheme 3

Scheme 4

