Electronic Supplementary Information

Hydroalkoxylation in Brønsted Acidic Ionic Liquids and Its Application to the Synthesis of (±)–Centrolobin

Yunkyung Jeong, Do-Young Kim, Yunsil Choi and Jae-Sang Ryu*

Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, Seoul 120-750, Korea

Corresponding author. Tel.: +82 2 3277 3008; Fax: +82 2 3277 2851; E-mail address: ryuj@ewha.ac.kr

Table of Contents	
General methods	S1
Synthesis of Brønsted acidic ionic liquids	S2–S6
Syntheses of Alkenyl Alcohol Substrates	S6–S15
Hydroalkoxylation in Brønsted acidic ionic liquids	S15-S22
Synthesis of (±)–Centrolobin	S22–S26
References	S26-S27
nOe spectrum of 16	S27
¹ H-NMR & ¹³ C-NMR	S28–S52

General methods: Reagents were purchased from Aldrich chemical (www.sigma-aldrich) or Alfa Aesar (www.alfa.com), and used without further purification. Reactions were performed in flame-dried glassware under positive Ar pressure with magnetic stirring. TLC was performed on 0.25 mm E. Merck silica gel 60 F_{254} plates and visualized under UV light (254 nm) or by staining with cerium ammonium molybdenate (CAM). Flash chromatography was performed on E. Merck 230–400 mesh silica gel 60. NMR spectra were recorded on Varian Unity 400 instruments at 24 °C. Chemical shifts are expressed in ppm relative to TMS (1H, 0 ppm), CDCl₃ (¹H, 7.26 ppm; ¹³C, 77.2 ppm), DMSO-*d*₆ (¹H, 2.5 ppm; ¹³C, 39.5 ppm), Benzene-*d*₆ (¹H, 7.16 ppm; ¹³C, 128.1 ppm) or Acetone-*d*₆ (¹H, 2.05 ppm; ¹³C, 206.3 ppm, 29.8 ppm); coupling constants are expressed in Hz. All ¹⁹F NMR chemical shifts were

referenced to external CF_3CO_2H (0.0 ppm). Mass spectra were obtained with VG trio-2 GC-MS instrument. High resolution mass spectra were obtained with JEOL JMS-AX 505WA instrument. Alkenyl alcohol substrates **8a** and **8c–g** were purchased, and **8b, 8h–n** were synthesized according to the literature procedure.

Synthesis of Brønsted acidic ionic liquids

1-Methylimidazolium triflate (1)

1-Methylimidazolium triflate (**1**) was synthesized according to the literature procedure.¹ In an oven-dried 5 mL roundbottom flask, triflic acid (188 mg, 1.26 mmol) was dissolved in anhydrous CH₂Cl₂ (0.4 mL) at 0 °C. 1-Methylimidazole (103 mg, 1.26 mmol) in anhydrous CH₂Cl₂ (0.4 mL) was then added dropwise and the mixture was stirred for 1 h. The solid formed was filtered off, washed with Et₂O to remove non-ionic residues, and dried *in vacuo* to afford analytically pure **1** (226 mg, 78%) as a white solid. **Mp**: 109 °C (Lit.² 92 °C). ¹**H NMR** (400 MHz, DMSO-*d*₆): δ 14.13 (br s, 1H), 9.03 (s, 1H), 7.69 (s, 1H), 7.66 (s, 1H), 3.86 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 135.8, 123.1, 120.7 (q, *J*_{CF} = 320.4 Hz), 119.7, 35.4. **LRMS** (**FAB**) *m*/*z* (rel int): (pos) 83 ([C₄H₇N₂]⁺, 100). **HRMS** *m*/*z* calcd for C₄H₇N₂ 83.0609, found 83.0608.

1-Butylimidazolium triflate (2)

1-Butylimidazolium triflate (2) was synthesized according to the literature procedure.^{1,3} In an oven-dried 5 mL roundbottom flask, 1-butylimidazole (148 mg, 1.19 mmol) was dissolved in anhydrous CH₂Cl₂ (0.5 mL) at 0 °C. Triflic acid (170 mg, 1.13 mmol) was then added dropwise. After the mixture was stirred for 1 h, it was evaporated. The crude residue was washed repeatedly with Et₂O to remove non-ionic residues, and further dried *in vacuo* to afford analytically pure 2 (271 mg, 83%) as a brown oil. ¹H NMR (400 MHz, DMSO-*d*₆): δ 14.20 (br s, 1H), 9.12 (s, 1H), 7.79 (s, 1H), 7.70 (s, 1H), 4.18 (t, *J* = 7.2 Hz, 2H), 1.79 (quintet, *J* = 7.2 Hz, 2H), 1.25 (sextet, *J* = 7.2 Hz, 2H), 0.90 (t, *J* = 7.2 Hz, 3H). ¹³C NMR

(100 MHz, DMSO- d_6): δ 135.2, 122.0, 120.7 (q, J_{CF} = 320.4 Hz), 119.9, 48.3, 31.4, 18.8, 13.3. ¹⁹F NMR (376 MHz, DMSO- d_6): δ -2.66 (s). LRMS (FAB) m/z (rel int): (pos) 125 ($[C_7H_{13}N_2]^+$, 100). HRMS m/z calcd for $C_7H_{13}N_2$ 125.1079, found 125.1082.

1-(Butyl-4-sulfonic)-3-methylimidazolium triflate (3)

1-(Butyl-4-sulfonic)-3-methylimidazolium triflate (**3**) was synthesized according to the literature procedure.^{4,5} In a 5 mL vial, 1-methylimidazole (103 mg, 1.26 mmol) and 1,4-butanesultone (171 mg, 1.26 mmol) were stirred at 80 °C for 24 h. The mixture was cooled to rt. The precipitate was washed with Et₂O to remove non-ionic residues, and dried *in vacuo*. The white solid was used in the next step without further purification. **Mp**: 229 °C. ¹**H NMR** (400 MHz, D₂O): δ 7.51 (s, 1H), 7.45 (s, 1H), 4.27 (t, *J* = 7.2 Hz, 2H), 3.91 (s, 3H), 2.98–2.95 (m, 2H), 2.08–2.01 (m, 2H), 1.80–1.72 (m, 2H). ¹**H NMR** (400 MHz, DMSO-*d*₆): δ 9.12 (s, 1H), 7.77 (s, 1H), 7.70 (s, 1H), 4.18 (t, *J* = 6.8 Hz, 2H), 3.85 (s, 3H), 2.44 (m, 2H), 1.87 (quintet, *J* = 7.6 Hz, 2H), 1.53 (m, 2H). ¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 136.5, 123.6, 122.3, 50.4, 48.5, 35.7, 28.6, 21.7. **LRMS (FAB)** *m*/*z* (rel int): (pos) 219 ([M + H]⁺, 100). **HRMS** *m*/*z* calcd for C₈H₁₅N₂O₃S 219.0803, found 219.0804.

Triflic acid (188 mg, 1.26 mmol) was added to 1-(butyl-4-sulfonate)-3-methylimidazolium zwitterions in a 5 mL vial at rt. The reaction mixture was stirred at 60 °C for 20 h. After cooled to rt, Et₂O (2 mL) was added to the reaction mixture. The ionic liquid-Et₂O mixture was stirred for a couple of minutes and stopped. Then, the ionic liquid-Et₂O mixture clearly showed two separate layers. The upper Et₂O layer was carefully removed by decantation. This procedure was repeated five times, and the residue was dried *in vacuo* to afford **3** as a colorless oil (336 mg, 73%, 2 steps). ¹H NMR (400 MHz, D₂O): δ 8.74 (s, 1H), 7.50 (s, 1H), 7.44 (s, 1H), 4.25 (t, *J* = 7.2 Hz, 2H), 3.89 (s, 3H), 2.95 (m, 2H), 2.03 (m, 2H), 1.74 (m, 2H). ¹³C NMR (100 MHz, D₂O): δ 136.1, 123.8, 122.3, 119.8 (q, *J*_{CF} = 315.8 Hz), 50.2, 49.1, 35.8, 28.2, 21.1. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -2.52 (s). LRMS (FAB) *m/z* (rel int): (pos) 219 ([C₈H₁₅N₂O₃S]⁺, 100). HRMS *m/z* calcd for C₈H₁₅N₂O₃S 219.0803, found 219.0807.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

1-Butyl-3-(butyl-4-sulfonyl)imidazolium triflate (4)

1-Butyl-3-(butyl-4-sulfonyl)imidazolium triflate (4) was synthesized according to the literature procedure.⁶ In a 5 mL vial, 1-butylimidazole (9.48 mg, 76.3 µmol) and 1.4butanesultone (10.4 mg, 76.3 µmol) were dissolved in toluene (31.0 µL), and stirred at 60 °C for 24 h. The mixture was cooled to rt. The precipitate was washed with ether and toluene to remove non-ionic residues, and dried in vacuo. 1-Butyl-3-(butyl-4-sulfonate)imidazolium zwitterions was obtained as a white solid (20 mg, 100%). Mp: 160 °C (Lit.⁷ 158 °C) ¹H **NMR** (400 MHz, D₂O): δ 7.54–7.52 (m, 2H), 4.27 (t, J = 7.2 Hz, 2H), 4.22 (t, J = 7.2 Hz, 2H), 2.98–2.94 (m, 2H), 2.09–2.01 (m, 2H), 1.87 (quintet, J = 7.2 Hz, 2H), 1.78–1.72 (m, 2H), 1.33 (sextet, J = 7.6 Hz, 2H), 0.94 (t, J = 7.2 Hz, 3H). ¹H NMR (400 MHz, D₂O): δ 8.84 (s, 1H), 7.55-7.53 (m, 2H), 4.28 (t, J = 7.2 Hz, 2H), 4.23 (t, J = 7.2 Hz, 2H), 2.97 (m, 2H), 2.06 (m, 2H), 1.88 (quintet, J = 7.6 Hz, 2H), 1.77 (m, 2H), 1.34 (sextet, J = 7.6 Hz, 2H), 0.94 (t, J = 7.6 Hz, 3H). ¹H NMR (400 MHz, DMSO- d_6): δ 9.21 (s, 1H), 7.80 (s, 1H), 7.79 (s, 1H), 4.17 (g, J = 7.2 Hz, 4H), 2.44 (m, 2H), 1.87 (m, 2H), 1.78 (quintet, J = 7.2 Hz, 2H), 1.56– 1.49 (m, 2H), 1.26 (sextet, J = 7.2 Hz, 2H), 0.90 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, D₂O): δ 135.4, 122.7, 122.4, 50.2, 49.5, 49.1, 31.3, 28.2, 21.1, 18.9, 12.8. LRMS (FAB) *m/z* (rel int): (pos) 261 ($[M + H]^+$, 100). **HRMS** m/z calcd for C₁₁H₂₁N₂O₃S 261.1273, found 261.1273.

In a 5 mL vial, triflic acid (550 mg, 3.66 mmol) was added to 1-butyl-3-(butyl-4-sulfonate)imidazolium zwitterions (954 mg, 3.66 mmol) at rt. The reaction mixture was stirred at 60 °C for 18 h. After cooled to rt, Et₂O (2 mL) was added to the reaction mixture. The ionic liquid-Et₂O mixture was stirred for a couple of minutes and stopped. Then, the ionic liquid-Et₂O mixture clearly showed two separate layers. The upper Et₂O layer was carefully removed by decantation. This procedure was repeated five times to remove non-ionic residues. The residue was dried *in vacuo* to afford **4** as a colorless oil (1.45 g, 97%). ¹**H NMR** (400 MHz, D₂O): δ 8.78 (s, 1H), 7.50–7.48 (m, 2H), 4.23 (t, *J* = 7.2 Hz, 2H), 4.18 (t, *J*

= 7.2 Hz, 2H), 2.92 (m, 2H), 2.00 (m, 2H), 1.83 (quintet, J = 7.2 Hz, 2H), 1.72 (m, 2H), 1.29 (sextet, J = 7.2 Hz, 2H), 0.89 (t, J = 7.2 Hz, 3H). ¹H NMR (400 MHz, DMSO– d_6): δ 9.21 (s, 1H), 7.80 (s, 1H), 7.79 (s, 1H), 4.17 (q, J = 7.2 Hz, 4H), 2.48 (m, 2H), 1.89 (m, 2H), 1.77 (quintet, J = 7.2 Hz, 2H), 1.54 (m, 2H), 1.26 (sextet, J = 7.2 Hz, 2H), 0.90 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, D₂O): δ 135.3, 122.6, 122.4, 119.8 (q, $J_{CF} = 315.6$ Hz), 50.2, 49.5, 49.1, 31.3, 28.2, 21.1, 18.9, 12.7. LRMS (FAB) m/z (rel int): (pos) 261 ([C₁₁H₂₁N₂O₃S]⁺, 100). HRMS m/z calcd for C₁₁H₂₁N₂O₃S 261.1273, found 261.1275. Anal. Calcd for C₁₂H₂₁F₃N₂O₆S₂: C, 35.12; H, 5.16; N, 6.83; S, 15.63. Found: C, 35.19; H, 5.12; N, 6.85; S, 15.62.

In a 5 mL vial, 1-butyltriazole (151 mg, 1.21 mmol) and 1,4-butanesultone (181 mg, 1.21 mmol) were stirred at 80 °C for 24 h. The mixture was cooled to rt. The precipitate was washed with Et₂O to remove non-ionic residues, and dried *in vacuo*. 1-Butyl-3-(butyl-4-sulfonate)triazolium zwitterion (7) was obtained as a white solid (305 mg, 97%). ¹**H NMR** (400 MHz, D₂O): δ 8.61 (s, 1H), 8.59 (s, 1H), 4.73 (t, *J* = 7.2 Hz, 2H), 4.68 (t, *J* = 7.2 Hz, 2H), 2.99 (m, 2H), 2.21 (m, 2H), 2.03 (quintet, *J* = 7.6 Hz, 2H), 1.82 (m, 2H), 1.38 (sextet, *J* = 7.6 Hz, 2H), 0.97 (t, *J* = 7.6 Hz, 3H). ¹**H NMR** (400 MHz, DMSO-*d*₆): δ 8.94 (s, 1H), 8.93 (s, 1H), 4.64 (q, *J* = 7.2 Hz, 4H), 2.45 (m, 2H), 2.02 (m, 2H), 1.90 (quintet, *J* = 7.2 Hz, 2H), 1.57 (m, 2H), 1.30 (sextet, *J* = 7.2 Hz, 2H), 0.91 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, D₂O): δ 133.1, 133.0, 56.3, 55.9, 52.7, 33.3, 30.1, 23.7, 21.5, 15.3. LRMS (FAB) *m*/*z* (rel int): (pos) 262 ([M + H]⁺, 100). HRMS *m*/*z* calcd for C₁₀H₂₀N₃O₃S 262.1225, found 262.1229. Anal. Calcd for C₁₀H₁₉N₃O₃S: C, 45.96; H, 7.33; N, 16.08; S, 12.27. Found: C, 45.98; H, 7.23; N, 16.01; S, 12.23.

1-Butyl-3-(butyl-4-sulfonyl)triazolium triflate (5)

In a 5 mL vial, triflic acid (121 mg, 804 µmol) was added to 1-butyl-3-(butyl-4-sulfonate)triazolium zwitterion (**7**) (210 mg, 804 µmol) at rt. The reaction mixture was stirred at 60 °C for 18 h. After cooled to rt, Et₂O (2 mL) was added to the reaction mixture. The ionic liquid-Et₂O mixture was stirred for a couple of minutes and stopped. The upper Et₂O layer was carefully removed by decantation. This procedure was repeated five times to remove non-ionic residues. The residue was dried *in vacuo* to afford **5** as a colorless oil (322 mg, 97%). ¹**H** NMR (400 MHz, D₂O): δ 8.51 (s, 1H), 8.50 (s, 1H), 4.65 (t, *J* = 7.2 Hz, 2H), 4.60 (t, *J* = 7.2 Hz, 2H), 2.91 (m, 2H), 2.13 (m, 2H), 1.95 (quintet, *J* = 7.6 Hz, 2H), 1.74 (m, 2H), 1.31 (sextet, *J* = 7.6 Hz, 2H), 0.89 (t, *J* = 7.2 Hz, 3H). ¹**H** NMR (400 MHz, DMSO-*d*₆): δ 8.94 (s, 1H), 8.93 (s, 1H), 4.64 (q, *J* = 7.2 Hz, 4H), 2.48 (m, 2H), 2.02 (m, 2H), 1.90 (quintet, *J* = 7.2 Hz, 2H), 1.58 (m, 2H), 1.30 (sextet, *J* = 7.2 Hz, 2H), 0.91 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, D₂O): δ 130.4 (2C), 119.8 (q, *J*_{CF} = 315.6 Hz), 53.7, 53.2, 50.1, 30.6, 27.5, 21.1, 18.9, 12.6. LRMS (FAB) *m*/z (rel int): (pos) 262 ([C₁₀H₂₀N₃O₃S]⁺, 100). HRMS *m*/z calcd for C₁₀H₂₀N₃O₃S 262.1225, found 262.1223. Anal. Calcd for C₁₁H₂₀F₃N₃O₆S₂: C, 32.11; H, 4.90; N, 10.21; S, 15.59. Found: C, 32.05; H, 4.96; N, 10.24; S, 15.59.

Syntheses of Alkenyl Alcohol Substrates

2,2-Dimethylpent-4-en-1-ol (8b)

8b was synthesized according to the literature procedure.⁸ A 2.5 M solution of *n*-BuLi in hexane (9.6 mL, 24 mmol) was added dropwise to a solution of diisopropylammine (2.43 g, 24 mmol) in anhydrous THF (40 mL) at -50 °C under Ar atmosphere and stirred 30 min at -50 °C. After stirring an additional 30 min at -5 °C, the mixture was cooled to -50 °C. Ethyl isobutyrate (2.32 g, 20 mmol) was then added dropwise and stirred for 30 min at -50 °C. Finally, allyl chloride (1.84 g, 24 mmol) was added dropwise at -50 °C and the mixture was slowly warmed to rt. After stirring for 18 h at rt, the reaction mixture was cooled to 0 °C, and quenched by the addition of satd aq NH₄Cl (250 mL), then extracted with Et₂O (3 × 250 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated by rotary

evaporation. Purification by silica flash chromatography (15:1 \rightarrow 10:1 hexane/EtOAc) yielded ethyl 2,2-dimethylpent-4-enoate (2.40 g, 77%) as a colorless liquid. **TLC**: R_f 0.32 (15:1 hexane/EtOAc). ¹**H NMR** (400MHz, CDCl₃): δ 5.73 (m, 1H), 5.06 (m, 1H), 5.03 (m, 1H), 4.12 (q, J = 7.2 Hz, 2H), 2.28 (dt, J = 7.2, 1.2 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H), 1.17 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃): δ 177.7, 134.5, 118.0, 60.5, 45.0, 42.4, 25.0, 14.5. **LRMS** (**ESI**) m/z (rel int) (pos) 83 ([M - COOC₂H₅]⁺, 100). **HRMS** m/z calcd for C₉H₁₆O₂ 156.1150; found 156.1148. **IR** (KBr film): 3080, 2980, 2935, 1731, 1149 cm⁻¹.

Ethyl 2,2-dimethylpent-4-enoate (1.79 g, 11.5 mmol) in anhydrous THF (21 mL) was added dropwise with stirring to a suspension of LiAlH₄ (873 mg, 23 mmol) in anhydrous THF (4 mL) at 0 °C. After stirring for 30 min at 0 °C, the reaction mixture was diluted with Et₂O (10 mL), quenched by the sequential addition of water (0.8 mL), a 15% aq NaOH (0.8 mL), and additional water (2.4 mL). The resulting white precipitate was filtered off and washed with Et₂O. The filtrate was dried over MgSO₄, filtered, and concentrated in vacuo. Purification by silica flash chromatography (4:1 hexane/EtOAc) yielded **8b** (0.63 g, 48%) as a yellow liquid. **TLC**: R_f 0.33 (5:1 hexane/EtOAc). ¹**H NMR** (400MHz, CDCl₃): δ 5.85 (m, 1H), 5.07 (m, 1H), 5.03 (m, 1H), 3.33 (d, *J* = 4.0 Hz, 2H), 2.03 (dt, *J* = 8.0, 1.2 Hz, 2H), 1.37 (t, *J* = 4.0 Hz, 1H), 0.89 (s, 6H). ¹³C **NMR** (100MHz, CDCl₃): δ 135.5, 117.3, 72.0, 43.6, 35.7, 24.0. **LRMS** (**CI**) *m*/*z* (rel int): (pos) 113 ([M - H]⁺, 30). **HRMS** *m*/*z* calcd for C₇H₁₄O 114.1045, found 114.1053. **IR** (KBr film): 3353, 3078, 2960, 1641, 1043, 997, 913 cm⁻¹.

2-Cinnamylphenol (8h)

8h was synthesized according to the literature procedure.⁹ In an oven-dried 50 mL rooundbottom flask, phenol (1.07 g, 11.4 mmol) was dissolved in anhydrous Et₂O (11 mL). Na (0.455 g) was added and the reaction was stirred at rt for 30 min. Cinnamyl chloride (1.83 g, 11.4 mmol) was then added dropwise and the mixture was heated at reflux with stirring for 5 h. The mixture was cooled to rt and diluted with 0.1 N aq HCl (70 mL), then extracted with Et₂O (3×100 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (5:1

hexane/EtOAc) yielded **8h** (1.17 g, 49%) as a pale yellow solid. **TLC**: R_f 0.29 (3:1 hexane/EtOAc (× 2)). **Mp**: 43 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.37–7.27 (m, 4H), 7.23–7.13 (m, 3H), 6.91 (td, J = 7.2, 1.2 Hz, 1H), 6.82 (dd, J = 8.0, 1.2 Hz, 1H), 6.51 (d, J = 15.6 Hz, 1H), 6.39 (dt, J = 15.6, 6.4 Hz, 1H), 4.88 (s, 1H), 3.57 (d, J = 6.4 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃): δ 154.2, 137.3, 131.7, 130.7, 128.7, 128.2, 128.1, 127.5, 126.4, 125.9, 121.2, 115.9, 34.2. **LRMS (EI)** m/z (rel int): (pos) 211 ([M + H]⁺, 18), 210 ([M]⁺, 100), 209 ([M – H]⁺, 30), 193 ([M – OH]⁺, 15). **HRMS** m/z calcd for C₁₅H₁₄O 210.1045, found 210.1039. **IR** (KBr film): 3425, 3029, 1594, 1455, 1098, 968, 755, 737, 693 cm⁻¹

(E)-5-Phenylpent-4-en-1-ol (8i)

8i was synthesized according to the literature procedure.¹⁰ In an oven-dried 25 mL rooundbottom flask, Pd(PPh₃)₄ (129 mg, 112 µmol) was dissolved in anhydrous THF (5.6 mL). 4-Pentyn-1-ol (940 mg, 11.2 mmol), iodobenzene (4.56 g, 22.3 mmol), triethylamine (22.6 g, 223 mmol) and CuI (42.5 mg, 223 µmol) were added sequentially and stirred at rt for 12.5 h. The mixture was filtered over a celite and concentrated by rotary evaporation. Purification by silica flash chromatography (5:1 → 3:1 hexane/EtOAc) yielded 5-phenylpent-4-yn-1-ol (1.59 g, 89%) as a colorless liquid. **TLC**: *R*_{*f*} 0.19 (3:1 hexane/EtOAc). ¹**H NMR** (400 MHz, CDCl₃): δ 7.40–7.38 (m, 2H), 7.29–7.27 (m, 3H), 3.83 (q, *J* = 5.6 Hz, 2H), 2.55 (t, *J* = 6.8 Hz, 2H), 1.87 (quintet, *J* = 6.8 Hz, 2H), 1.46 (t, *J* = 5.6 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 131.7, 128.4, 127.9, 123.9, 89.5, 81.3, 62.0, 31.6, 16.2. **LRMS (ESI)** *m*/*z* (rel int): (pos) 161 ([M + H]⁺, 27), 142 ([M – OH₂]⁺, 14). **HRMS** *m*/*z* calcd for C₁₁H₁₂O 160.0888, found 160.0887. **IR** (KBr film): 3301, 2947, 1599, 1442, 1061, 756, 692 cm⁻¹.

5-Phenylpent-4-yn-1-ol (690 mg, 4.31 mmol) was added dropwise with stirring to a suspension of LiAlH₄ (860 mg, 21.5 mmol) in anhydrous THF (8.6 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 20 min, and then brought to a reflux. After stirring for 25 h, the reaction mixture was cooled to 0 °C, and quenched by the sequential addition of water (0.86 mL), a 15% aqueous solution of NaOH (0.86 mL), and additional water (2.6 mL). The

resulting white precipitate was filtered off and washed with ether. The filtrate was dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by silica flash chromatography (5:1 hexane/EtOAc) yielded **8i** (541 mg, 79%) as a colorless liquid. **TLC**: R_f 0.21 (3:1 hexane/EtOAc). ¹**H NMR** (400 MHz, CDCl₃): δ 7.36–7.27 (m, 4H), 7.21 (m, 1H), 6.43 (d, J = 16.0 Hz, 1H), 6.23 (dt, J = 16.0, 6.8 Hz, 1H), 3.72 (q, J = 5.6 Hz, 2H), 2.32 (q, J = 6.4 Hz, 2H), 1.76 (quintet, J = 6.4 Hz, 2H), 1.27 (t, J = 5.6 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 137.8, 130.6, 130.2, 128.7, 127.1, 126.1, 62.5, 32.4, 29.5. **LRMS** (**EI**) m/z (rel int): (pos) 163 ([M + H]⁺, 10), 162 ([M]⁺, 83), 144 ([M – H₂O]⁺, 45), 129 ([M – CH₂OH]⁺, 100). **HRMS** m/z calcd for C₁₁H₁₄O 162.1045, found 162.1045. **IR** (KBr film): 3341, 3026, 2936, 1598, 1446, 1059, 966, 742, 693 cm⁻¹.

8 was synthesized according to the literature procedure.⁸ A 2.5 M solution of *n*-BuLi in hexane (4.8 mL, 12 mmol) was added dropwise to a solution of diisopropylammine (1.21 g, 12 mmol) in anhydrous THF (20 mL) at -50 °C under Ar atmosphere and stirred 30 min at -5 °C. Ethyl isobutyrate (1.16 g, 10 mmol) was then added dropwise at -5 °C and stirred 30 min. Finally, cinnamyl bromide (2.36 g, 12 mmol) was added dropwise at -50 °C and the mixture was slowly warmed to rt. After stirring for 18 h, the reaction mixture was cooled to 0 °C, and quenched by the addition of satd aq NH₄Cl (100 mL) and water (20 mL), then extracted with Et_2O (3 × 100 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (20:1 hexane/EtOAc) yielded (E)-ethyl 2,2-dimethyl-5-phenylpent-4-enoate (2.25 g, 97%) as a pale yellow oil. **TLC**: R_f 0.24 (20:1 hexane/EtOAc). ¹**H** NMR (400 MHz, CDCl₃): δ 7.34-7.27 (m, 4H), 7.20 (m, 1H), 6.40 (d, J = 16.0 Hz, 1H), 6.15 (dt, J = 16.0, 7.6 Hz, 1H), 4.14 (q, J = 7.2 Hz, 2H), 2.43 (dd, J = 7.6, 1.2 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H), 1.22 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 177.7, 137.7, 133.2, 128.7, 127.3, 126.4, 126.3, 60.6, 44.1, 25.2, 14.5. **LRMS (ESI)** m/z (rel int): (pos) 233 ([M + H]⁺, 8), 217 ([M - COOCH₃]⁺, 100), 117 ([PhCHCHCH₂]⁺, 41). **HRMS** m/z calcd for C₁₅H₂₀O₂ 232.1463, found 232.1469. **IR** (KBr film): 3028, 2977, 1723, 1599, 1471, 1189, 1134, 968, 744, 692 cm⁻¹.

(*E*)-Ethyl 2,2-dimethyl-5-phenylpent-4-enoate (1.16 g, 5 mmol) was added dropwise with stirring to a suspension of LiAlH₄ (0.38 g, 10 mmol) in anhydrous THF (3 mL) at 0 °C. After stirring for 1 h at 0 °C, the reaction mixture was quenched by the sequential addition of water (0.38 mL), a 15% aq NaOH (0.38 mL), and additional water (1.14 mL). The resulting white precipitate was filtered off and washed with ether. The filtrate was dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by silica flash chromatography (1:10 \rightarrow 1:3 hexane/EtOAc) yielded **8j** (0.81 g, 85%) as a pale yellow oil **TLC**: *R_f* 0.24 (10:1 hexane/EtOAc). ¹**H NMR** (400 MHz, CDCl₃): δ 7.37–7.28 (m, 4H), 7.20 (m, 1H), 6.41 (d, *J* = 16.0 Hz, 1H), 6.26 (dt, *J* = 16.0, 7.6 Hz, 1H), 3.38 (d, *J* = 5.6 Hz, 2H), 2.18 (dd, *J* = 7.6, 1.2 Hz, 2H), 1.37 (br t, *J* = 5.6 Hz, 1H), 0.95 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃): δ 137.7, 132.4, 128.5, 127.1, 127.0, 126.0, 71.8, 42.4, 36.2, 24.0. **LRMS (EI**) *m*/*z* (rel int): (pos) 190 ([M]⁺, 40), 117 ([PhCHCHCH₂]⁺, 100). **HRMS** *m*/*z* calcd for C₁₃H₁₈O 190.1358, found 190.1364. **IR** (KBr film): 3369, 3027, 2958, 1599, 1471, 1040, 968, 758, 693 cm⁻¹.

2,2-Diphenylpent-4-en-1-ol (8k)

8k was synthesized according to the literature procedure.¹¹ A 2.2 M solution of *n*-BuLi in hexane (1.51 mL, 3.32 mmol) was added dropwise to a solution of diisopropylammine (403 mg, 3.98 mmol) in anhydrous THF (2 mL) at -78 °C under Ar atmosphere and stirred 30 min at -78 °C. After stirring an additional 30 min at -5 °C, methyl 2,2-diphenylacetate (0.5 g, 2.21 mmol) in anhydrous THF (1.2 mL) was then added dropwise at -78 °C, stirred 10 min. Finally, allyl chloride (338 mg, 4.42 mmol) was added dropwise at -78 °C and the mixture was slowly warmed to rt. After stirring for 25 h at rt, the reaction mixture was cooled to 0 °C, and quenched by the addition of satd aq NH₄Cl (10 mL), then extracted with Et₂O (3 × 30 mL). The combined organic extracts were washed with brine, dried over MgSO₄, filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (10:1 hexane/EtOAc) yielded methyl 2,2-diphenylpent-4-enoate (555 mg, 94%) as a colorless liquid. **TLC**: *R_f* 0.37 (10:1 hexane/EtOAc). ¹**H NMR** (400 MHz, CDCl₃): δ 7.32–7.22 (m, 10H), 5.60 (ddt, *J* = 18.0, 10.0, 6.8 Hz, 1H), 4.96–4.91 (m, 2H), 3.70 (s, 3H), 3.17 (dm, *J* =

6.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 174.7, 142.7, 134.4, 129.1, 128.0, 127.0, 118.4, 60.5, 52.5, 43.0. LRMS (ESI) *m/z* (rel int): (pos) 267 ([M + H]⁺, 42), 207 ([M – COOCH₃]⁺, 65). HRMS *m/z* calcd for C₁₈H₁₈O₂ 266.1307, found 266.1318. IR (KBr film): 3062, 2951, 1732, 1641, 1599, 1446, 1225, 750, 700 cm⁻¹.

Methyl 2,2-diphenylpent-4-enoate (105 mg, 393 µmol) was added dropwise with stirring to a suspension of LiAlH₄ (20.9 mg, 550 µmol) in anhydrous THF (0.55 mL) at 0 °C. After stirring for 15 h at rt, the reaction mixture was cooled to 0 °C, diluted with Et₂O (5 mL), quenched by the sequential addition of water (21 µL), a 15% aq NaOH (21 µL), and additional water (63 µL). The resulting white precipitate was filtered off and washed with Et₂O. The filtrate was dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by silica flash chromatography (5:1 hexane/EtOAc) yielded **8k** (89.0 mg, 95%) as a white solid. **TLC**: R_f 0.31 (5:1 hexane/EtOAc). **Mp**: 44 °C (Lit.¹² 46–47 °C). ¹**H NMR** (400 MHz, CDCl₃): δ 7.33–7.28 (m, 4H), 7.24–7.18 (m, 6H), 5.44 (ddt, J = 17.2, 10.0, 7.2 Hz, 1H), 5.09 (dm, J = 17.2 Hz, 1H), 5.00 (dm, J = 10.0 Hz, 1H), 4.16 (d, J = 6.8 Hz, 2H), 2.98 (dm, J = 7.2 Hz, 2H), 1.15 (t, J = 6.8 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 145.5, 134.7, 128.5, 128.4, 126.6, 118.3, 68.1, 51.8, 41.2. **LRMS (CI**) m/z (rel int): (pos) 237 ([M – H]⁺, 5), 221 ([M – OH]⁺, 45), 197 ([M – C₃H₃]⁺, 100). **IR** (KBr film): 3420, 3061, 2935, 1600, 1496, 1445, 1056, 758, 700 cm⁻¹.

81 was synthesized according to the literature procedure.¹¹ A 2.5 M solution of *n*-BuLi in hexane (7.96 mL, 19.9 mmol) was added dropwise to a solution of diisopropylammine (2.42 g, 23.9 mmol) in anhydrous THF (12 mL) at -78 °C under Ar atmosphere and stirred 30 min at -78 °C. After stirring an additional 30 min at -5 °C, methyl 2,2-diphenylacetate (3.0 g, 13.3 mmol) in anhydrous THF (7 mL) was then added dropwise at -78 °C, stirred 30 min. Finally, 1-chloro-3-methyl-2-butene (2.77 g, 26.5 mmol) was added dropwise at -78 °C and

the mixture was slowly warmed to rt. After stirring for 4.5 h at rt, the reaction mixture was cooled to 0 °C, and quenched by the addition of satd aq NH₄Cl (50 mL), then extracted with Et₂O (3 × 50 mL). The combined organic extracts were washed with brine, dried over MgSO₄, filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (20:1 hexane/EtOAc) yielded methyl 5-methyl-2,2-diphenylhex-4-enoate (3.79 g, 97%) as a yellow oil. **TLC**: R_f 0.64 (10:1 hexane/EtOAc). ¹**H NMR** (400 MHz, CDCl₃): δ 7.30–7.21 (m, 10H), 5.01 (m, 1H), 3.69 (s, 3H), 3.08 (d, *J* = 6.8 Hz, 2H), 1.56 (s, 3H), 1.26 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 175.1, 142.9, 135.1, 129.2, 127.9, 126.9, 119.7, 60.9, 52.5, 37.1, 26.1, 17.7. **LRMS (EI)** *m*/*z* (rel int): (pos) 294 ([M]⁺, 3), 293 ([M – H]⁺, 5), 235 ([M – COOCH₃]⁺, 9). **HRMS** *m*/*z* calcd for C₂₀H₂₂O₂ 294.1620; found 294.1615. **IR** (KBr film): 3060, 3028, 2920, 1732, 1600, 1446, 1227, 761, 700 cm⁻¹.

Methyl 5-methyl-2,2-diphenylhex-4-enoate (3.79 g, 12.9 mmol) was added dropwise with stirring to a suspension of LiAlH₄ (684 mg, 18.0 mmol) in anhydrous THF (18 mL) at 0 °C. After stirring for 13 h at rt, the reaction mixture was cooled to 0 °C, diluted with Et₂O (20 mL), quenched by the sequential addition of water (0.7 mL), a 15% aq NaOH (0.7 mL), and additional water (2.1 mL). The resulting white precipitate was filtered off and washed with Et₂O. The filtrate was dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by silica flash chromatography (15:1 hexane/EtOAc) yielded **8l** (3.03 g, 88%) as a viscous colorless oil. **TLC**: R_f 0.27 (10:1 hexane/EtOAc). ¹**H NMR** (400 MHz, CDCl₃): δ 7.31–7.27 (m, 4H), 7.23–7.18 (m, 6H), 4.85 (m, 1H), 4.12 (d, *J* = 6.8 Hz, 2H), 2.88 (d, *J* = 7.2 Hz, 2H), 1.60 (d, *J* = 1.2 Hz, 3H), 1.53 (d, *J* = 1.2 Hz, 3H), 1.16 (t, *J* = 6.8 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 145.8, 134.8, 128.5, 128.3, 126.5, 120.0, 68.5, 52.5, 35.2, 26.2, 18.1. **LRMS** (**EI**) *m*/z (rel int): (pos) 266 ([M]⁺, 2), 248 ([M – H₂O]⁺, 1), 197 ([Ph₂CCH₂OH]⁺, 100). **HRMS** *m*/z calcd for C₁₉H₂₂O 266.1671; found 266.1667. **IR** (KBr film): 3429, 3087, 3027, 2969, 1600, 1444, 1379, 756, 700 cm⁻¹.

4-Methyl-2,2-diphenylpent-4-en-1-ol (8m)

8m was synthesized according to the literature procedure.¹¹ A 2.5 M solution of *n*-BuLi in

hexane (6.89 mL, 17.2 mmol) was added dropwise to a solution of diisopropylammine (1.74 g, 17.2 mmol) in anhydrous THF (12 mL) at -78 °C under Ar atmosphere and stirred 30 min at -78 °C. After stirring an additional 30 min at -5 °C, methyl 2,2-diphenylacetate (3.0 g, 13.3 mmol) in anhydrous THF (7 mL) was then added dropwise at -78 °C, stirred 10 min. Finally, allyl chloride (1.80 g, 19.9 mmol) was added dropwise at -78 °C and the mixture was slowly warmed to rt. After stirring for 47 h at rt, the reaction mixture was cooled to 0 °C, and quenched by the addition of satd ag NH₄Cl (50 mL), then extracted with Et₂O (3×50 mL). The combined organic extracts were washed with brine, dried over MgSO₄, filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (15:1 hexane/EtOAc) yielded methyl 4-methyl-2,2-diphenylpent-4-enoate (3.06 g, 82%) as a yellow oil. **TLC**: *R*_f 0.32 (10:1 hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.20 (m, 10H), 4.71 (m, 1H), 4.48 (m, 1H), 3.68 (s, 3H), 3.18 (d, J = 0.4 Hz, 2H), 1.36 (d, J = 0.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 174.5, 143.5, 142.3, 129.1, 128.0, 126.9, 115.5, 60.4, 52.3, 46.1, 24.5. **LRMS (EI)** m/z (rel int): (pos) 281 ([M + H]⁺, 3), 280 ([M]⁺, 12), 221 ([M - $CO_2CH_3^{\dagger}$, 63). **HRMS** *m/z* calcd for $C_{19}H_{20}O_2$ 280.1463; found 280.1469. **IR** (KBr film): 3060, 3028, 2950, 1724, 1642, 1599, 1443, 1264, 754, 698cm⁻¹.

Methyl 4-methyl-2,2-diphenylpent-4-enoate (2.70 g, 9.63 mmol) was added dropwise with stirring to a suspension of LiAlH₄ (512 mg, 13.5 mmol) in anhydrous THF (20 mL) at 0 °C. After stirring for 1 h at rt, the reaction mixture was cooled to 0 °C, diluted with Et₂O (20 mL), quenched by the sequential addition of water (0.7 mL), a 15% aq NaOH (0.7 mL), and additional water (2.1 mL). The resulting white precipitate was filtered off and washed with Et₂O. The filtrate was dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by silica flash chromatography (10:1 hexane/EtOAc) yielded **8m** (2.18 g, 90%) as a viscous colorless oil. **TLC**: R_f 0.22 (10:1 hexane/EtOAc). ¹**H NMR** (400 MHz, CDCl₃): δ 7.31–7.26 (m, 4H), 7.23–7.18 (m, 6H), 4.84 (m, 1H), 4.66 (m, 1H), 4.25 (d, J = 6.8 Hz, 2H), 2.96 (s, 2H), 1.11 (dd, J = 1.2, 0.8 Hz, 3H), 1.09 (t, J = 6.8 Hz, 1H). ¹³C **NMR** (100 MHz, CDCl₃): δ 146.1, 142.9, 128.6, 128.4, 126.6, 115.9, 67.5, 51.7, 44.1, 24.6. **LRMS (CI)** m/z (rel int): (pos) 254 ([M + H]⁺, 5), 253 ([M]⁺, 3), 235 ([M – OH]⁺, 41), 221 ([M – CH₂OH]⁺, 18), 197 ([Ph₂CCH₂OH]⁺, 100). **HRMS** m/z calcd for C₁₈H₂₀O 252.1514; found 252.1516. **IR** (KBr film): 3443, 3060, 3028, 2947, 1642, 1600, 1445, 1025, 758, 700 cm⁻¹.

(*E*)-2,2-Diphenylhex-4-en-1-ol (8n)

8n was synthesized according to the literature procedure.¹¹ A 2.5 M solution of *n*-BuLi in hexane (7.83 mL, 19.5 mmol) was added dropwise to a solution of diisopropylammine (1.74 g, 17.2 mmol) in anhydrous THF (13 mL) at -78 °C under Ar atmosphere and stirred 30 min at -78 °C. After stirring an additional 30 min at -5 °C, methyl 2,2-diphenylacetate (3.00 g, 13.3 mmol) in anhydrous THF (7 mL) was then added dropwise at -78 °C, stirred 10 min. Finally, crotyl bromide (3.16 g, 19.9 mmol) was added dropwise at -78 °C and the mixture was slowly warmed to rt. After stirring for 30 min at rt, the reaction mixture was cooled to 0 °C, and guenched by the addition of satd ag NH₄Cl (70 mL), then extracted with Et₂O (3 \times 100 mL). The combined organic extracts were washed with brine, dried over MgSO₄, filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (10:1 hexane/EtOAc) yielded (E)-methyl 2,2-diphenylhex-4-enoate (3.56 g, 96%) as a colorless liquid. E:Z isomer = 5:1. TLC: $R_f 0.66$ (5:1 hexane/EtOAc). ¹H NMR (E isomer, 400 MHz, CDCl₃): δ 7.32–7.22 (m, 10H), 5.32–5.18 (m, 2H), 3.69 (s, 3H), 3.08 (d, J = 5.6 Hz, 2H), 1.51 (br d, J = 6.0 Hz, 3H). ¹³C NMR (*E* isomer, 100 MHz, CDCl₃): δ 174.9, 142.9, 129.2, 128.0, 127.9, 126.9, 126.5, 60.8, 52.5, 41.8, 18.2. LRMS (ESI) m/z (rel int): (pos) 281 ([M + H_{1}^{+} , 54), 280 ($[M]^{+}$, 28), 221 ($[M - COOCH_{3}]^{+}$, 100). HRMS m/z calcd for $C_{19}H_{20}O_{2}$ 280.1463, found 280.1467. IR (KBr film): 3059, 2950, 1732, 1599, 1446, 1222, 969, 751, 700 cm^{-1} .

(*E*)-Methyl 2,2-diphenylhex-4-enoate (3.27 g, 11.7 mmol) was added dropwise with stirring to a suspension of LiAlH₄ (619 mg, 16.3 mmol) in anhydrous THF (16 mL) at 0 °C. After stirring for 25 min at rt, the reaction mixture was cooled to 0 °C, diluted with Et₂O (24 mL), quenched by the sequential addition of water (0.62 mL), a 15% aq NaOH (0.62 mL), and additional water (1.86 mL). The resulting white precipitate was filtered off and washed with Et₂O. The filtrate was dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by silica flash chromatography (7:1 hexane/EtOAc) yielded **8n** (2.95 g, 100%) as a colorless oil. *E:Z* isomer = 6:1. **TLC**: R_f 0.30 (7:1 hexane/EtOAc). ¹**H NMR** (*E* isomer, 400 MHz, CDCl₃): δ 7.32–7.16 (m, 10H), 5.51 (m, 1H), 5.07 (m, 1H), 4.14 (d, *J* = 6.8 Hz, 2H), 2.89 (dm, *J* = 6.4

Hz, 2H), 1.56 (dm, J = 5.6 Hz, 3H), 1.17 (t, J = 6.8 Hz, 1H). ¹³C NMR (*E* isomer, 100 MHz, CDCl₃): δ 145.7, 128.9, 128.4, 128.3, 126.9, 126.4, 68.1, 51.9, 39.9, 18.2. LRMS (EI) m/z (rel int): (pos) 252 ([M]⁺, 2), 235 ([M - OH]⁺, 5), 221 ([M - CH₂OH]⁺, 23), 197 ([Ph₂CCH₂OH]⁺, 100). HRMS m/z calcd for C₁₈H₂₀O 252.1514, found 252.1515. IR (KBr film): 3428, 3027, 2934, 1599, 1445, 1058, 971, 754, 700 cm⁻¹.

Hydroalkoxylation in Brønsted acidic ionic liquids

Representative NMR-Scale Reactions.

In an NMR tube, 2,2-diphenyl-4-penten-1-ol (**8k**) (12.2 mg, 51.0 μ mol), mesitylene (6.3 mg, 51.0 μ mol, internal standard), and the ionic liquid **5** (21.0 mg, 100 mol%) were dissolved in benzene- d_6 (0.75 mL). The tube was then heated at 80 °C for 24 h. The ensuing hydroalkoxylation/cyclization reaction was monitored by 1H NMR spectroscopy. The yield of **9k** was determined as 99% based on the internal standard mesitylene.

Typical Preparative-Scale Reactions.

In a 20 mL vial, 2,2-diphenyl-4-penten-1-ol (**8k**) (238 mg, 1.00 mmol) and the ionic liquid [BuTrBuSO₃H][OTf] (**5**) (412 mg, 100 mol%) were dissolved in benzene (5 mL). The reaction mixture was stirred at 80 °C for 43 h. Progress of the reaction was monitored by TLC. Upon the completion of the reaction, solvent was evaporated. The residue was purified by column chromatography (19:1 petroleum ether/Et₂O) to afford **9k** (220 mg, 93%) as a white solid.

All the products listed in Table 2 are known. Spectral data were identical to those previously reported.

2,2,6-Trimethyltetrahydropyran (9a)¹³

TLC: R_f 0.55 (5:1 hexane/EtOAc). ¹**H NMR** (400 MHz, Benzene- d_6): δ 3.51 (m, 1H), 1.46–1.39 (m, 2H), 1.33–1.26 (m, 2H), 1.24 (s, 3H), 1.24–1.19 (m, 2H), 1.13 (d, J = 6.4 Hz, 3H), 1.08 (s, 3H). ¹**H NMR** (400 MHz, CDCl₃): δ 3.67 (dqd, J = 11.2, 6.0, 2.4 Hz, 1H), 1.66–1.31 (m, 6H), 1.21 (s, 3H), 1.19 (s, 3H), 1.12 (d, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz,

CDCl₃): δ 71.9, 66.6, 36.2, 33.6, 32.2, 23.0, 22.2, 20.3. **LRMS (ESI)** *m/z* (rel int): (pos) 128 ([M]⁺, 29), 113 ([M - CH₃]⁺, 66), 111 ([M - OH]⁺, 43). **HRMS** *m/z* calcd for C₈H₁₆O 128.1201, found 128.1203. **IR** (KBr film): 2934, 1457, 1091 cm⁻¹.

2,4,4-Trimethyltetrahydrofuran (9b)¹⁴

TLC: $R_f 0.62$ (5:1 hexane/EtOAc). ¹**H NMR** (400 MHz, Benzene- d_6): δ 4.00 (m, 1H), 3.48 (d, J = 8.0 Hz, 1H), 3.34 (d, J = 8.0 Hz, 1H), 1.48 (dd, J = 12.0, 6.4 Hz, 1H), 1.19 (d, J = 6.0 Hz, 3H), 1.07 (dd, J = 12.0, 8.8 Hz, 1H), 0.90 (s, 3H), 0.88 (s, 3H). ¹**H NMR** (400 MHz, CDCl₃): δ 4.12 (m, 1H), 3.55 (d, J = 8.4 Hz, 1H), 3.43 (d, J = 8.4 Hz, 1H), 1.80 (dd, J = 12.0, 6.4 Hz, 1H), 1.30 (dd, J = 12.0, 8.8 Hz, 1H), 1.25 (d, J = 6.4 Hz, 3H), 1.10 (s, 3H), 1.08 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃): δ 80.4, 75.5, 48.9, 40.2, 27.5, 26.9, 21.8. **LRMS (ESI)** m/z (rel int): (pos) 114 ([M]⁺, 9), 113 ([M – H]⁺, 100). **HRMS** m/z calcd for C₇H₁₄O 114.1045, found 114.1042. **IR** (KBr film): 2928, 1461, 1073 cm⁻¹.

2-Ethyl-5-methyltetrahydrofuran (9c)¹⁵

1.8:1 mixture of *trans:cis* determined by ¹H NMR analysis and *trans/cis* relationship established by analogy to 2-isopropyl-5-methyltetrahydrofuran.

TLC: $R_f 0.63$ (5:1 hexane/EtOAc). ¹**H NMR** (400 MHz, Benzene- d_6): δ 3.97 (m, 1H, *trans*), 3.81 (m, 1H, *cis*), 3.62 (m, 1H, *cis*), 1.76–1.19 (m, 6H, *trans/cis*), 1.18 (d, J = 6.0 Hz, 3H, *cis*), 1.14 (d, J = 6.0 Hz, 3H, *trans*), 0.93 (t, J = 7.6 Hz, 3H, *cis*), 0.91 (t, J = 7.6 Hz, 3H, *trans*). ¹**H NMR** (400 MHz, CDCl₃): δ 4.10 (m, 1H, *trans*), 3.92 (m, 1H, *trans*), 3.92 (m, 1H, *cis*), 3.74 (m, 1H, *cis*), 2.06–1.99 (m, 2H, *trans*), 1.96–1.93 (m, 2H, *cis*), 1.61–1.39 (m, 4H, *trans/cis*), 1.24 (d, J = 6.0 Hz, 3H, *cis*), 1.21 (d, J = 6.0 Hz, 3H, *trans*), 0.93 (t, J = 7.2 Hz, 3H, *cis*), 0.91 (t, J = 7.2 Hz, 3H, *cis*), 0.91 (t, J = 7.2 Hz, 3H, *cis*), 3.10 (*cis*), 32.1 (*trans*), 31.0 (*cis*), 29.1 (*trans/cis*), 21.6 (*trans/cis*), 10.5 (*trans/cis*). **LRMS (CI**) *m/z* (rel int): (pos) 115 ([M +

H]⁺, 48), 97 ([M – OH]⁺, 100). **HRMS** m/z calcd for C₇H₁₅O 115.1123, found 115.1119. **IR** (KBr film): 2925, 1461, 1121 cm⁻¹.

2-Methyltetrahydropyran (9d)¹³

TLC: $R_f 0.54$ (5:1 hexane/EtOAc). ¹**H NMR** (400 MHz, Benzene- d_δ): δ 3.87 (m, 1H), 3.58 (m, 1H), 3.19 (m, 1H), 1.60–1.10 (m, 6H), 1.14 (d, J = 6.0 Hz, 3H). ¹**H NMR** (400 MHz, CDCl₃): δ 3.96 (dm, J = 15.2 Hz, 1H), 3.47–3.37 (m, 2H), 1.80 (m, 1H), 1.60–1.45 (m, 3H), 1.30–1.21 (m, 2H), 1.15 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 74.1, 68.7, 33.9, 26.1, 23.8, 22.4. **LRMS (ESI)** m/z (rel int): (pos) 123 ([M + Na]⁺, 12), 101 ([M + H]⁺, 7), 100 ([M]⁺, 9), 85 ([M – CH₃]⁺, 100), 83 ([M – OH]⁺, 33). **HRMS** m/z calcd for C₆H₁₂O 100.0888, found 100.0893. **IR** (KBr film): 2928, 1460, 1125 cm⁻¹.

2-Propyltetrahydropyran (9e)¹⁶

TLC: $R_f 0.63$ (5:1 hexane/EtOAc). ¹**H NMR** (400 MHz, Benzene- d_6): δ 3.90 (m, 1H), 3.71 (m, 1H), 3.22 (m, 1H), 3.10 (m, 1H), 1.61–1.14 (m, 9H), 0.89 (t, J = 7.2 Hz, 3H). ¹**H NMR** (400 MHz, CDCl₃): δ 3.97 (dm, J = 11.6 Hz, 1H), 3.41 (td, J = 11.6, 2.4 Hz, 1H), 3.24 (m, 1H), 1.81 (m, 1H), 1.61–1.20 (m, 9H), 0.91 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 77.8, 68.7, 39.0, 32.2, 26.5, 23.8, 18.9, 14.4. **LRMS** (CI) m/z (rel int): (pos) 129 ([M + H]⁺, 23), 128 ([M]⁺, 21), 111 ([M – OH]⁺, 100). **HRMS** m/z calcd for C₈H₁₇O 129.1279, found 129.1283. **IR** (KBr film): 2934, 1461, 1091 cm⁻¹.

2-Methyltetrahydrofuran (9f)¹³

TLC: R_f 0.64 (5:1 hexane/EtOAc). ¹**H NMR** (400 MHz, Benzene- d_6): δ 3.77 (m, 2H), 3.54 (m, 1H), 1.64–1.48 (m, 4H), 1.15 (d, J = 6.0 Hz, 3H). ¹**H NMR** (400 MHz, CDCl₃): δ 3.97–3.87 (m, 2H), 3.71 (td, J = 8.0, 6.4 Hz, 1H), 2.05–1.83 (m, 3H), 1.43 (m, 1H), 1.23 (d, J

= 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 75.4, 67.9, 33.3, 26.1, 21.2. LRMS (ESI) *m/z* (rel int): (pos) 109 ([M + Na]⁺, 7), 87 ([M + H]⁺, 3), 86 ([M]⁺, 3), 85 ([M - H]⁺, 100), 69 ([M - OH]⁺, 5). HRMS *m/z* calcd for C₅H₁₀O 86.0732, found 86.0733. IR (KBr film): 2921, 1458, 1099 cm⁻¹.

2,3-Dihydro-2-methylbenzofuran (9g)¹³

TLC: $R_f 0.66$ (5:1 hexane/EtOAc). ¹**H NMR** (400 MHz, Benzene- d_6): δ 7.01–6.94 (m, 2H), 6.83 (d, J = 8.0 Hz, 1H), 6.76 (t, J = 8.0 Hz, 1H), 4.50 (m, 1H), 2.75 (dd, J = 15.2, 8.8 Hz, 1H), 2.31 (dd, J = 15.2, 7.6 Hz, 1H), 1.09 (d, J = 6.0 Hz, 3H). ¹**H NMR** (400 MHz, CDCl₃): δ 7.15 (d, J = 7.6 Hz, 1H), 7.10 (t, J = 7.6 Hz, 1H), 6.82 (t, J = 7.2 Hz, 1H), 6.75 (d, J = 7.6 Hz, 1H), 4.92 (m, 1H), 3.31 (dd, J = 15.2, 8.8 Hz, 1H), 2.82 (dd, J = 15.2, 7.6 Hz, 1H), 1.47 (d, J = 6.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 159.7, 128.1, 127.2, 125.1, 120.3, 109.5, 79.7, 37.3, 21.9. **LRMS (EI)** m/z (rel int): (pos) 135 ([M + H]⁺, 15), 134 ([M]⁺, 100), 133 ([M - H]⁺, 45), 119 ([M - CH₃]⁺, 47). **HRMS** m/z calcd for C₉H₁₀O 134.0732, found 134.0730. **IR** (KBr film): 3052, 2975, 1598, 1481, 1464, 1233, 1036, 750 cm⁻¹.

2-Phenylchromane (9h)¹⁷

TLC: $R_f 0.62$ (5:1 hexane/EtOAc). **Mp**: 38 °C (Lit.¹⁸ 40–41 °C). ¹**H NMR** (400 MHz, Benzene- d_6): δ 7.28–7.25 (m, 2H), 7.18–7.16 (m, 2H) 7.11–7.01 (m, 3H), 6.91 (d, J = 7.6 Hz, 1H), 6.82 (t, J = 7.6 Hz, 1H), 4.74 (dd, J = 8.0, 4.4 Hz, 1H), 2.53 (m, 1H), 2.35 (dt, J = 16.4, 4.4 Hz, 1H), 1.76–1.70 (m, 2H). ¹**H NMR** (400 MHz, CDCl₃): δ 7.46–7.36 (m, 4H), 7.32 (m, 1H), 7.15–7.08 (m, 2H), 6.91 (d, J = 8.4 Hz, 1H), 6.88 (td, J = 7.6, 1.2 Hz, 1H), 5.07 (dd, J = 10.0, 2.4 Hz, 1H), 3.01 (ddd, J = 16.4, 11.2, 5.2 Hz, 1H), 2.80 (ddd, J = 16.4, 5.2, 3.6 Hz, 1H), 2.21 (m, 1H), 2.09 (m, 1H). ¹³C **NMR** (100 MHz, CDCl₃): δ 155.3, 142.0, 129.7, 128.7, 128.0, 127.5, 126.2, 122.0, 120.5, 117.1, 78.0, 30.2, 25.3. **LRMS (FAB)** m/z (rel int): (pos) 210 ([M]⁺, 20), 209 ([M – H]⁺, 10). **HRMS** m/z calcd for C₁₅H₁₄O 210.1045, found 210.1040.

2-Phenyltetrahydropyran (9i)¹⁹

TLC: $R_f 0.74$ (3:1 hexane/EtOAc). ¹**H NMR** (400 MHz, Benzene- d_6): δ 7.40 (d, J = 6.0 Hz, 2H), 7.21 (d, J = 6.0 Hz, 2H), 7.10 (m, 1H), 4.16 (d, J = 10.8 Hz, 1H), 4.00 (dm, J = 10.8 Hz, 1H), 3.32 (m, 1H), 1.63–1.13 (m, 6H). ¹**H NMR** (400 MHz, CDCl₃): δ 7.30–7.23 (m, 5H), 4.32 (dd, J = 10.4, 2.4 Hz, 1H), 4.14 (m, 1H), 3.62 (td, J = 10.4, 2.4 Hz, 1H), 1.95 (m, 1H), 1.83 (m, 1H), 1.72–1.56 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 143.5, 128.5, 127.4, 126.0, 80.3, 69.2, 34.2, 26.1, 24.2. **LRMS** (CI) m/z (rel int):(pos) 163 ([M + H]⁺, 18), 162 ([M]⁺, 28), 161 ([M – H]⁺, 100), 145 ([M – OH]⁺, 20). **HRMS** m/z calcd for C₁₁H₁₃O 161.0966, found 161.0961. **IR** (KBr film): 3032, 2938, 1605, 1494, 1453, 1090, 751, 699 cm⁻¹.

5,5-Dimethyl-2-phenyltetrahydropyran (9j)⁸

TLC: $R_f 0.64$ (5:1 hexane/EtOAc). ¹**H NMR** (400 MHz, Benzene-*d*₆): δ 7.42 (d, J = 6.4 Hz, 2H), 7.21 (t, J = 6.4 Hz, 2H), 7.11 (t, J = 6.4 Hz, 1H), 4.08 (dd, J = 11.2, 2.8 Hz, 1H), 3.56 (dd, J = 11.2, 2.8 Hz, 1H), 3.13 (dd, J = 11.2, 0.8 Hz, 1H), 1.66 (m, 1H), 1.49 (m, 1H), 1.32 (m, 1H), 1.23 (dt, J = 13.2, 4.4 Hz, 1H), 1.04 (s, 3H), 0.65 (s, 3H). ¹**H NMR** (400 MHz, CDCl₃): δ 7.39–7.24 (m, 5H), 4.24 (dd, J = 11.2, 2.8 Hz, 1H), 3.62 (dd, J = 11.2, 2.8 Hz, 1H), 3.34 (d, J = 11.2 Hz, 1H), 1.85–1.49 (m, 4H), 1.13 (s, 3H), 0.87 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 143.4, 128.5, 127.4, 126.0, 80.4, 78.9, 37.5, 30.6, 30.0, 27.4, 23.7. **LRMS (FAB)** *m*/*z* (rel int): (pos) 191 ([M + H]⁺, 22), 190 ([M]⁺, 25), 189 ([M – H]⁺, 80). **HRMS** *m*/*z* calcd for C₁₃H₁₇O 189.1279, found 189.1281. **IR** (KBr film): 3032, 2949, 1606, 1495, 1453, 1093, 751, 699 cm⁻¹.

2-Methyl-4,4-diphenyltetrahydrofuran (9k)¹³

TLC: $R_f 0.57$ (5:1 hexane/EtOAc). **Mp**: 45 °C (Lit.¹² 42–44 °C). ¹**H NMR** (400 MHz, Benzene-*d*₆): δ 7.26–7.23 (m, 2H), 7.12–6.99 (m, 8H), 4.49 (dd, *J* = 8.8, 0.8 Hz, 1H), 4.10 (d, *J* = 8.8 Hz, 1H), 4.05 (m, 1H), 2.26 (ddd, *J* = 12.0, 6.0, 0.8 Hz, 1H), 1.97 (dd, *J* = 12.0, 9.2 Hz, 1H), 1.15 (d, *J* = 6.0 Hz, 3H). ¹**H NMR** (400 MHz, CDCl₃): δ 7.32–7.16 (m, 10H), 4.58 (dd, *J* = 8.8, 0.8 Hz, 1H), 4.17 (d, *J* = 8.8 Hz, 1H), 4.17 (m, 1H), 2.63 (ddd, *J* = 12.0, 6.0, 0.8 Hz, 1H), 2.27 (dd, *J* = 12.0, 9.6 Hz, 1H), 1.30 (d, *J* = 6.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 146.6, 146.5, 128.6, 128.5, 127.4 (2C), 126.6, 126.4, 77.1, 75.0, 56.6, 46.8, 21.6. **LRMS (FAB)** *m*/*z* (rel int): (pos) 239 ([M + H]⁺, 15), 238 ([M]⁺, 20), 237 ([M - H]⁺, 55). **HRMS** *m*/*z* calcd for C₁₇H₁₇O 237.1279, found 237.1277.

2,2-Dimethyl-5,5-diphenyltetrahydropyran (91)⁸

TLC: $R_f 0.47$ (10:1 hexane/EtOAc). **Mp**: 85 °C (Lit.¹² 85–86 °C). ¹**H NMR** (400 MHz, Benzene-*d*₆): δ 7.32–7.30 (m, 4H), 7.14–7.09 (m, 4H) 7.05–6.99 (m, 2H), 4.04 (s, 2H), 2.21–2.18 (m, 2H), 1.26–1.23 (m, 2H), 1.11 (s, 6H). ¹**H NMR** (400 MHz, CDCl₃): δ 7.33–7.25 (m, 8H), 7.19–7.15 (m, 2H), 4.05 (s, 2H), 2.44–2.41 (m, 2H), 1.42–1.38 (m, 2H), 1.23 (s, 6H). ¹³C **NMR** (100 MHz, CDCl₃): δ 146.6, 128.3, 128.1, 126.1, 71.4, 69.2, 46.1, 32.8, 31.0, 26.5. **LRMS (EI)** *m/z* (rel int): (pos) 266 ([M]⁺, 10), 236 ([M – 2CH₃]⁺, 18), 180 ([Ph₂CCH₂]⁺, 100). **HRMS** *m/z* calcd for C₁₉H₂₂O 266.1671, found 266.1676.

2,2-Dimethyl-4,4-diphenyltetrahydrofuran (9m)²⁰

TLC: $R_f 0.24$ (10:1 hexane/EtOAc). **Mp**: 64 °C. ¹**H NMR** (400 MHz, Benzene-*d*₆): δ 7.20–7.17 (m, 4H), 7.11–7.06 (m, 4H) 7.01–6.97 (m, 2H), 4.35 (s, 2H), 2.35 (s, 2H), 1.12 (s, 6H). ¹**H NMR** (400 MHz, CDCl₃): δ 7.29–7.25 (m, 8H), 7.19–7.14 (m, 2H), 4.43 (s, 2H), 2.60 (s, 2H), 1.18 (s, 6H). ¹³C **NMR** (100 MHz, CDCl₃): δ 147.0, 128.5, 127.4, 126.3, 81.6, 75.6, 56.9, 51.6, 29.4. **LRMS (EI)** *m/z* (rel int): (pos) 253 ([M + H]⁺, 10), 252 ([M]⁺, 40), 222 ([M – 2CH₃]⁺, 93), 193 ([M – C₃H₇O]⁺, 25). **HRMS** *m/z* calcd for C₁₈H₂₀O 252.1514, found 252.1515.

2-Ethyl-4,4-diphenyltetrahydrofuran (9n)⁸

TLC: $R_f 0.51$ (10:1 hexane/EtOAc). ¹**H NMR** (400 MHz, Benzene-*d*₆): δ 7.29–7.27 (m, 2H), 7.13–6.99 (m, 8H), 4.53 (dd, J = 8.4, 0.8 Hz, 1H), 4.06 (d, J = 8.4 Hz, 1H), 3.89 (m, 1H), 2.30 (ddd, J = 12.0, 5.6, 1.2 Hz, 1H), 2.04 (dd, J = 12.0, 9.6 Hz, 1H), 1.59 (m, 1H), 1.38 (m, 1H), 0.86 (t, J = 7.2 Hz, 3H). ¹**H NMR** (400 MHz, CDCl₃): δ 7.32–7.26 (m, 6H), 7.23–7.16 (m, 4H), 4.61 (dd, J = 8.8, 0.8 Hz, 1H), 4.12 (d, J = 8.8 Hz, 1H), 3.96 (m, 1H), 2.61 (ddd, J = 12.0, 6.0, 1.2 Hz, 1H), 2.18 (dd, J = 12.0, 10.0 Hz, 1H), 1.67 (m, 1H), 1.56 (m, 1H), 0.93 (t, J = 7.6 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 146.6, 146.3, 128.6, 128.5, 127.4, 127.3, 126.6, 126.4, 80.3, 76.9, 56.2, 44.6, 29.1, 10.5. **LRMS (EI**) *m/z* (rel int): (pos) 252 ([M]⁺, 15), 223 ([M - C₂H₅]⁺, 13), 193 ([M - C₃H₇O]⁺, 100), 180 ([Ph₂CCH₂]⁺, 75). **HRMS** *m/z* calcd for C₁₈H₂₀O 252.1514, found 252.1515. **IR** (KBr film): 3059, 2966, 1599, 1460, 1447, 1079, 750, 693 cm⁻¹.

9n'

2-Methyl-5,5-diphenyltetrahydropyran (9n')⁸

TLC: $R_f 0.54$ (10:1 hexane/EtOAc). ¹**H NMR** (400 MHz, Benzene- d_6): δ 7.51–7.48 (m, 2H), 7.40–7.37 (m, 4H), 7.20–7.14 (m, 4H), 4.66 (dd, J = 12.0, 3.2 Hz, 1H), 3.45 (d, J = 12.0 Hz, 1H), 3.28 (m, 1H), 2.24–2.15 (m, 2H), 1.38 (m, 1H), 1.20 (m, 1H), 1.09 (d, J = 6.4 Hz, 3H). ¹**H NMR** (400 MHz, CDCl₃): δ 7.44–7.41 (m, 2H), 7.31–7.23 (m, 4H), 7.19–7.14 (m, 4H), 4.63 (dd, J = 12.0, 2.8 Hz, 1H), 3.56 (d, J = 12.0 Hz, 1H), 3.56 (m, 1H), 2.50–2.37 (m, 2H), 1.55 (m, 1H), 1.24 (m, 1H), 1.17 (d, J = 6.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 147.0, 146.1, 129.1, 128.5, 128.2, 127.2, 126.4, 125.8, 75.3, 74.2, 46.0, 35.0, 30.0, 21.9. **LRMS (EI)** m/z (rel int): (pos) 252 ([M]⁺, 15), 180 ([Ph₂CCH₂]⁺, 100). **HRMS** m/z calcd for C₁₈H₂₀O 252.1514, found 252.1519. **IR** (KBr film): 3059, 2935, 1600, 1495, 1446, 1095, 754, 700 cm⁻¹.

Reuse of [bmTr][PF₆] ionic liquid

In a 20 mL vial, 2,2-diphenyl-4-penten-1-ol (**8k**) (238 mg, 1.00 mmol) and ionic liquid **5** (412 mg, 1.00 mmol) were dissolved in benzene (5 mL). The reaction mixture was stirred at 80 °C, and the reaction progress was monitored by TLC. Upon completion of the reaction, Et_2O (5 mL) was added to the reaction mixture. The ionic liquid- Et_2O mixture was stirred for a couple of minutes and stopped. Then, the ionic liquid- Et_2O mixture clearly showed two separate layers although <0.5 mL of ionic liquid was used. The upper Et_2O layer was carefully removed by decantation. This procedure was repeated five times. The combined Et_2O fractions were evaporated. Purification by silica flash chromatography (petroleum ether/ Et_2O = 19:1) afforded **9k** (226 mg, 95%) as a white solid. The recovered ionic liquid (406 mg) was dried *in vacuo* and reused for the next cycle.

Synthesis of (±)–Centrolobin

1-(4-Methoxyphenyl)prop-2-en-1-ol (11)

In a flame-dried 100 mL flask, *p*-anisaldehyde (3.57 mL, 29.4 mmol) was dissolved in anhydrous THF (24 mL) at 0 °C under argon atmosphere. Vinylmagnesium bromide (1.0 M in THF, 35.3 mL, 35.3 mmol) was then added via syringe dropwise. After the mixture was stirred for 1.5 h, it was quenched with sat. NH₄Cl (20 mL), and extracted with diethylether (3 \times 70 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered, and evaporated. The residue was purified by column chromatography (4:1 hexane/EtOAc) to give compound **11** (4.26 g, 88%) as a yellow oil.

TLC: R_f 0.26 (4:1 hexane/EtOAc). ¹**H NMR** (400 MHz, CDCl₃): δ 7.30 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 6.09–6.01 (m, 1H), 5.34 (dt, J = 17.2, 1.2 Hz, 1H), 5.19 (dt, J = 10.0, 1.2 Hz, 1H), 5.17 (m, 1H), 3.80 (s, 3H), 1.82 (d, J = 4.0 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 159.5, 140.6, 135.1, 127.9, 115.0, 114.2, 75.1, 55.5. **LRMS (FAB)** m/z (rel int): (pos) 164 ([M]⁺, 25), 147 ([M – OH]⁺, 100), 107 ([PhOCH₃]⁺, 13). **HRMS** m/z calcd for C₁₀H₁₂O₂ 164.0837, found 164.0831. **IR** (KBr film): 3401, 3078, 2838, 1611, 1586, 1463, 1248, 831 cm⁻¹.

5-(4-Methoxyphenyl)pent-4-enal (13)

Under argon atmosphere, Hg(OAc)₂ (776 mg, 2.44 mmol), NaOAc (239 mg, 2.44 mmol), and allylic alcohol **11** were dissolved in *n*-butyl vinyl ether (30 mL). The reaction mixture was stirred at reflux for 17 h. The mixture was then cooled to rt. NaSH·nH₂O solution (228 mg in 100 ml H₂O) was added and extracted with EtOAc (3×100 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered, and evaporated. Column chromatography (6:1 hexane/EtOAc) afforded compound **13** (3.82 g, 83%) as a yellow liquid.

TLC: $R_f 0.24$ (6:1 hexane/EtOAc). ¹**H NMR** (400 MHz, CDCl₃): δ 9.82 (t, J = 1.4 Hz, 1H), 7.26 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 8.4 Hz, 2H), 6.38 (d, J = 16.0 Hz, 1H), 6.06 (dt, J = 16.0, 6.8 Hz, 1H), 3.8 (s, 3H), 2.64–2.60 (m, 2H), 2.56–2.50 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 202.1, 159.2, 130.7, 130.2, 127.4, 126.1, 114.2, 55.5, 43.7, 25.7. LRMS (EI) *m/z* (rel int): (pos) 190 ([M]⁺, 55), 147 ([M – CH₂CHO]⁺, 48). HRMS *m/z* calcd for C₁₂H₁₄O₂ 190.0994, found 190.0995. IR (KBr film): 3031, 3004, 2908, 2836, 2724, 1722, 1607, 1463, 1247, 840 cm⁻¹.

(±)-1-(4-(Benzyloxy)phenyl)-7-(4-methoxyphenyl)hept-6-en-3-ol (15)

Mg (230 mg, 9.46 mmol) in a flame-dried flask was heated with a torch, and cooled. This activation procedure was repeated three times. 1-(2-Bromoethyl)-4-(phenylmethoxy)benzene (14) (2.30 g, 7.88 mmol) in THF (10 mL) was then added. The resulting reaction mixture was heated at 70 °C for 2 h. 13 (1.00 g, 5.26 mmol) in THF (10 mL) was added dropwise at -78 °C and stirred for 1 h. The reaction mixture was stirred for an additional hour at rt. After the completion of the reaction, sat NH₄Cl (100 mL) was added and extracted with EtOAc (3 × 100 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated. Column chromatography (4:1 hexane/EtOAc) afforded compound 15 (1.52 g, 72%) as a white solid.

TLC: $R_f 0.38$ (2:1 hexane/EtOAc). **Mp**: 82–84 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.44–7.32 (m, 5H), 7.26 (d, J = 8.8 Hz, 2H), 7.12 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 6.35 (d, J = 16.0 Hz, 1H), 6.07 (dt, J = 16, 6.8 Hz, 1H), 5.03 (s, 2H), 3.79 (s, 3H), 3.69 (m, 1H), 2.73 (m, 1H), 2.63 (m, 1H), 2.35–2.26 (m, 2H), 1.80–1.73 (m, 2H), 1.68–1.61 (m, 2H), 1.39 (d, J = 5.2 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 159.0, 157.3, 137.4, 134.6, 130.7, 129.9, 129.5, 128.8, 128.3, 128.1, 127.7, 127.3, 115.1, 114.2, 71.1, 70.3, 55.5, 39.5, 37.4, 31.4, 29.5. **LRMS (FAB)** m/z (rel int): (pos) 402 ([M]⁺, 40), 197 ([PhCH₂OC₆H₄CH₂])⁺, 20), 107 ([PhOCH₃]⁺, 31), 91 ([PhCH₂]⁺, 89). **HRMS** m/z calcd for C₂₇H₃₀O₃ 402.2195, found 402.2201. Anal. Calcd for C₂₇H₃₀O₃: C, 80.56; H, 7.51. Found: C, 80.57; H, 7.52.

(±)-2-(4-(Benzyloxy)phenethyl)-tetrahydro-6-(4-methoxyphenyl)-2H-pyran (16)

In a 20 mL vial, alkenyl alcohol **15** (201 mg, 0.5 mmol) and ionic liquid **4** (210 mg, 0.5 mmol) were dissolved in anhydrous benzene (2.5 ml, 0.2 M). The biphasic solution was stirred at rt for 110 h. The reaction was concentrated by rotary evaporation. Purification with silica flash chromatography (10:1 hexane/EtOAc) yielded the **16** (154 mg, 77%) as a white solid.

In a 20 mL vial, **15** (201 mg, 0.5 mmol) and ionic liquid **5** (210 mg, 0.5 mmol) were dissolved in anhydrous benzene (2.5 ml, 0.2 M). The biphasic solution was stirred at rt for 38 h. The reaction was concentrated by rotary evaporation. Purification with silica flash chromatography (10:1 hexane/EtOAc) yielded the **16** (165 mg, 82%) as a white solid.

TLC: R_f 0.53 (10:1 hexane/EtOAc). **Mp**: 66–67 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.44–7.30 (m, 7H), 7.11 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 5.04 (s, 2H), 4.29 (dd, J = 11.2, 2.0 Hz, 1H), 3.80 (s, 3H) 3.43 (m, 1H), 2.78–2.63 (m, 2H), 2.04–1.86 (m, 2H), 1.83 (m, 1H), 1.73 (m, 1H), 1.65–1.59 (m, 2H), 1.50 (m, 1H), 1.32 (dd, J = 7.2, 4.0 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 158.9, 157.1, 137.5, 136.1, 135.1, 129.6, 128.8, 128.1, 127.7, 127.3, 114.9, 113.8, 79.3, 77.4, 70.3, 55.5, 38.5, 33.6, 31.5, 31.0, 24.3. **LRMS (FAB)** m/z (rel int): (pos) 402 ([M]⁺, 57), 197 ([PhCH₂OC₆H₄CH₂]⁺, 32), 91 ([PhCH₂]⁺, 100). **HRMS** m/z calcd for C₂₇H₃₀O₃ 402.2195, found 402.2189. Anal. Calcd for C₂₇H₃₀O₃: C, 80.56; H, 7.51. Found: C, 80.50; H, 7.64.

(±)-4-(2-(Tetrahydro-6-(4-methyoxyphenyl)-2H-pyran-2-yl)ethyl)phenol (17)

In a 15 mL roundbottom flask, **16** (100 mg, 0.248 mmol) was dissolved in anhydrous EtOH (4 mL). Solid 5% Pd/C (20 mg) was added and the flask was flushed with H_2 gas, then stirred under a balloon of H_2 at rt for 3 h. The mixture was filtered over a celite and concentrated by

rotary evaporation. Purification by silica flash chromatography (4: 1 hexane/EtOAc) yielded **17** (76.3 mg, 98%) as a white solid.

TLC: $R_f 0.29$ (4:1 hexane/EtOAc). **Mp**: 69–70 °C (Lit.²¹ 82–85 °C). ¹**H NMR** (400 MHz, CDCl₃): δ 7.31 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.72 (d, J = 8.4 Hz, 2H), 4.67 (s, 1H), 4.29 (dd, J = 11.2, 2.0 Hz, 1H), 3.80 (s, 3H), 3.43 (m, 1H), 2.76–2.61 (m, 2H), 1.95–1.80 (m, 3H), 1.76–1.58 (m. 3H), 1.50 (m, 1H), 1.38–1.30 (m, 1H). ¹³C **NMR** (100 MHz, CDCl₃): δ 158.9, 153.7, 136.1, 134.9, 129.8, 127.3, 115.3, 113.8, 79.3, 77.4, 55.5, 38.5, 33.5, 31.5, 31.0, 24.3. **LRMS (EI)** m/z (rel int): (pos) 312 ([M]⁺, 100), 294 ([M – H₂O]⁺, 6), 107 ([PhOCH₃]⁺, 83), 91 ([PhCH₂]⁺, 6). **HRMS** m/z calcd for C₂₀H₂₄O₃ 312.1725, found 312.1726.

References

- Mehdi, H.; Bodor, A.; Lantos, D.; Horvath, I. T.; De Vos, D. E.; Binnemans, K. J. Org. Chem., 2007, 72, 517–524.
- 2. Belieres, J.-P.; Angell, C. A. J. Phys. Chem. B 2007, 111, 4926–4937.
- 3. Hallett, J. P.; Liotta, C. L.; Ranieri, G.; Welton, T. J. Org. Chem., 2009, 74, 1864–1868.
- 4. Gu, Y.; Shi, F.; Deng, Y. J. Mol. Catal. A: Chemical, 2004, 212, 71-75.
- 5. Du, Z.; Li, Z.; Deng, Y. Synthetic Commun., 2005, 35, 1343–1349.
- Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.; Forbes, D. C.; Davis, J. H. Jr. J. Am. Chem. Soc., 2002, 124, 5962–5963.
- Pringle, J. M.; Forsyth, C. M.; Forsyth, M.; MacFarlane, D. R., *Acta Crystallogr. E*, 2003, *E59*, 01759-01761.
- 8. Yang, C.-G.; Reich, N. W.; Shi, Z.; He, C. Org. Lett., 2005, 7, 4553-4556.
- 9. Yamada, S.; Ono, F.; Katagiri, T.; Tanaka, J. Nippon Kagaku Kaishi 1980, 5, 733-737.
- 10. Seiders, J. R. II; Wang, L.; Floreancig, P. E. J. Am. Chem. Soc., 2003, 125, 2406-2407.
- 11. Kelly, B. D.; Allen, J. W.; Tundel, R. E.; Lambert, Y. H. Org. Lett., 2009, 11, 1381–1383.
- 12. Qian, H.; Han, X.; Widenhoefer, R. A. J. Am. Chem. Soc., 2004, 126, 9536-9537.
- 13. Dzudza, A.; Marks, T. J. Org. Lett., 2009, 11, 1523-1526.
- 14. Dzudza, A.; Marks, T. J. Chem.-Eur. J., 2010, 16, 3403-3422.
- 15. Hartung, J.; Gallou, F. J. Org. Chem., 1995, 60, 6706-6716.
- 16. Montaudon, E.; Thepenier, J.; Lalande, R. J. Heterocyclic Chem., 1979, 16, 113-121.
- 17. Batsomboon, P.; Phakhodee, W.; Ruchirawat, S.; Ploypradith, P. J. Org. Chem., 2009, 74,

4009-4012.

- Rodeiguez, R.; Moses, J. E.; Adlington, R. M.; Baldwin, J. E. Org. Biomol. Chem., 2005, 3, 3488–3495.
- 19. Asao, N.; Aikawa, H.; Tago, S.; Umetsu, K. Org. Lett., 2007, 9, 4299-4302.
- 20. Komeyama, K.; Morimoto, T.; Nakayama, Y.; Takaki, K. *Tetrahedron Lett.*, **2007**, *48*, 3259–3261.
- 21. Chandrasekhar, S.; Jaya Prakash, S.; Shyamsunder, T. Tetrahedron Lett., 2005, 46, 6651–6653.

nOe spectrum of 16

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

¹H-NMR & ¹³C-NMR

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

CYS009AB Pulse Sequence: s2pul

.....

CYS010B Pulse Sequence: s2pul

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Pulse Sequence: s2pul

.

