Asymmetricaly substituted calix[4]pyrrole with chiral substituents

Petr Štěpánek, a Ondřej Šimák, b Zdena Nováková, Zdeněk Wimmer, and Pavel Drašar

Supplementary material

5 Main paper see: DOI: 10.1039/C0OB00712A

Experimental

TLC was performed on HF₂₅₄ plates (Merck), detection by UV light or by spraying with a solution of 5 g of Ce(SO₄)₂ in 500 10 ml 10 % H₂SO₄ and subsequent heating. Flash column chromatography was performed on silica gel (MERCK, 100-160 µm) in solvents, distilled prior to use. Optical rotations were measured in CHCl3 solutions on a Rudolph Research Autopol VI polarimeter at 25 °C and $[\alpha]_D$ values are given in 15 10⁻¹ deg.cm².g⁻¹ with concentration in 10 g.l⁻¹, unless stated otherwise. UV spectra were recorded on Specord 210 spectrometer (Analytik Jena) (with ε given in dm³.cm⁻¹.mol⁻¹). IR spectra (wavenumbers in cm⁻¹) were recorded on a Perkin-Elmer PE 580 spectrometer in CHCl₃ solutions (temperature ₂₀ 23 °C), unless stated otherwise. ¹H and ¹³C NMR spectra were taken in CDCl₃ (Aldrich, 99.8 %D) on a Bruker AVANCE 500 (500.1 MHz for ¹H and 125.8 MHz for ¹³C) FT NMR spectrometer at 300 K if not stated otherwise. As standard the internal signal of tetramethylsilane (δ 0.0) for ¹H and central 25 line of solvent (δ 77.0) for ¹³C were used. Chemical shifts are presented in ppm (δ), coupling constants in Hz (J). Mass spectra were taken on a Q TOF micromass spectrometer with direct inlet (ESI) or on a ZAB-EQ (VG Analytical) instrument (FAB) with Xe ionization, accelerating voltage 8 kV.

All solvents used were of highest degree of purity and used as received. Calix[4]pyrroles solutions for spectroscopic studies have been prepared by using solvents of spectroscopic grade. Milli-Q, Millipore, previously doubly distilled water, was used for the preparation of porphyrin aqueous solutions.

5,6,7,9-Tetra-*O*-acetyl-4,8-anhydro-1,2,3-trideoxy-2',2''-di-1*H*-pyrrol-2-yl-D-*glycero*-D-*gulo*-nonitol 1

To a solution of pyrrole (2.9 ml, 42 mmol) and ketone **2** (ref. 11, 400 mg, 1.05 mmol) in 14 ml of dry CH₂Cl₂, was added trifluoroacetic acid (15 μl 0.2 mmol). The solution was stirred in the dark at ambient temperature under Ar for 20 hours. The reaction mixture was extracted with NaHCO₃, NH₄Cl, dried, the solvent was evaporated and residue was subjected to chromatography on silica gel (cyclohexane-ethyl acetate 4:1) to give the dipyrrole **1** (320 mg, 60 %); [α]_D + 3.0 (c 0.5); UV spectrum: λ _{max}(EtOH)/nm 209 (ϵ 5.9 × 10¹⁰); IR spectrum: υmax/cm-1 -OAc: 1750vs, br; 1255vs, br; 1049s, sh; 1034vs; 599m; 1376vs; 1368vs; 1143m; 978m; 2-subst. pyrrole: 3459s; 3386m, br; 3105w; 1556m; 1415sh; ¹H NMR spectrum: δH (300 MHz) 1.62 (3H, s, H-1), 2.01-1.83(13H, m, H-3b, 4xCH₃CO), 2.35 (1H, m, H-3a), 3.16 (1H, dd, J = 8.7, J

8.9, H-4), 3.32 (1H, ddd, J = 1.8, J = 5.6, J = 9.6, H-8), 3.90 (1H, dd, J = 1.8, J = 12.2, H-9b), 4.03 (1H, dd, J = 5.6, J = 12.2, H-9a), 4.81 (1H, dd, J = 9.3, J = 9.5, H-5), 4.89 (1H, dd, J = 9.5, J = 9.5, J = 9.5, H-7), 4.98 (1H, dd, J = 9.1, J = 9.1, H-6), 6.06-5.93 (4H, m, H-4', H-4", H-3', H-3"), 6,45 (1H, d, H-5"), 6.51 (1H, d, J = 1.3, H-5'), 7.78 (1H, bs, H-NH), 8.01 (1H, bs, H-NH); ¹³C NMR spectrum δ C (75 MHz) 21.0, 21.0, 21.1, 21.1 (4xCH₃CO), 28.3 (C-1), 38.9 (C-2), 42.5 (C-3), 62.9 (C-60 9), 69.0 (C-7), 72.1 (C-5), 74.8 (C-6), 76.7 (C-8), 76.0 (C-4), 104.8 (C-5"), 105.9 (C-4"), 108.1 (C-3"), 108.2 (C-3"), 117.4 (C-5"), 117.7 (C-5"), 137.0 (C-2"), 138.0 (C-2"), 169.9, 170.2, 170.7, 171.1 (4xCH₃CO); For C₂₅H₃₂N₂O₉ (504.52) calculated monoisotopic mass: m/z 504.210781 found: (TOF/ES+) 65 527.2005 [M+Na]⁺. Found: C, 59.7; H, 6.2; N, 5.4. C₂₅H₃₂N₂O₉ requires C, 59.5; H, 6.4; N, 5.55%.

3,4,5,7-tetra-*O*-acetyl-2,6-anhydro-1-deoxy-1--(5,10,10,15,15,20,20-heptamethyl-5,10,15,20,22,24-⁷⁰ -hexahydroporphyrin-5-yl)-D-*glycero*-D-*gulo*-heptitol 4

and a mixture of

5,10-cis and trans 3,4,5,7-tetra-O-acetyl-2,6-anhydro-1-deoxy-1-(5,10,15,15,20,20-heptamethyl-5,10,15,20,22,24-hexahydro-porphyrin-5,10-diyl)-bis-D-glycero-D-gulo-heptitols 3

To a solution of dipyrrylmethane 1 (200 mg, 0.39 mmol) in 16 ml of dry CH₂Cl₂ was added acetone (44 μl, 0.6 mmol). Then trifluoroacetic acid (5 μl, 0.07 mmol) was added as catalyst. The reaction vessel was shielded from light and stirring under Ar at ambient temperature for one night then acetone (44 μl, 80 0.6 mmol) and trifluoroacetic acid (5 μl, 0.06 mmol) and the reaction mixture was stirred for additional night. Then the Et₃N (15 μl, 0.1 mmol) and silica gel were added and the solvent was evaporated under vacuum. The resulting powder was posed at the top of a short silica gel column. Increasing polarity elution with cyclohexane:ethylacetate 6:1→4:1 gave derivative 4 (50 mg, 16 %) in the first major fraction.

[α]_D - 3.6 (c 0.25). UV spectrum: $\lambda_{max}(EtOH)/nm$ 210 (ε 8.07 × 10¹⁰). IR spectrum: -OAc: 1752vs; 1710m, sh; 1254s, sh; 1230vs; 1041m; 1033m, sh; 600w; 1376m; 1367m; 1144w; 90 977w; pyrrole: 3438m; 3111w; 1576w; 1501w; 1417m; gem. Me2: 2973m; 1383m, sh; 1367m. ¹H NMR (300 MHz): δ (ppm) 7.03 (bs, 2H, H-NH); 6.96 (bs, 2H, H-NH); 5.88-5.73 (m, 8H, Hβ-pyrrole); 4.97 (dd, 1H, J = 9.2 Hz, J = 8.8 Hz, H-7); 4.91 (dd, 1H, J = 10.8 Hz, J = 9.3 Hz, H-6); 4.81 (dd, 1H, J = 9.7 Hz, J = 8.9 Hz, H-5); 4.03 (dd, 1H, J = 5.12 Hz, J = 12.2 Hz, H-9a); 3.81 (dd, 1H, J = 2.2 Hz, J = 12.2 Hz, H-9b);

3.35-3.30 (m, 1H, H-8); 3.09 (dd, 1H, J = 8.9 Hz, J = 9.1 Hz, H-4); 2.05 (m, 1H, H-3a), 1.99, 1.94, 1.92, 1.91 (4xs, 12H, 4xCH₃CO); 1.80 (m, 1H, H-3b); 1.44-1.41 (7xs, 21H, H-1, H-CH₃). ¹³C NMR (75 MHz): δ (ppm) 171.04, 170.83, 170.09, 5 169.91 (4xCH₃CO), 139.61, 139.10, 138.87, 138.74, 138.68, 137.55, 136.01 (Cα-pyrrole); 105.34, 103.64, 103.38, 103.33, 103.27, 103.12, 103.02 (Cβ-pyrrole); 75.85 (C-7); 75.58 (C-8); 74.95 (C-4); 71.99 (C-5); 69.02 (C-6); 62.73 (C-9); 41.51 (C-3); 35.59, 35.56 (C-2, Cquat.); 29.97, 29.66, 29.39, 27.63, 10 27.29, 23.08 (C-1); 21.16, 21.06, 21.00 (4xCH₃CO). For C₄₂H₅₄N₄O₉, (758.90) calculated monoisotopic mass: 758.389079; found: MS (FAB), m/z: 791.4 [M+MeOH]⁺ HRMS (TOF/ES+), m/z: 759.3969 [M+H]⁺. Found: C, 66.6; H, 7.0; N, 7.6. C₄₂H₅₄N₄O₉ requires C, 66.5; H, 7.2; N, 7.4%.

Further elution of the above column gave amorphous mixture of isomers 3 (70 mg, 16 %).

UV spectrum: $\lambda_{max}(EtOH)/nm$ 210 (ϵ 1.02 \times 10¹¹). IR spectrum: -OAc: 1752vs, br; 1251vs, br; 1043vs, sh; 1034vs; 20 600m; 1375s; 1368vs; 1143m; 978m; pyrrole: 3437m; 3378m; 3111w; 1575m; 1495w, br, sh; 1419m; gem. Me₂: 2975s; 1388s, sh; 1368vs. ¹H NMR (300 MHz): δ (ppm) 7.09-6.91 (m, 4H, H-NH); 5.89-5.71 (m, 8H, Hβ-pyrrole); 5.05-4.72 (m, 6H, H-sugar moiety); 4.14-3.58 (m, 4H, H-sugar moiety); 25 3.44-2.93 (m, 4H, H-sugar moiety); 2.11-1.63 (m, 20H, H-3a, H-3b, 24H, 4xCH₃CO); 1.52-1.29 (m, 6xH-CH₃). ¹³C NMR (75 MHz): δ (ppm) 170.89, 170.69, 170.62, 170.50, 169.87, 169.81, 169.75, 169.63, 169.58, 169.47 (CH₃CO), 139.35, 139.26, 139.20, 138.60, 137.99, 137.76, 137.30, 137.12, 30 135.81, 135.63, 135.39, 134.95 (Cα-pyrrole); 105.65, 105.11, 104.88, 104.00, 103.62, 103.33, 103.19, 103.11, 103.01, 102.48 (Cβ-pyrrole); 76.74, 75.59, 75.52, 75.30, 74.75, 74.60, 74.50, 72.16, 71.65, 71.54, 69.00, 68.75, 68.61, 68.23 (Csugar moiety); 42.68, 41.90, 41.37, 41.03 (C-3); 38.69, 38.46, 35 38.41, 37.96, 35.36, 35.30 (C-2, Cquat.); 30.45, 29.88, 29.74, 29.62, 29.48, 29.29, 29.20, 28.99, 28.22, 27.58, 27.28 (C-1, C-CH₃); 21.14, 21.03, 20.98 (4xCH₃CO). For $(C_{56}H_{72}N_4O_{18},$ 1189.19) calculated monoisotopic mass 1088.484161, found MS (FAB) m/z: 1089.54 [M]⁺ HRMS (TOF/ES+), m/z: 40 1089.4920 [M+H]⁺. Found: C, 62.0; H, 6.5; N, 5.4. $C_{56}H_{72}N_4O_{18}$ requires C, 61.75; H, 6.7; N, 5.1%.

4,8-anhydro-1,2,3-trideoxy-2',2''-di-1H-pyrrol-2-yl-D-glyce-ro-D-gulo-nonitol 6

⁴⁵ To a solution of pyrrole (1.6 ml, 23.2 mmol) and ketone **5** (ref. ¹², 990 mg, 4.5 mmol) in 15 ml of dry methanol (25 μl, 0.4 mmol) of methanesulfonic acid was added and a solution was stirred in the dark at ambient temperature under Ar for 2 days. The reaction was quenched by addition of a (40 μl, 0.5 mmol) pyridine.

The mixture was concentrated and the crude product was purified by chromatography (chlorofom/methanol 4:1) to give of dipyrrylmethane 6 (910 mg, 60 %) as white foam.

[α]_D + 218.3 (c 0.1). ¹H NMR (CD₃OD): δ (ppm) 9.72 (bs, 55 1H, H-NH); 9.55 (bs, 1H, H-NH); 6.60 (dd, 1H, J = 2.5 Hz, J = 1.4 Hz, H-5'); 6.58 (dd, 1H, J = 2.2 Hz, J = 1.2 Hz, H-5"); 5.96 (dd, 1H, J = 3.0 Hz, J = 2.9 Hz, H-4'); 5.94 (dd, 1H, J =

2.9 Hz, J = 2.8 Hz, H-4"); 5.92 (m, 1H, H-3'), 5.88 (m, 1H, H-3"); 3.74 (dd, 1H, J = 2.2 Hz, J = 11.6 Hz, H-9a); 3.46 (dd, 60 1H, J = 6.8 Hz, J = 11.6 Hz, H-9b); 3.35-3.18 (m, 3H, H-8, H-7, H-6); 3.11-3.03 (m, 2H, H-4, H-5); 2.98 (dt, 1H, J = 2.3 Hz, J = 6.9 Hz, H-8); 2.57 (d, 1H, J = 14.5 Hz, H-3a); 2.03 (dd, 1H, J = 8.5 Hz, J = 14.6 Hz, H-3b); 1.67 (s, 3H, H-1). 13 C NMR (CD₃OD): δ (ppm) 140.23 (C-2'); 139.41 (C-2"); 117.58 (C-5'); 117.43 (C-5"); 108.25 (C-4'); 108.19 (C-4"); 105.49 (C-3'); 104.84 (C-3"); 81.19 (C-8); 79.88 (C-6); 78.73 (C-5); 75.60 (C-4); 72.22 (C-7); 63.39 (C-9); 44.01 (C-3); 39.74 (C-2); 28.40 (C-1). For $C_{17}H_{24}N_2O_5$, (336.38) calculated monoisotopic mass 337.168522; found HRMS (FAB), m/z: 70 337.175438 [M]⁺. Found: C, 60.9; H, 7.15; N, 8.4. $C_{17}H_{24}N_2O_5$ requires C, 60.7; H, 7.2; N, 8.3%

5.5,10,10,15,15,20-(heptamethyl)-20-(2',6'-anhydro-1'-de-oxy-D-glycero-D-gulo-heptitol-1'-yl)calix[4]pyrrole 7

75 Reaction A: To a solution of dipyrrylmethane **6** (400 mg, 1.19 mmol) in 50 ml of dry methanol was added acetone (320 μl, 4.36 mmol). Then methanesulfonic acid (27 μl, 0.35 mmol) was added as catalyst. The reaction vessel was shielded from light and stirring was continued for 3 hours under Ar at ambient temperature. Then pyridine (40 μl, 0.5 mmol) and silica gel were added and the solvent was evaporated under vacuum. The resulting powder was posed at the top of a short silica gel column. Increasing polarity elution with CHCl₃, CHCl₃/MeOH 4:1 gave product 7 (80 mg, 11 %) as white 85 solid.

Reaction B: To a solution of dipyrrylderivative **8** (120 mg, 0.68 mmol) in 3 ml of dry methanol was added carbohydrate derivative 5 (150 mg, 0.68 mmol). Then methanesulfonic acid (6 μl, 0.08 mmol) was added as catalyst. The reaction vessel was shielded from light and stirring was continued for 24 hours under Ar at ambient temperature. Then the pyridine (9 μl, 0.74 mmol) and silica gel were added and the solvent was evaporated under vacuum. The resulting powder was posed at the top of a short silica gel column. Increasing polarity elution with CHCl₃, CHCl₃/MeOH 4:1 gave product **7** (10 mg, 10 %) as white amorphous solid as above ad A/.

 $[\alpha]_D$ + 86.3 (c 0.09). UV spectrum $\lambda_{max}(EtOH)/nm$ 209 (ϵ 6.9×10^{10}). IR spectrum: 3114m (=CH); ring: 1576m, 1510m, 100 1416s; gem. Me₂: 2976s, 1385s, 1363s. ¹H NMR: δ (ppm) 8.20 (bs, 1H, H-NH); 8.18 (bs, 1H, H-NH); 8.03 (bs, 1H, H-NH); 7.99 (bs, 1H, H-NH); 5.99-5.72 (m, 8H, H-pyrrole); 3.67 (d, 1H, J = 11.4 Hz, H-7'a); 3.44 (dd, 1H, J = 11.4 Hz, J = 6.3Hz, H-7'b); 3.25-2.95 (m, 5H, H-6', H-5', H-4', H-3', H-2'); $_{105}$ 2.47 (d, 1H, J = 14.4 Hz, H-1'a); 1.98 (dd, 1H, J = 14.5 Hz, J= 7.2 Hz, H-1'b); 1.65-1.48 (m, 21H, H-CH₃). 13 C NMR: δ (ppm) 140.37, 140.22-140.04, 139.81, 138.80 (C-Cα pyrrole); 140.96, 103.67-103.23 (C-CH pyrrole); 81.02, 79.88, 78.51, 75.44, 72.13 (C-2', C-3', C-4', C-5', C-6'); 63.42 (C-7'); 43.14 110 (C-1'); 36.42-36.34 (C-meso); 30.01-29.72 (C-CH₃); 28.04 (C-CH₃). For C₃₄H₄₇N₄O₅ (590.75) calculated monoisotopic mass 590.346821; found HRMS (FAB), m/z: 591.355115 [M+H]⁺. Found: C, 69.3; H, 7.7; N, 9.5. C₃₄H₄₆N₄O₅ requires C, 69.1; H, 7.85; N, 9.5%

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Notes and references

- 11 P. Štěpánek, M. Dukh, D. Šaman, J. Moravcová, L. Kniežo, D. Monti, M. Venanzi, G. Mancini, P. Drašar; *Org. Biomol. Chem.*, 2007, **5**, 960.
- N. T. T. Huong, P. Klímková, A. Sorrenti, G. Mancini, P. Drašar, Steroids, 2009, 74, 715.