A Convenient Synthesis of Novel Sugar-lactam Hybrids Using Aubé Reaction

Suresh E. Kurhade, Tanaji Mengawade, Debnath Bhuniya, Venkata P. Palle, and D. Srinivasa Reddy*

Corresponding author
Dr. D. Srinivasa Reddy
Discovery Chemistry,
Advinus Therapeutics Pvt. Ltd.,
Quantum Towers, Plot No. 9,
Rajiv Gandhi Infotech Park, Phase-I,
Hinjewadi, Pune, 411057, India.
Tel: 912066539600
Fax: 912066539620
E-mail: dsrinivas.reddy@advinus.com

Supporting Information

Page

Experimental procedures S-2
References S-18
Copies of ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra $\quad \mathrm{S}$-19

General:

All reagents, starting materials, and solvents (including dry solvents) were obtained from commercial suppliers and used as such without further purification. Reactions were carried out in oven-dried glassware under a positive pressure of argon unless otherwise mentioned. Column chromatography was performed on silica gel (Rankem, 100-200 mesh). Deuterated solvents (Cambridge Isotope Laboratories) for NMR spectroscopic analyses were used as received. All NMR spectra were recorded on Varion 400 MHz spectrometer. Coupling constants are measured in Hertz. All chemical shifts are quoted in ppm, relative to tetramethylsilane, using the residual solvent peak as a reference standard. Optical rotation was recorded from Rudolph autopol-V polarimeter at 589 nm (sodium D-line). Mass spectra were measured on a Agilent MSD/VL with ESI ionization. HRMS data was obtained from JEOL MS route 600H instrument. Infrared (IR) spectra were recorded on a Perkin-Elmer 100 FT-IR spectrometer.

Experimental details:

Methyl 6-deoxy-6-N-azepan-2-one- α-D-mannopyranoside (3). To the mixture of 6-Azido-6-deoxy-methyl- α-D-mannopyranoside $\mathbf{1}^{1}(0.25 \mathrm{~g}, 1.14 \mathrm{mmol})$ and cyclohexanone $(0.18 \mathrm{~mL}, 3.50$ $\mathrm{mmol})$ in dichloromethane $(5 \mathrm{~mL}), \mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(0.57 \mathrm{~mL}, 4.57 \mathrm{mmol})$ was added drop wise under argon atmosphere at $0{ }^{\circ} \mathrm{C}$. Reaction mixture was allowed to warm up to room temperature and stirring continued for 24 hours. The reaction mixture was diluted with diethyl ether (5 mL) and 50% aq. $\mathrm{KOH}(1 \mathrm{~mL})$ was added. After stirring for additional one hour, reaction mixture was evaporated to dryness and purified by column chromatography using 30% ethyl acetate: hexane to neat ethyl acetate to get $\mathbf{2}$ and $\mathbf{3}$ in 230 mg and 36 mg respectively. Compound 2: $\mathrm{Mp}=89$ $91^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-15.6^{\circ}\left(c 1, \mathrm{CH}_{3} \mathrm{OH}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 1071,1099,1623,3368 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.34-1.79$ (series of $\left.\mathrm{m}, 15 \mathrm{H}\right), 2.51-2.61(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.36(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~d}, J=4.80$ $\mathrm{Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=4.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=5.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.87$ (s, 1H) ; ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 179.9,110.9,99.6,78.5,76.5,71.5,70.6,55.3,53.1$, 50.7, 39.2, 37.5, 36.4, 30.7, 28.7, 26.0, 25.0, 24.7, 24.5; LCMS = 370.2 (M+1); HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 392.2049$, found 392.2096. Compound 3: $[\alpha]^{25} \mathrm{D}=$ $+24.4^{\circ}\left(c 1, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 1610,3392 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.64-1.82$ $(\mathrm{m}, 6 \mathrm{H}), 2.55-2.58(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{t}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.66(\mathrm{dd}, J$ $=3.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.81(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 179.7,102.9,73.3,71.8,71.7,69.6,55.3,53.1,51.0,37.6,30.8,28.7,24.4 ; \mathrm{MS}=290(\mathrm{M}+1)$; HRMS (ESI): m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 290.1603$, found 290.1586.

Conversion of compound 2 to compound 3: The compound $2(230 \mathrm{mg})$ was dissolved in 80% aq. acetic acid (5 mL) and stirred at $80^{\circ} \mathrm{C}$. After 24 hours, the reaction mixture was evaporated to dryness to furnish the crude product. The crude compound was purified by column chromatography using silica gel and eluted with 50% ethyl acetate: hexane to neat ethyl acetate get 170 mg of titled product $\mathbf{3}$. Overall yield: 205 mg . (64\%).

Compounds 4-11 are prepared using the analogous procedure described for the synthesis of $\mathbf{3}$.

4
Methyl 6-deoxy-6- N-pyrrolidine-2-one- α-D-mannopyranoside (4). Yield 66%. $[\alpha]^{24.8}{ }_{\mathrm{D}}=$ $+28.9^{\circ}\left(c 1, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 1054,1656,3392 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 2.02-$ $2.09(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.41(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.68(\mathrm{~m}, 6 \mathrm{H}), 3.75$ $(\mathrm{dd}, J=1.2 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 178.3,102.8$, 72.6, 71.9, 71.8, 69.8, 55.2, 50.8, 45.2, 31.8, 19.2; LCMS = 262 (M+1); HRMS (ESI): m/z calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$284.1110, found 284.1101.

5
Methyl 6-deoxy-6- N-piperidine-2-one- α-D-mannopyranoside (5). Yield 64\%; $[\alpha]^{23.9}{ }_{\mathrm{D}}=$ $+50.9^{\circ}\left(c 1, \mathrm{CH}_{3} \mathrm{OH}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right): 1054,1602,3411 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.77-$ $1.86(\mathrm{~m}, 4 \mathrm{H}), 2.34-2.40(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{t}, J=9.60 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.63$ $(\mathrm{d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.70(\mathrm{~m}, 3 \mathrm{H}), 3.77(\mathrm{dd}, J=1.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 173.3,102.8,72.8,71.9,71.8,70.0,55.1,51.6,49.9,32.8$, 24.0, 21.9; $\mathrm{LCMS}=276(\mathrm{M}+1)$; HRMS (ESI): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 298.1266, found 298.1253.

Methyl 6-deoxy-6- N-[1,4]oxazepan-5-one- α-D-mannopyranoside (6). Yield 52\%; $[\alpha]^{25} \mathrm{D}=$ $+21.4^{\circ}\left(c 1, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 1491,1619,3392 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 2.70-$ $2.88(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{t}, J=9.60 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.90$ (series of m, 11H), $4.59(\mathrm{~d}, J=$ $1.60 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CD ${ }_{3} \mathrm{OD}$) $\delta 178.0,102.9,73.3,71.7,71.5,70.9,69.5,65.9$, 55.4, 55.1, 51.0, 41.7; LCMS = $292.0(\mathrm{M}+1)$; HRMS (ESI): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{7} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 314.1215$, found 314.1264.

7

Methyl 6-deoxy-6- N - $[1,4]$ thiazepan-5-one- α-D-mannopyranoside (7). Yield 57\%; $[\alpha]^{23.7} \mathrm{D}=$ $+18.8^{\circ}\left(c 0.5, \mathrm{CH}_{3} \mathrm{OH}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right): 1425,1623,3369.0 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta$ 2.66-2.80 (m, 4H), 2.90-2.97 (m, 2H), 2.99 (t, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.50(\mathrm{~m}, 2 \mathrm{H})$, 3.58-3.68 (m, 2H), 3.77-3.84 (m, 1H), 3.91-3.95 (m, 2H), 4.60 (s, 1H); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 177.9,103.0,73.3,71.8,71.7,69.6,55.3,55.1,51.1,41.2,29.8,24.6 ;$ LCMS $=$ 308(M+1); HRMS (ESI) : m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 308.1167$, found 308.1182.

8
Methyl 6-deoxy-6- N-(5R)-phenyl-azepan-2-one- α-D-mannopyranoside (8). Yield 40\%; $\mathrm{Mp}=$ $63-65^{\circ} \mathrm{C}$ (fused); $[\alpha]^{22.2}{ }_{\mathrm{D}}=4.84^{\circ}(c \quad 0.5, \mathrm{CH} 3 \mathrm{OH}) ;$ IR $\left(\mathrm{CHCl}_{3}\right): 1619,3412 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.70(\mathrm{q}, J=12.8,1 \mathrm{H}), 1.83-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.25$ $(\mathrm{q}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=7.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.89(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~d}, J$ $=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.61(\mathrm{~m}, 3 \mathrm{H}), 3.70-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08(\mathrm{dd}, J=11.2,3.76 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.26(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 179.4,147.9,129.4$ (2C), 128.0 (2C), 127.2, 103.0, 74.0, 71.8, 71.5, 69.1, 55.2, 52.7, $50.8,49.5,37.0,35.9,32.4 ; \mathrm{LCMS}=366.1(\mathrm{M}+1) ;$ HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{6}$ $\mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 388.1736$, found 388.1739 .

Triaceatate of 8
Methyl 6-deoxy-2,3,4-tri- O-acetyl-6- N-(5R)-phenyl-azepan-2-one- α-D-mannopyranoside.
To the mixture of ($\mathbf{8} \mathbf{)}(0.3 \mathrm{~g}, 0.82 \mathrm{mmol})$, and pyridine $(0.7 \mathrm{~mL}, 6.57 \mathrm{mmol})$ in dichloromethane
$(5 \mathrm{~mL}), \mathrm{Ac}_{2} \mathrm{O}(0.53 \mathrm{~mL}, 6.57 \mathrm{mmol})$ and DMAP $(5 \mathrm{mg}, 0.041 \mathrm{mmol})$ was added at room temperature. Reaction mixture was stirred for 16 hours. The reaction mixture was diluted with ice water (20 mL) followed by extraction using dichloromethane (3 X 20 mL), combined organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \mathrm{X} 10 \mathrm{~mL})$, brine (20 mL) and dried over sodium sulfate. The solvent was evaporated under reduced pressures to yield the crude product which was purified by column chromatography followed by crystallization in hot ethanol (10 mL) to furnish the title compound (160 mg); Yield 40% (after recrystallization); $\mathrm{Mp}=192-194^{\circ} \mathrm{C} ;[\alpha]^{22.8}{ }_{\mathrm{D}}=64.9^{\circ}(c 1$, $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 1084,1135,1222,1648,1753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.75-$ $1.93(\mathrm{~m}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.01-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.68(\mathrm{~m}, 2 \mathrm{H})$, 2.72-2.82 (m, 1H), $3.35(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.96-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 5.16-5.21$ $(\mathrm{m}, 2 \mathrm{H}), 5.28-5.31(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.9,170.6,170.2,170.1,146.5,128.9$ (2C), 127.0 (2C), 126.8, 98.8, 71.1, 70.0, 69.5, $67.2,55.3,50.6,48.6,48.5,26.9,36.8,30.3,21.1,20.9,20.9 . \mathrm{LCMS}=492.3(\mathrm{M}+1)$.

Methyl 6-deoxy-6-N-(5R)-tert-butyl)azepan-2-one- α-D-mannopyranoside (9). Yield 52\%; $\mathrm{Mp}=159-161^{\circ} \mathrm{C} ;[\alpha]^{22.6} \mathrm{D}=26.2^{\circ}\left(c 0.5, \mathrm{CH}_{3} \mathrm{OH}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 1457.7,1618.6,3392 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.21-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.96(\mathrm{~m}, 1 \mathrm{H})$, 2.00-2.06 (m, 1H), 2.49 (dd, $J=7.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{t}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.47-$ $3.68(\mathrm{~m}, 4 \mathrm{H}), 3.76-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=4.8,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ [179.7, 103.0, 73.7, 71.8, 71.6, 69.3, 55.2, 52.8, 52.7, 50.7, 36.8, 33.8, 29.9, 28.0 (3-C), 25.3; LCMS = 346 (M+1); HRMS (ESI) : m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{NO}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+} 346.2229$, found 346.2201 .

10
Methyl 6-deoxy-6- N-[1,4]diazepane-1-carboxylic acid benzyl ester azepan-5-one- α-Dmannopyranoside (10). Yield 40%; $[\alpha]^{23.6} \mathrm{D}=+25.6^{\circ}(c 1, \mathrm{CH} 3 \mathrm{OH})$; IR $\left(\mathrm{CHCl}_{3}\right) ; 1241,1431$, 1626, 1697, $3392 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 2.69-2.73(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.34-$ $3.35(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.69(\mathrm{~m}, 5 \mathrm{H}), 3.76(\mathrm{dd}, J=2.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.87$ $(\mathrm{m}, 3 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 177.5$, $157.0,137.9,129.5$ (2C), 129.2, 129.0 (2C), 102.9, 73.3, 71.7, 71.5, 69.4, 68.6, 55.3, 53.5, 51.1, 47.8, 42.6, 39.5; LCMS = $425(\mathrm{M}+1)$; HRMS $(\mathrm{ESI}): m / z$ calculated for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}$ 425.1924, found 425.1909.

Methyl-6-deoxy-6-N-1,4-dihydro-2H-isoquinolin-3-one- α-D-mannopyranoside (11). Yield = $10 \% ;[\alpha]^{23.3}{ }_{\mathrm{D}}=+37.5^{\circ}(c$ 1, CH 3 OH$)$; IR $\left(\mathrm{CHCl}_{3}\right): 1377,1668,3392 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $400 \mathrm{MHz}) \delta 3.08(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.75(\mathrm{~m}, 5 \mathrm{H}), 3.97(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta$ $172.8,133.9,133.4,128.5,127.9,127.7,126.2,102.7,72.9,72.0,71.9,70.1,55.0,54.1,38.5$, 30.7; LCMS = $324(\mathrm{M}+1)$.

Compounds 20, 21, 22, 23, 25 and 26 are prepared using the analogous procedure ($1^{\text {st }}$ step) described for the synthesis of $\mathbf{3}$.

Methyl 6-deoxy-6- N-piperidine-2-one- α-D-glucopyranoside (20).
Yield $66 \% ; \mathrm{Mp}=197-199^{\circ} \mathrm{C} ;[\alpha]^{24.8} \mathrm{D}=+69.6^{\circ}\left(c 1, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 1048,1602,3338$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d6, 400 MHz) $\delta 1.64-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.98-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.88(\mathrm{ddd}, J=$ $4.4,9.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.20(\mathrm{~m}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.92-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.57(\mathrm{~m}, 1 \mathrm{H})$, $3.71(\mathrm{dd}, J=1.6,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.01$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, DMSO-d-6) $\delta 168.9,99.6,72.7,72.2,71.8,70.1$, 54.1, 49.3, 48.1, 31.8, 22.8, 20.8; LCMS = $276.1(\mathrm{M}+1)$; HRMS (ESI) $: m / z$ calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$276.1447, found 276.1434.

21
1-((2R,3S,4R)-3, 4-Dihydroxy-tetrahydro-pyran-2-ylmethyl)-piperidin-2-one (21).
Yield $65 \% ;[\alpha]^{23.7} \mathrm{D}=-16.78^{\circ}\left(c \quad 1, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 1089$, 1608, $3365 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.50-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{t}, J=2.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=5.6,13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.34-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=7.2,1 \mathrm{H}), 3.24-3.43(\mathrm{~m}, 3 \mathrm{H}), 3.50-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{dd}, J$ $=8.4,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.90(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 173.6,81.1,74.9$, $73.0,66.8,51.4,50.0,35.0,32.7,23.9,21.9 ;$ LCMS $=230.3(\mathrm{M}+1) ;$ HRMS (ESI): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 230.1392$, found 230.1390.

22
1-((2R,3S)-3-Hydroxy-tetrahydro-pyran-2-ylmethyl)-piperidin-2-one (22). Yield 60\%; $[\alpha]^{24.2}$ $\mathrm{D}=-35.8^{\circ}\left(c \quad 1, \mathrm{CH}_{3} \mathrm{OH}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 1092,1617,3369 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 1.38-1.50 (m, 2H), 1.56-1.68 (m, 2H), 1.74-1.84 (m, 4H), 2.06-2.12 (m, 1H), 2.42-2.48 (m, 2H), $2.90(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.31(\mathrm{~m}, 3 \mathrm{H}), 3.64-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.86(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,83.8,68.5,66.4,51.2$, 49.2, 32.1, 31.1, 26.0, 23.4, 21.4; LCMS = $214.2(\mathrm{M}+1)$; HRMS (ESI): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$214.1443, found 214.1456.

6- N-(piperidine-2-one)-3- O-benzyl-6-deoxy-1, 2-O-isopropylidene- α-D-glucofuranoside (23).
To minimize side product (VI) only 3 equivalents of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was used. Yield 52%; $[\alpha]^{24.6} \mathrm{D}=-$ $2.16^{\circ}\left(c 1, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 1074,1614,3287 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.29$ $(\mathrm{s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.84(\mathrm{~m}, 4 \mathrm{H}), 2.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.31-3.38(\mathrm{~m}, 3 \mathrm{H}), 3.49-3.53$ $(\mathrm{m}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=3.2,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=2.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.18(\mathrm{ddd}, J=3.2,8.8,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.69(\mathrm{~m}, 2 \mathrm{H}), 5.86(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.38$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 174.1,139.3,129.3$ (2C), 129.0 (2C), 128.8, 112.7, $106.6,83.3,83.0,82.7,73.3,68.0,53.7,51.3,32.8,27.1,26.4,24.0,21.8 ;$ LCMS $=392.3(\mathrm{M}+1)$; HRMS (ESI): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 392.2073$, found 392.2043.
Along with 23, other compound VI (13\%) was also isolated and the tentatative structure is shown below. Tentative structure assigned as drawn below for the minor product based on following spectral data.

Yield 13\%; IR $\left(\mathrm{CHCl}_{3}\right): 1078,1615,3306 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 0.82-0.94(\mathrm{~m}$, $4 \mathrm{H}), 1.69-1.94(\mathrm{~m}, 5 \mathrm{H}), 2.18-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.44(\mathrm{~m}, 2 \mathrm{H}), 3.01-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.35(\mathrm{~m}$, $1 \mathrm{H}), 3.48-3.57(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{dd}, J=1.2,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=2.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-$ 4.1.5 (m, 2H), 4.68 (q, $J=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.34$ (br s, 1H), 5.85 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.38$ (m, $5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 173.9,138.2,128.7$ (2C), 128.1 (2C), 128.0, 121.7, 105.2, 83.2, 82.0, 81.1, 73.1, 69.0, 54.1, 50.9, 37.4, 36.8, 32.3, 23.8, 23.4, 23.2, 21.2; LCMS $=418.0$ $(\mathrm{M}+1)$.

25
Methyl 6-deoxy-6-N-piperidine-2-one- α-D-galctopyranoside (25).
The compound 25 was synthesized by following the analogous procedure described for the synthesis of 20, However, during hydrolysis ($2^{\text {nd }}$ step) excess of aq. $50 \% \mathrm{KOH}$ (for 180 mg reaction 1.5 mL) was used and stirred for 6 hours. Yield 51%; $[\alpha]^{24.4}{ }_{\mathrm{D}}=+2.68^{\circ}\left(c 1, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 1048,1216,1618,3620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.78-1.84(\mathrm{~m}, 4 \mathrm{H}), 2.35$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{dd}, J=8.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.64$ $(\mathrm{m}, 1 \mathrm{H}), 3.67-3.77(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{dd}, J=4.8,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=4.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ $(\mathrm{d}, J=3.6,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 172.9,101.4,71.2,71.1,69.9,69.6,55.4$, 51.4, 50.0, 32.8, 24.1, 22.0; LCMS = $276.1(\mathrm{M}+1)$; HRMS (ESI): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$298.1266, found 298.1260.

5- N -(piperidine-2-one)-3- O-benzyl-5-deoxy-1, 2-O-isopropylidene- α-D-glucofuranoside (26).
To minimize side product VII only 3 equivalents of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was used. Yield 52%; $[\alpha]^{23.2} \mathrm{D}=-$ $8.98^{\circ}\left(c 1, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 1163,1496,3390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.30$ (s, 3H), $1.44(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.80(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.34-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.52$ $(\mathrm{m}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=2.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{bs}, 1 \mathrm{H}), 4.49-4.58(\mathrm{~m}, 2 \mathrm{H})$, $4.73(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.39(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 173.6,138.7,129.4$ (2C), 129.4, (2C), 129.0, 112.7, 105.8, 83.1, 82.6, 77.3, 72.6, 60.7, 33.4, 27.0, 26.4, 24.2, 23.9, $21.4(2 \mathrm{C})$; LCMS $=392.3(\mathrm{M}+1)$. Along with 26, other compound VII (21%) also isolated and the tentative structure is shown below. Tentative structure assigned as drawn below for the minor product based on following spectral data.

$[\alpha]^{23.3} \mathrm{D}=-4.00^{\circ}\left(\right.$ c $\left.0.5, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 1336,1120,1615,3399 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, 400 MHz) $\delta 1.64-1.92$ (series of $\mathrm{m}, 13 \mathrm{H}$), $2.36(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.37-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.56$ $(\mathrm{m}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=2.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.58$ $(\mathrm{m}, 2 \mathrm{H}), 4.69-4.74(\mathrm{~m}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.39(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(100.6 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 173.5,138.7,129.4$ (2C), 129.3 (2C), 129.0, 122.3, 105.5, 83.2, 82.6, 77.4, 72.6, 60.8, $49.8,37.8,37.2,33.4,24.4(2 \mathrm{C}), 23.9,23.8,21.4 ; \mathrm{LCMS}=418.3(\mathrm{M}+1)$.

Synthesis of deoxy sugar azides:

Ref. J. Am. Chem. Soc., 1990, 112, 3040-3054

Toluene-4-sulfonic acid (2R,3S,4R)-3,4-dihydroxy-tetrahydro-pyran-2-ylmethyl ester (C). ${ }^{2}$ To a solution of ($2 R, 3 S, 4 R$)-2-ethyl-tetrahydro-pyran-3, 4-diol ${ }^{3}(3.0 \mathrm{~g}, 20.8 \mathrm{mmol})$ in pyridine $(20 \mathrm{~mL})$, , -tolunesulfonyl chloride $(4.3 \mathrm{~g}, 22.9 \mathrm{mmol})$ was added and reaction mixture allowed to stir for overnight at room temperature. Reaction mixture was diluted with cold water and neutralized with $1 \mathrm{~N} \mathrm{HCl}(\sim \mathrm{pH} 6)$ followed by extraction with dichloromethane (3 X 30 mL). Combined organic layer was washed with brine and dried over sodium sulfate. After evaporation of the solvent furnished the desired compound $\mathbf{C}(3.0 \mathrm{~g})$. Yield 48%; IR $\left(\mathrm{CHCl}_{3}\right): 669,771,1215$, $3019 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.46-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=4.8,12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.98(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.47(\mathrm{~m}, 1 \mathrm{H})$, $3.80(\mathrm{dd}, J=5.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=5.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=1.2,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 146.4$, $134.4,130.9$ (2C), 129.0 (2C), 79.4, 73.8, 72.9, 71.3, 66.5, 34.8, 21.5; LCMS $=303.0(\mathrm{M}+1)$.

13

(2R,3S,4R)-2-Azidomethyl-tetrahydro-pyran-3, 4-diol (13).

To a solution C ($800 \mathrm{mg}, 2.64 \mathrm{mmol}$) in DMF (10 mL), sodium azide ($1.80 \mathrm{~g}, 26.4 \mathrm{mmol}$) was added and the reaction mixture was allowed to stir for 18 hours at $80^{\circ} \mathrm{C}$. Reaction mixture was diluted with cold water and extracted with dichloromethane (3 X 30 mL). Combined organic layer was washed with brine, dried over sodium sulfate and evaporation of solvent resulted in compound 13 (300 mg). Yield 66%; IR (CHCl_{3}): 2099, $3400 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$) $\delta 155-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.93(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J$ $=6.9,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.53(\mathrm{~m}, 3 \mathrm{H}), 3.90-3.94(\mathrm{~m}, .1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 81.1, 74.1, 73.8, 66.6, 53.0, 35.0; LCMS = $191.1(\mathrm{M}+18)$.

E

Toluene-4-sulfonic acid (2R,3S)-3-hydroxy-tetrahydro-pyran-2-ylmethyl ester ${ }^{4}$ (E).

To a solution of ($(2 R, 3 S)$-2-Hydroxymethyl-tetrahydro-pyran-3-ol ${ }^{5}(2.0 \mathrm{~g}, 15.15 \mathrm{mmol})$ in pyridine (20 mL), p-Tolunesulfonyl chloride ($3.45 \mathrm{~g}, 18.18 \mathrm{mmol}$) was added and reaction mixture allowed to stir for overnight at room temperature. Reaction mixture was diluted with ice water and neutralized with 1 N HCl to pH 6 followed by extraction with dichloromethane (3X30 mL), combined organic layer washed with brine and dried with sodium sulfate. After evaporation of solvent furnished the title compound $\mathbf{E}(3.1 \mathrm{~g})$. Yield 70\%; IR $\left(\mathrm{CHCl}_{3}\right): 669,771,1216,3019$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.34-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.62(\mathrm{~m}, 2 \mathrm{H}), 2.01-2.05(\mathrm{~m}, 1 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.76-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=6.0,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=1.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 146.3,134.3,130.9$ (2C), 129.1 (2C), 81.4, 71.5, 68.5, 66.7, 33.6, 26.3, 21.6; $\mathrm{LCMS}=287.0(\mathrm{M}+1)$.

14
(2R, 3S)-2-Azidomethyl-tetrahydro-pyran-3-ol (14).
To a solution of $\mathbf{E}(1.0 \mathrm{~g}, 3.49 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$, sodium azide ($2.49 \mathrm{~g}, 34.9 \mathrm{mmol}$) was added and reaction mixture allowed to stir for 18 hours at $80^{\circ} \mathrm{C}$. Reaction mixture was diluted with ice water and extraction with dichloromethane (3 X 30 mL), combined organic layer washed with brine, dried over sodium sulfate, and evaporation of solvent resulted in $\mathbf{1 4}(480 \mathrm{mg})$. Yield 86%. IR $\left(\mathrm{CHCl}_{3}\right): 2099,3400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.36-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.62-$ $1.70(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.08(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.38(\mathrm{~m}, 3 \mathrm{H}), 3.48(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86-3.92(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 83.1,68.6,68.0,53.1,33.5,26.5$; LCMS $=175.2(\mathrm{M}+18)$.

19
(2R, 3S)-2-Azidomethyl-3-methoxy-tetrahydro-pyran (19).
To a solution of (14) ($200 \mathrm{mg}, 1.25 \mathrm{mmol}$) in anhydrous THF (5 mL), sodium hydride (60% in mineral oil, $90 \mathrm{mg}, 1.88 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and reaction mixture allowed to stir for one hour at room temperature. Reaction mixture was cooled again to $0{ }^{\circ} \mathrm{C}$ and methyl iodide (0.16 $\mathrm{mL}, 3.7 \mathrm{mmol}$) added and stirring continued for another hour at room temperature. Reaction mixture was diluted with ice water and extraction with dichloromethane (3X15 mL). The combined organic layer was washed with brine, dried over sodium sulfate and evaporation of solvent led to compound 19 (185 mg). Yield 85%; IR $\left(\mathrm{CHCl}_{3}\right)$: 1099, 1432, $2099 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.23-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.70(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.33(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.09(\mathrm{~m}$, $1 \mathrm{H}), 3.24-28(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.55(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (dd, $J=4.4,13.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 80.0,75.9,67.9,56.3,52.3,28.3,25.1$.

Unsuccessful efforts toward alternate synthesis of sugar lacatam 3.

dimer (Ref. Org. Biomol. Chem., 2004,2,2352-2358)

Alternate route to the synthesis of sugar-lacatm 3.

III
Methyl 6-deoxy-6-iodo-2, 3, 4-tri- \boldsymbol{O}-benzyl- α-D-mannopyranoside (III). ${ }^{\boldsymbol{6}}$ To a solution of 2, 3, 4-Tri- O-benzyl- α-methyl-D-mannopyranoside ${ }^{7}(2.0 \mathrm{~g}, 4.30 \mathrm{mmol})$ in pyridine (20 mL), p tolunesulfonyl chloride ($2.0 \mathrm{~g}, 4.31 \mathrm{mmol}$) was added and the reaction mixture allowed to stir for 6 hours at room temperature. Reaction mixture was diluted with ice water and neutralized with $1 \mathrm{~N} \mathrm{HCl}(\sim \mathrm{pH} 6)$ followed by extraction with dichloromethane (3 X 30 mL). The combined organic layer washed with brine, dried over sodium sulfate and evaporation of solvent resulted in crude product, which was purified by column chromatography ($10 \% \mathrm{EtOAc}: \mathrm{Hexane}$) to furnish the tosylate $(2.4 \mathrm{~g})$. Yield 90%; $[\alpha]^{25.8} \mathrm{D}=+15.6^{\circ}\left(c 1, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $\left(\mathrm{CHCl}_{3} 1215,3019 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\right.$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \square 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3,74-3.82(\mathrm{~m}, 4 \mathrm{H}), 4.21-4.28(\mathrm{~m}, 2 \mathrm{H})$, $4.45(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.64-4.67(\mathrm{~m}, 3 \mathrm{H}), 4.66(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}$, $2 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 15 \mathrm{H}), 7.77(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 144.9,138.5$, $138.4,138.3,133.2,130.0$ (2C), 128.6 (4C), 128.3 (2C), 128.2 (2C), 128.1 (2C), 128.0 (2C), 128.0 (2C), 127.9, 127.9 (2C), 99.1, 80.3, 75.3, 74.5, 74.3, 72.9, 72.3, 70.2, 69.5, 55.1, 21.9; LCMS $=635.9(\mathrm{M}+18)$;
To a solution of above tosylate ($2.0 \mathrm{~g}, 3.23 \mathrm{mmol}$) in toluene (50 mL), HMPA ($5.63 \mathrm{ml}, 32.36$ mmol) and lithium iodide ($4.3 \mathrm{~g}, 32.36 \mathrm{mmol}$) was added and reaction mixture was refluxed for 24 hours. Reaction mixture was diluted with ice water and extraction with ethyl acetate (3X30 mL), combined organic layer washed with aq. sodium thiosulfate, brine and dried with sodium sulfate. The crude product obtained after evaporation of solvent was purified using 10% EtoAc: hexane to furnish the title compound III (1.6 g). Yield 89%; $[\alpha]^{24.8} \mathrm{D}=+22.4^{\circ}\left(c 1, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 669,771,1215,3019 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 3.29-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}$, 3H), 3.49-3.57 (m, 2H), 3.74-3.78 (m, 2H), 3.88 (dd, $J=7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (s, 2H), 4.65$4.68(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.76(\mathrm{~m}, 3 \mathrm{H}), 4.98(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 138.5,138.5,138.4,128.7$ (2C), 128.7 (2C), 128.6 (2C), 128.3 (2C), 128.1 (2C), 127.9 (2C), 127.9, 127.9(2C), 99.3, 80.2, 78.8, 75.7, 74.8, 73.0, 72.3, 71.7, 55.3, 7.4; LCMS = $592(\mathrm{M}+18)$;

IV

V

6-Deoxyhex-eno-pyranoside(IV) and Methyl 6-deoxy-2,3,4-tri- O-benzyl-6- N -azepan-2-one-$\boldsymbol{\alpha}$-D-mannopyranoside (V). To a solution of caprolactam ($395 \mathrm{mg}, 3.48 \mathrm{mmol}$) in dry THF (5 $\mathrm{mL})$, KHMDS (0.5 M in toluene $7.0 \mathrm{ml}, 3.48 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ followed by 18 -crown- 6 $(197 \mathrm{mg}, 0.87 \mathrm{mmol})$ and the reaction mixture was allowed to stir at room temperature for 3 hrs . After that reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of III $(1.0 \mathrm{~g}, 1.74 \mathrm{mmol})$ in THF (10 ml) was added. After stirring for two hours at room temperature, the reaction mixture was heated to $50{ }^{\circ} \mathrm{C}$ for 12 hours. Reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ at room temperature. Reaction mixture was extracted with ethyl acetate (3 X 25 mL), washed the combined organic layer with brine and dried over sodium sulfate. The crude product obtained after evaporation of solvent was purified using preparative HPLC to furnish compound IV (200 $\mathrm{mg}, 26 \%)$ and \mathbf{V}, ($60 \mathrm{mg}, 6 \%$).
Spectral data for IV. $[\alpha]^{25.8}{ }_{\mathrm{D}}=-18.2^{\circ}\left(c \quad 1, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 669,1215,3019 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.63-4.80(\mathrm{~m}, 9 \mathrm{H}), 7.25-7.36(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 154.9$, 138.7, 138.4, 138.4, 128.6 (2C), 128.5, 128.5, 128.4 (2C), 128.1(2C), 128.0, 128.0, 127.9 (2C), $127.8,127.8,127.7,100.9,96.9,78.8,76.9,75.8,73.8,73.4,73.1,55.6 ;$ LCMS $=464.0(\mathrm{M}+18)$; HPLC Purity $(\%)=99.2$; Spectral data for $\mathbf{V}:-[\alpha]^{25.8}{ }_{\mathrm{D}}=-1.04^{\circ}\left(c 1, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 669$, $771,1215,1658 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.65(\mathrm{~s}, 6 \mathrm{H}), 2.50-2.54(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~s}$, 3 H), 3.47-3.49 (m, 2H), 3.56 (dd, $J=7.6,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.78(\mathrm{~m}$, $2 \mathrm{H}), 3.87-3.94(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.67-4.77(\mathrm{~m}, 4 \mathrm{H}), 4.90(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.40$ (m, 15H); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 181.3,143.8,143.5,143.4,133.5$ (2C), 133.4, $133.4,133.2$ (2C), 133.1 (2C), 133.0 (2C), 132.9 (2C), 132.8, 132.7, 132.6, 104.1, 85.2, 82.5, $82.4,82.2,81.9,81.4,79.8,59.9,56.3,54.4,42.5,35.1,33.4,28.6 ;$ LCMS $=560.4(\mathrm{M}+1)$; HPLC Purity $(\%)=98.4 ;$ HRMS $(E S I): m / z$ calculated for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 582.2831$ found 582.2826.

3
Methyl 6-deoxy-6- \boldsymbol{N}-azepan-2-one- $\boldsymbol{\alpha}$-D-mannopyranoside (3). 10% dry $\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$ was added to the solution $\mathbf{V}(50 \mathrm{mg}, 0.08 \mathrm{mmol})$ in EtOAc:ethanol (3:1) mixture.Reaction mixture was stirred under hydrogen atmosphere for 18 hours at room temperature and filtered through a celite pad. Evaporation of solvent furnished the title compound $\mathbf{3}$ (20 mg) in 77% yield. The spectral data $\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ is compared with that of 3 prepared using Aube reaction and found that they are identical.

References:

1. Wu, X. J.; Tang, X.; Xian, M.; Braunschweiger, P. G.; Wang, P. G. Bioorg. Med. Chem. 2002, 10, 2303.
2. Tamaruya, Y.; Suzuki, M.; Kamura.G., Kanai, M.; Hama, K. ; Shimizu, K.; Aoki, J.;

Arai, H.; Shibasaki, M. Angew. Chem., Int. Ed. 2004, 43, 2834.
3. Magnani, J. L.; Patton, J. T. Jr.; Sarkar, A. K. WO Patent, WO021721, 2007.
4. Delgado, M.; Martin, J. D. J. Org. Chem. 1999, 64, 4798.
5. Nicolaou, K. C.; Hwang, C.-K.; Marron, B. E.; DeFrces, S.; Couladouro, E. A.; Abe, Y.;

Carrol, P. J.; Snyder, J. P. J. Am. Chem. Soc., 1990, 112, 3040.
6. Skaanderup, P. R.; L.; Madsen, R. J. Org. Chem. 2003, 68, 2115.
7. El-Badri, M. H.; Willenbring, D.; Tantillo, D. J.; Gerva-Hague, J. J. Org. Chem. 2007, 72, 4663.

ADV-TRNG-06-011
 27 June 2009
 Advinus Therapeutics Pune

Sample Name:
Archive directory:
Sample directory:
FiaFile: ADV-IRNG-06-011-13C
Pulse Sequence: Carbon (s2pul)
Solvent: od3od
Data collected on: Jin 272009
operator: vrmr 1
VMRS-400 "DRIREA00"
Relax. delay 2.000 sec
Pulse 45.0 degrees
Acq. time 1.300 sec
Wiath 24509.8 Hz
CBSERVE C13, 100.5616968 MHz
Decoupie H1, 399.9294541 MHz
Power 40 dB
Contimuously on
WRITIZ-16 moculat
DATA PROCESSING
Line broadening 1.0 Hz
Line broadening 1.0 Hz
FT size 65536
Total time $9 \mathrm{hr}, 11 \mathrm{~min}$

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

This journal is (c) The Royal Society of Chemistry 2010

(3)

ADV-P-247-069_R
13C Experiment
Advinus Pune
Sample Nane:
Data Collected an:
DZIRE400-vimiss 400
DZIRE400-vimes400
Archive directory
Sample directory:
Ficrile: CARBCN
Pulse Sequence: CARBCN (s2pul)
Solvent: od3od
Data collected on: Apr 82010

Operator: vinur1
Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 1.285 sec
Acq. time 1.285 sec
Width 25510.2 Hz
Wiath 25510.2 Hz
48 repetitions
CBSERVE C13, 100.5617002 MHz
DECOUPIE HI, 399.9294538 MHz
Power 36 dB
continuously on
WAIITZ-16 modulat
DAIA PROCESSING
Line broadening 0.5 Hz
FT size 65536
Total time $18 \mathrm{hr}, 28 \mathrm{~min}$
lotal time $18 \mathrm{hr}, 28 \mathrm{~min}$

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2010

ADV-P-247-068A
15 June 2009
Advinus Therapeuetics Pune
File: Proton
Pulse Sequence: szpul

Solvent: odzod
Anbient temperature
operator: vimur 1
VMRS-400 "wormhole"
Relax. delay 2.000 sec
Pulse 45.0 degrees
Acc. time 1.700 sec
Width 8012.8 Hz
37 repetitions
$\begin{array}{ll}\text { CBSERVE } & \text { HI, } 399.9274546 ~ M z z\end{array}$
DAIA PROCESSING
Line broadening 0.5 Hz
FT size 32768
Total time $2 \mathrm{hr}, 34 \mathrm{~min}, 32 \mathrm{sec}$
(5)

ADV-P-247-068A
27 June 2009
Advinus Therapeutics Pune

Sample Name:
Archive directory:
Sample directory:
FicFile: ADV-P-247-068A-13C
Pulse Sequence: Carbon (s2pul)
Solvent: od3od
Sata collected on: Jan 272009

Operator: vimr1
VMRS-400 "DZIREA00"

$\begin{aligned} & \text { ADV-P-247-073-I } \\ & 13 \text { July } 2009 \\ & \text { Advinus Therapeutics Pune } \end{aligned}$	
File: ADV-p-247-073-I	
Pulse Sequence: sppul	O"
Solvent: od3od Anbient temperature	OH
qperator: vrmur 1	(7)
File: ADV-p-247-073-I	(7)
UMRS-400 "womhole"	
Relax. delay 1.300 sec	
Pulse 45.0 degrees	
Acq. time 1.700 sec Width 8012.8 Hz 68 repetitions	
CBSERVE H1, 399.9274546 MHz	
DAIR PRCCESSING Line broadening 0.4 Hz	
FT size 65536	

\qquad

ADV-P-425-017
Advinus Therapeutics Pune

Sample Name:
Data Collected on:
DZIRE400-vimiss 400
Archive directory:
Sample directory:
Ficicile: ADV-P-425-017
Pulse Sequence: Proton (s2pul) Solvent: Colcl3
Data collected on: Apr 142010
Tenp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
Qperator: vinir 1
Relax. delay 1.300 sec
Relax. Celay 1.300
Pulse 45.0 degrees
Acc. time 1.700 sec
Wicth 8012.8 Hz
8 repetitions
$\begin{aligned} & \text { Cbserve } \\ & \text { H1, } 399.9258747 \mathrm{MHz}\end{aligned}$
DATIA PRCOESSING
Line broadening 0.4 Hz
Line broadening
FT size 65536
FT size 65536
Total time 51 min

Triacetate of (8)
(1)

ADV-P-425-017
C13 EXPRIMENT
Sample Name:
Data Collected on:
DZIRE400-vimirs 400
Archive directory:
Sample directory:
FidFile: Carbon
Pulse Sequence: Carbon (s2pul)
Solvent: odcl3
Data collected on: Apr 142010
Terp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
Qperator: vimr1

200	180	160	140	120	100	80	60	40	20

ADV-P-247-083-P
STPNDARD CARBCN PARRMEIBRS
Sample Name:
Data Collected on:
womhole-vimrs400
Archive directory:
Archive directory:
Sample directory:


```
MDV-P-247-074-I 
INV-P-247-074-I 
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
```


(9)

ADV-P-247-074-I
20 July 2009
C13 EXPRIMENT

Sample Name:
Archive directory:
Sample directory:
FicFile: ADV-P-247-074-I-C13
Pulse Sequence: Carbon (szpul) Solvent: od3od
Data collected on: Jul 202009

Operator: vinrl
MMRS-400 "DZIREA00"

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acc. time 1.300
Acq. time 1.300 sec
Width 24509.8 Hz
Wiath 2450 repetitions
2352 repetitions
CBSERVE Clis,
DECOPIE $\mathrm{HI}, 399.9294541 \mathrm{MHz}$
DecoupIE Hl,
Power 40 dB
waitirlinusly modulated
WALITZ-16 modulated
DAIA PROCESSING
Line broadening 0.5 Hz
Line broadening 0.5 Hz
FT size 65536
Total time $1603 \mathrm{hr}, 45 \mathrm{~min}$


```
&% 8% % 
```


1

Total time $1603 \mathrm{hr}, 45 \mathrm{~min} \stackrel{\stackrel{\rightharpoonup}{\mathrm{~N}}}{\substack{\text { ® } \\ \underset{\sim}{~}}}$


```
NOV-P-247-071-&
09 OCT }200
ADVINUS THERAPEUIICS PUE
    Sample Name:
    Data Collected on:
    womhole-vinus400
    Archive directory:
Sample directory:
FicFile: Proton
Pulse Sequence: Proton (s2pul)
Solvent: drso
Data collected on: Oct 92009
Terp. 20.4 C / 293.6 K
operator: vimr1
Relax. delay 0.500 sec
    Relax. Celay 0.500
    Pulse 45.0 degrees
    Acq. time 1.700 sec
    Width 7225.4 Hz
    80 repetitions 
CBSERVE HL, PROCSSING
DAIA PROCSSSING
    Line broadenin
FT size 65536
-
FicFile: Proton
Pulse Sequence: Proton (sepul) Data collected on: Oct 92009
Terp. \(20.4 \mathrm{C} / 293.6 \mathrm{~K}\)
operator: vrmil
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 7225.4 Hz
80 repetitions
CBSERVE \(\quad \mathrm{HI}, 399.9277700 \mathrm{MHz}\)
DAIA PROCESSING
Line broadening 0.3 Hz
ET size 65536
Total time 9 min 25 sec
```


(20)

ADV-P-247-077
20 July 2009
C13 EXPRIMENT

Sample Name:
Archive directory:
Sarple directory:
FicFile: ADV-p-247-077-C13
Pulse Sequence: Carbon (sqpul)
Solvent: drso Solvent: diso
Data collected on: Jul 242009
Operator: vrmirl
UMRS-400 "DZIREA00"

ADV-P-247-115-D-13C
18 Septenber 2009
C13 EXPRIMENT

Sample Name:
Data collected on:
wornhole-vimus 400
Archive directory:
Sample directory:
FicFile: ADV-p-247-115-B-Cl3
Pulse Sequence: Carbon (s2pul)
Solvent: od3od Solvent: od3od
Data collected on: Sep 182009
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
operator: virirl
Relax. delay 2.000 sec
Relax. delay 2.000
Pulse 45.0 degrees
Aoc. time 1.300 sec
Width 24509.8 Hz
25000 repetitions
CBSERE C13, 100.5616988 MHz
DECOPIE HI, 399.9294538 MHz
Power 40 dB
continuously on
WAHZ-16 modulated
DATIA PROCESSING
Line broadening 1.0 Hz
Line broadening
FT size 65536
Total time $22 \mathrm{hr}, 58 \mathrm{~min}$

ADV-p-247-117A
26 Septenber 2009
C13 EXPRIDENT

Sample Name:
Data Collected on:
wormhole-vrmes 400
Archive directory:
Sample directory:
FicFile: ADV-p-247-117-A-13C
Pulse Sequence: Carbon (sqpul) Solvent: col3od
Data collected on: Sep 262009
Tenp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
Terp. $25.0 \mathrm{C} / 2$
Operator: vrmur

Relax. delay 2.000 secPulse 45.0 degrees	
Acq. time 1.300 sec	
Width 24509.8 Hz	
868 repetitions	
	Cbserve Cl3, 100.5616973 MHz
	DECOUPIE H1, 399.9294538 Miz
	Power 40 dB
	continuously on
	WAITZ-16 modulated
DAIA PRCOSSSING	
	Line broadening 1.0 Hz
	FT size 65536
	Total time $22 \mathrm{hr}, 58 \mathrm{~min}$


```
NDV-P-247-116
```

Advinus Therapeuetics Pune
Sarple Nane:
C-01158-080
Data Collected an:
wornhole-vinis400
Archive directory:
Sarple directory:
FicFile: PROION

FicFile: PROION
Pulse Sequence: PROION (s2pul) Solvent: calcl3 Data collected an: Oct 12009
Terp. $20.4 \mathrm{C} / 293.6 \mathrm{~K}$
Qperator: virirl
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 1.700 sec
Wiath 7622.0 Hz
40 repetitions
CBSERNE H1, 399.9258784 MHz
DAIA PRCOBSSING
Line broadening 0.3 Hz
ET size 65536
Total time $15 \mathrm{hr}, 20 \mathrm{~min}$

ADV-P-247-116
30 Septenber 2009
C13 EXPRIMENT

Sample Name:
Data Collected an:
wornhole-vimirs 400
Archive directory:
Sample directory:
FidFile: ADV-p-247-116-C13
Pulse Sequence: Carbon (s2pul)
Solvent: odcl3
Data collected an: Sep 302009
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
operator: vinir 1
Relax. delay 2.000 sec
Pulse 45.0 degrees
Acg. time 1.300 sec
Acq. time 1.300 sec
Width 24509.8 Hz
Width 24509.8 Hz
16800 repetitions
16800 repetitions
CBSERVE C13, 100.5614051 MHz
$\begin{array}{lll}\text { CBSERNE } & \text { C13, } & 100.5614051 ~ M H z \\ \text { DECOUPIE } & \text { HI, } & 399.9278781 ~ M H z\end{array}$
DecaupIE HI, 399.9278781 MHz
Power 40 dB
continuously
WAITZ-16 modvlated
WALIZ-16 modulated
DATA PROCBSSING
DATA PROCESSING
Line broadening 1.0 Hz
Line broadening 1.0 Hz
FT size 65536
Total time $22 \mathrm{hr}, 58 \mathrm{~min}$

ADV-p-247-122A
STANDARD CARECN PARAMEIERS
Sample Nare:

$$
\begin{aligned}
& \begin{array}{l}
\text { Data Collected an: } \\
\text { wornhole-vimes } 400 \\
\text { Archive directory: }
\end{array} \\
& \text { Sarple directory: } \\
& \text { FidFile: ADV-p-247-122A-13C } \\
& \text { Solvent: coi3od } \\
& \text { Data collected an: Oct } 52009 \\
& \text { Tenp. } 25.0 \mathrm{C} / 298.1 \mathrm{~K} \\
& \text { operator: vimr1 }
\end{aligned}
$$

ADV-p-247-191
 13C Experiment

Sample Name:
Data Collected an:
DZIRE400-vimrs 400
Archive directory:
Sample directory:
FicFile: CARBCN
Pulse Sequence: CARBCN (s2pul) Solvent: coi3od
Data collected on: Mar 262010
Qperator: vinirl

13C_Experiment
Sample Name:
Data Collected on:
DZIRE400-vinirs400
Archive directory:
Sample directory:
FicFile: CARBCN
Pulse Sequence: CARBCN (sepul) Solvent: Caßod
Data collected an: Sep 72010

399

\qquad

Sample Nam:
Data Collected on: DZIRE400-vimiss 400 Archive directory:

Sample directory:
FicFile: Proton
Pulse Sequence: Protan (sepul) Solvent: oobod
Data collected an: Sep 132010
Operator: virre1
Pelax. delay 1.300 sec
Pulse 45.0 degrees
Acq. time 1.700 sec
Wicth 8012.8 Hz
3 repetitions
CRSERVE HI, 399.9274311 MHz
DATA PROCESSIING
Line broadening 0.4 Hz
FT size 65536
Total time 51 min

