N –Heterocyclic Carbene –Catalyzed (NHC) Three-Component Domino Reactions: Highly Stereoselective Synthesis of Functionalized Acylic ε -Ketoester

Jianze Ma,^a You Huang,^{a,*} and Ruyu Chen^{a,*}

^a State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University ,Tianjin 300071, People's Republic of China
Tel: (+86) 22-23508857; Fax: (+86) 22-23503627; E-mail: hyou@nankai.edu.cn

Contents

1. General Considerations	SI-2
2. General Procedure for the NHC-catalyzed three-component domino	reaction for the
synthesis of ε -ketoester: Preparation of ε -ketoester 3g	SI-2
3. Procedure for the preparation of 4	SI-2
4. Reference	SI-2
5. ¹ H NMR and ¹³ C NMR Spectra of Compounds 3a-3v	SI-3
6. ¹ H NMR and ¹³ C NMR Spectra of Compounds 4	SI-49

General Considerations

All the reactions are conducted under a dry N₂ atmosphere. All the solvent are commercially available and used without further purification. ¹H NMR spectra were recorded on a Bruker 400 MHz spectrometer in chloroform-d. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The date is being reported as (s=singlet, d=doublet, t=triplet, m=multiplet or unresolved, brs=broad singlet, coupling constant(s) in Hz, integration). ¹³C NMR spectra were recorded on a Bruker 100 MHz spectrometer in chloroform-d. Chemical shifts are reported in ppm with the internal the internal chloroform signal at 77.0 ppm as a standard. The date with * indicate peaks of the minor diastereomer. N-heterocyclic carbenes I, ¹ II, ³IV, ⁴V, ⁵ and VI ⁶ are synthesized according to the reported literatures.

General Procedure for the NHC-catalyzed three-component domino reaction for the synthesis of ε -ketoester: Preparation of ε -ketoester 3g:

To a dry flask filled with nitrogen were added 1,3-dimesityl imidazolium chloridel **III** (0.3 mmol), cinnamaldehyde **1a** (1.0 mmol), propaygly Alcohol (1.5 mmol), and chalcone **2g** (0.5 mmol) in 3 ml dry CH_2Cl_2 under N_2 atmosphere. After stirring for 5 min, DBU (0.3mmol) was added. This solution was stirred at room temperature until the completed consumption of chalcone as monitored by TLC. After the removal of the solvent, the residue was subjected to chromatography on a silica gel (60-120 mesh) column using 12:1 petroleum ether -ethyl acetate solvent mixture as the eluent to afford **3g** in 93% yield.

Procedure for the preparation of 4:

CuI (0.1 mmol) was added to the a suspension of the benzyl azides (1.2 mmol) and ε -ketoester **3g** (1.0 mmol) in 2ml *t*-BuOH under N₂ atmosphere. This solution was fluxed until the completed consumption of **3g** as monitored by TLC. After the removal of the solvent, the residue was subjected to chromatography on a silica gel (60-120 mesh) column using 15:1 petroleum ether -ethyl acetate solvent mixture as the eluent to afford **4** as colorless oil in 75% yield.

Reference:

- 1. J. He, S. Tang, J. Liu, Y. Su, X. Pan and X. She, *Tetrahedron* 2008, 64, 8797.
- 2. W. Hinz, R. A. Jones, S. U. Patel and M. -H. Karatza, Tetrahedron 1986, 42, 3753.
- 3. L. Hintermann, Beilstein J. Org. Chem. 2007, 3. doi: 10.1186/1860-5397-3-22.
- 4. J. E. Thomson, C. D. Campbell, C. Concellón, N. Duguet, K. Rix, A. M. Z. Slawin, and A. D. Smith , *J. Org. Chem.* 2008, **73**, 2784–2791.
- 5. D. Enders, K. Breuer, U. Kallfass, T. Balensiefer, synthesis 2003, 1292.
- 6. B. Bostai, Z. Novák, A. C. Bényei, and A. Kotschy, Org. Lett., 2007, 9, 3437.

¹HNMR of compound 3a

¹³C NMR of compound 3a

¹H NMR of compound 3b

¹³C NMR of compound 3b

¹³C NMR of compound 3c

¹H NMR of compound 3d

-10

f1 (ppm)

-32' 633 629 'TV--21 651 218 V2 VV2 '92 190 '22 628 '22 136, 657 -126, 797 -126, 797 -128, 038 -128, 038 -128, 930 -128, 930 -133.083 010 221-191 001 008 001

¹³C NMR of compound 3d

¹H NMR of compound 3e

¹³C NMR of compound 3e

¹H NMR of compound 3f

¹³C NMR of compound 3f

¹H NMR of compound 3g

¹³C NMR of compound 3g

¹H NMR of compound 3h

¹³C NMR of compound 3h

¹H NMR of compound 3i

¹³C NMR of compound 3i

¹H NMR of compound 3j

¹³C NMR of compound 3j

¹H NMR of compound 3k

¹³C NMR of compound 3k

¹ H NMR of compound 31

¹³C NMR of compound 31 *cis* isomer

¹H NMR of compound 31 *trans* isomer

¹³C NMR of compound 31 *trans* isomer

¹H NMR of compound 3m

¹³C NMR of compound 3m

¹³C NMR of compound 3n

¹H NMR of compound 30

¹³C NMR of compound 30

¹³C NMR of compound 3p

¹H NMR of compound 3q

¹³C NMR of compound 3q

¹H NMR of compound 3r

¹³C NMR of compound 3r

¹H NMR of compound 3s

¹³C NMR of compound 3s

¹³C NMR of compound 3t

¹H NMR of compound 3u

¹³C NMR of compound 3u

¹³C NMR of compound 3v

\

¹H NMR of compound 4

¹³C NMR of compound 4

