Asymmetric synthesis of quaternary α-hydrazino aldehydes via an organocatalytic Michael/α-amination sequence.

Alaric Desmarchelier, Jérôme Marrot, Xavier Moreau and Christine Greck

Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles-St-Quentin-en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles cedex, France.

moreau@chimie.uvsq.fr, greck@chimie.uvsq.fr

Table of Contents

General Methods	2
Experimental procedures and characterization data	3
¹ H and ¹³ C NMR Spectra	10
HLPC Traces	22

This journal is (c) The Royal Society of Chemistry 2010

General methods

All reactions were carried out in air and using undistilled solvent, without any precautions to exclude moisture unless otherwise noted. Purification of reaction products was carried out by flash chromatography (FC) on silica gel (230-400 mesh). Yields refer to chromatographically and spectroscopically pure compounds. The ¹H and ¹³C NMR spectra were recorded at 300 MHz and 75 MHz, respectively. The chemical shifts (δ) for ¹H and ¹³C are given in ppm relative to residual signal of the solvent (CHCl₃). Coupling constants are given in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad signal. High Resolution Mass spectra and X-ray data were obtained from the ILV-UVSQ. Optical rotations are reported as follows: [α]^{rt}_D(c in g per 100 mL, solvent). HPLC analysis was performed using chiral AS-H columns with i-PrOH/heptane as the eluent. HPLC traces were compared with racemic samples obtained by using DL-proline and benzylamine as catalyst.

Commercial grade reagents and solvents were used without further purification. Chiral primary amine catalyst, 9-Amino(9-deoxy)*epi*-cinchonine **2** and 9-Amino(9-deoxy)*epi*-cinchonidine **7** were prepared from commercially available cinchonine and cinchonidine following the literature procedure. ¹ (*rac*)- α -Isopropylbenzylamine and (*rac*)- α -*tert*-butylbenzylamine were obtained following the literature procedure.² 2-nitrovinyl naphthalene (Table 1, entry 2), 4-fluoro-nitrostyrene (Table 1, entry 6), 3-chloro-nitrostyrene (Table 1, entry 7) and 3-methoxy-nitrostyrene (Table 1, entry 8) were synthetized following the literature procedure.³ All other nitroolefines employed are commercially available.

¹ Brunner, H.; Bügler, J.; Nuber, B. Tetrahedron: Asymmetry **1995**, *6*, 1699

² Weiberth, F.J.; Hall, S. S. J. Org. Chem. **1987**, *52*, 3901.

³ Denmark, S. E.; Marcin, L. R. J. Org. Chem 1993, 58, 3850.

This journal is (c) The Royal Society of Chemistry 2010

Experimental procedures

General procedure for the asymmetric organocatalytic Michael/amination cascade sequence of aldehydes.

Diphenylprolinol silyl ether **1** (0.05 mmol, 16 mg), nitroalkene (1 mmol) and propionaldehyde (1.2 mmol, 107 μ L) in CHCl₃ (1 mL) were stirred at 0°C until completion of the reaction (monitored by TLC). Then, DBAD (1.5 mmol, 447 mg), 9-Amino(9-deoxy)*epi*-cinchonine **2** (0.05 mmol, 14,7 mg) and a solution of TFA in CHCl₃ (0.3M, 0.15 mmol, 0.5 mL) were added sequentially at 0°C. The reaction mixture was stirred at room temperature until completion of the reaction (monitored by TLC). Solvent was removed *in vacuo* and the residue was purified by flash chromatography (CHCl₃ to CH₂Cl₂) to yield the desired product.

Dibenzyl-1-((*2S*,*3S***)-2-methyl-4-nitro-1-oxo-3-phenylbutan-2-yl)** hydrazine-1,2dicarboxylate (5). The reaction was carried out over 4 hours for the Michael addition and 30 hours for the electrophilic amination.

Yield : 90%; Ee: 96%, the ee was determined on the single diastereoisomer by HPLC analysis on a AS-H column: heptane/*i*-PrOH 9/1, flow rate 0.8 mL/min, $\lambda = 254$ nm : t_R = 46.3 min.(major), t_R = 85.0 min (minor); $[\alpha]_D^{20} = -85$ (*c* 1, CH₂Cl₂); m.p. = 109-111°C; ¹H NMR (300 MHz, CDCl₃) Mixture of rotamers : δ 1.10 (s, 3H_(rot min.)) 1.21 (s, 3H_(rot maj)), 4.03-4.13 (m, 1H), 4.64-4.83 (m, 1H), 4.82-5.01 (m, 1H), 5.10-5.26 (m, 4H), 5.55 (s, 1H_(rot min.)), 5.86 (s, 1H_(rot maj)), 7.08-7.24 (m, 4H), 7.31-7.42 (m, 11H), 9.35 (s, 1H_(rot min.)), 9.62 (s, 1H_(rot maj)); ¹³C NMR (75 MHz, CDCl₃) Major rotamer : δ 19.9 (CH₃), 48.9 (CH), 68.2 (CH₂), 69.5 (CH₂), 70.6 (C), 75.9 (CH₂), 128.3, 128.5, 128.6, 128.7, 128.8, 129.0, 129.2, 129.4 (15CH_{arom}), 134.7 (C), 134.7 (C), 134.8 (C), 155.9 (C), 156.6 (C), 195.6 (C); IR : γ 3306, 3032, 2942, 1729, 1694, 1506, 1330, 1228, 742, 699; HRMS: (*m/z*) calculated for C₂₇H₂₇N₃O₇Na: 528.1747 ,

This journal is (c) The Royal Society of Chemistry 2010

found: 528.1767.

Dibenzyl-1-((*2R*,*3S***)-2-methyl-4-nitro-1-oxo-3-phenylbutan-2-yl)hydrazine-1,2dicarboxylate (6).** The reaction was carried out over 4 hours for the Michael addition and 15 hours for the electrophilic amination.

Yield : 76%; Ee: 96%, the ee was determined on the single diastereoisomer by HPLC analysis on a OD-H column: heptane/*i*-PrOH 95/5, flow rate 1 mL/min, λ = 254 nm, 30°C : t_R = 41.9 min.(major), t_R = 48.8 min (minor); [α]_D²⁰ = 73.3 (*c* 1, CH₂Cl₂);¹H NMR (300 MHz, CDCl₃) Mixture of rotamers : δ 1.18 (s, 3H_(rot min.)) 1.28 (s, 3H_(rot maj)), 4.45-4.51 (m, 8H), 7.08-7.40 (m, 14H), 9.38 (s, 1H_(rot min.)), 9.59 (s, 1H_(rot maj)); ¹³C NMR (75 MHz, CDCl₃) Major rotamer : δ 14.1 (CH₃), 44.2 (CH), 68.1 (CH₂), 69.0 (CH₂), 69.7 (C), 75.0 (CH₂), 128.1, 128.3, 128.6, 129.2, (15CH_{arom}), 134.9 (C), 135.1 (C), 135.3 (C), 155.6 (C), 156.1 (C), 197.0 (C); IR : γ 3302, 3024, 2923, 1731, 1699, 1554, 1341, 1222, 735, 699; HRMS: (*m/z*) calculated for C₂₇H₂₇N₃O₇Na: 528.1747, found: 528.1720.

Dibenzyl-1-((*2S***,***3S***)-2-methyl-4-nitro-1-oxo-3-naphtylbutan-2-yl) hydrazine-1,2dicarboxylate.** The reaction was carried out over 4 hours for the Michael addition and 65 hours for the electrophilic amination.

Yield : 73%; Ee: 96%, the ee was determined on the single diastereoisomer by HPLC analysis on a AS-H column: heptane/*i*-PrOH 9/1, flow rate 0.8 mL/min, $\lambda = 254$ nm : t_R = 40.5 min.(major), t_R = 71.2 min (minor); $[\alpha]_D^{20} = -96.7$ (*c* 1, CH₂Cl₂); m.p. = 177-179°C; ¹H NMR (300 MHz, CDCl₃) Mixture of rotamers : δ 1.13 (s, 3H_(rot min.)) 1.24 (s, 3H_(rot maj)), 4.19-4.28 (m, 1H), 4.75-5.29 (m, 6H), 5.43 (s, 1H_(rot min.)), 5.81 (s, 1H_(rot maj)), 7.13-7.19 (m, 3H), 7.30-7.62 (m, 11H), 7.74-7.84 (m, 3H), 9.37 (s, 1H_(rot min.)), 9.65 (s, 1H_(rot maj)); ¹³C NMR (75 MHz, CDCl₃) Major rotamer : δ 20.1 (CH₃), 49.2 (CH), 68.3 (CH₂), 69.6 (CH₂), 70.8 (C), 76.2 (CH₂), 125.0, 126.7, 126.8, 127.7, 127.8, 128.3, 128.4, 128.6, 128.7, 128.8, 128.9, 129.2 (17 CH_{arom}), 132.0 (C), 132.9 (C), 133.2 (C), 134.7 (C), 134.8 (C), 156.0 (C), 156.7 (C), 195.8 (C); IR : γ 3329, 2840, 1748, 1716, 1546, 1495, 1345, 1223, 749, 730, 691; HRMS: (*m/z*) calculated for C₃₁H₂₉N₃O₇Na: 578.1903, found: 578.1890.

Dibenzyl-1-((*2S*,*3S***)-2-methyl-4-nitro-1-oxo-3-tolylbutan-2-yl) hydrazine-1,2dicarboxylate.** The reaction was carried out over 6 hours for the Michael addition and 25 hours for the electrophilic amination.

Yield : 85%; Ee: 96%, the ee was determined on the single diastereoisomer by HPLC analysis on a OD-H column: heptane/*i*-PrOH 95/5, flow rate 1 mL/min, $\lambda = 254$ nm : t_R = 41.6 min.(major), t_R = 54.7 min (minor); $[\alpha]_D^{20} = -93$ (*c* 1, CH₂Cl₂); m.p. = 129-130°C; ¹H NMR (300 MHz, CDCl₃) Mixture of rotamers : δ 1.08 (s, 3H_(rot min.)) 1.20 (s, 3H_(rot maj)), 2.31 (s, 3H), 3.97-4.07 (m, 1H), 4.58-4.70 (m, 1H), 4.82-5.01 (m, 1H), 5.07-5.25 (m, 4H), 5.47 (s, 1H_(rot min.)), 5.83 (s, 1H_(rot maj)), 6.90-6.97 (m, 2H), 7.10-7.25 (m, 4H), 7.33-7.41 (8H), 9.34 (s, 1H_(rot min.)), 9.61 (s, 1H_(rot maj)); ¹³C NMR (75 MHz, CDCl₃) Major rotamer : δ 20.0 (CH₃), 21.0 (CH₃), 48.7 (CH), 68.3 (CH₂), 69.5 (CH₂), 70.7 (C), 76.1 (CH₂), 128.3, 128.4, 128.7, 128.9, 130.0, 130.1 (14 CH_{arom}), 131.6 (C), 134.7 (C), 134.9 (C), 138.4 (C), 155.9 (C), 156.6 (C), 195.8 (C); IR : γ 3345, 3023, 2954, 1740, 1685, 1548, 1348, 1227, 753, 729; HRMS: (*m/z*) calculated for C₂₈H₂₉N₃O₇Na: 542.1903 , found: 542.1883.

Dibenzyl-1-((*2S***,***3S***)-2-methyl-4-nitro-1-oxo-3-(4-methoxyphenyl)butan-2-yl)** hydrazine-1,2-dicarboxylate. The reaction was carried out over 8 hours for the Michael addition and 22 hours for the electrophilic amination.

Yield : 85%; Ee: 97%, the ee was determined on the single diastereoisomer by HPLC analysis on a AS-H column: heptane/*i*-PrOH 9/1, flow rate 0.8 mL/min, $\lambda = 254$ nm : t_R = 74.7 min.(major), t_R = 117.2 min (minor); $[\alpha]_D{}^{20} = -87.8$ (*c* 1, CH₂Cl₂); m.p. = 120-122°C; ¹H NMR (300 MHz, CDCl₃) Mixture of rotamers : δ 1.08 (s, 3H_(rot min.)) 1.20 (s, 3H_(rot maj)), 3.78 (s, 3H), 3.98-4.05 (m, 1H), 4.56-4.68 (m, 1H), 4.82-5.25 (m, 5H), 5.46 (s, 1H_(rot min.)), 5.81 (s, 1H_(rot maj)), 6.81-7.00 (m, 4H), 7.15-7.25 (m, 2H), 7.33-7.41 (m, 8H), 9.34 (s, 1H_(rot min.)), 9.61 (s, 1H_(rot maj)); ¹³C NMR (75 MHz, CDCl₃) Major rotamer : δ 19.9 (CH₃), 48.2 (CH), 55.1 (CH₃), 68.2 (CH₂), 69.4 (CH₂), 70.7 (C), 76.2 (CH₂), 114.5 (2CH), 126.2 (C), 128.2, 128.3 , 128.5, 128.6, 128.7, 128.8, 129.8 (12 CH_{arom}), 134.7 (C), 134.9 (C), 155.9 (C), 156.6 (C), 159.4 (C), 195.9 (C); IR : γ 3305, 3031, 2958, 1727, 1703, 1549, 1252, 901, 727; HRMS: (*m/z*) calculated for C₂₈H₂₉N₃O₈Na: 558.1852, found: 558.1840.

Dibenzyl-1-((*2S*,*3S***)-2-methyl-4-nitro-1-oxo-3-(4-chlorophenyl)butan-2-yl)** hydrazine-1,2-dicarboxylate. The reaction was carried out over 5 hours for the Michael addition and 70 hours for the electrophilic amination.

Yield : 85%; Ee: 98%, the ee was determined on the single diastereoisomer by HPLC analysis on a AS-H column: heptane/*i*-PrOH 9/1, flow rate 0.8 mL/min, $\lambda = 254$ nm : t_R = 43.1 min.(major), t_R = 58.3 min (minor); $[\alpha]_D{}^{20} = -76$ (*c* 1, CH₂Cl₂); m.p. = 146-148°C; ¹H NMR (300 MHz, CDCl₃) Mixture of rotamers : δ 1.08 (s, 3H_(rot min.)) 1.19 (s, 3H_(rot maj)), 4.02-4.11 (m, 1H), 4.57-4.70 (m, 1H), 4.84-5.24 (m, 5H), 5.73 (s, 1H_(rot min.)), 5.96 (s, 1H_(rot maj)), 6.97-7.42 (m, 14H), 9.32 (s, 1H_(rot min.)), 9.61 (s, 1H_(rot maj)); ¹³C NMR (75 MHz, CDCl₃) Major rotamer : δ 19.9 (CH₃), 48.4 (CH), 68.4 (CH₂), 69.6 (CH₂), 70.4 (C), 75.9 (CH₂), 128.4, 128.6, 128.7, 128.8, 128.9, 129.4, 130.1 (14 CH_{arom}), 133.1 (C), 133.4 (C), 134.5 (C), 134.7 (C), 156.1 (C), 156.6 (C), 195.4 (C); IR : γ 3332, 3031, 2958, 1723, 1697, 1551, 1334, 1228, 728; HRMS: (*m/z*) calculated for C₂₇H₂₆ClN₃O₇Na: 562.1357, found: 562.1364.

O NCbz NHCbz

Dibenzyl-1-((*2S***,***3S***)-2-methyl-4-nitro-1-oxo-3-(4-fluorophenyl)butan-2yl) hydrazine-1,2-dicarboxylate.** The reaction was carried out over 4 hours for the Michael addition and 140 hours for the electrophilic amination.

Yield : 81%; Ee: 97%, the ee was determined on the single diastereoisomer by HPLC analysis on a AS-H column: heptane/*i*-PrOH 9/1, flow rate 0.8 mL/min, $\lambda = 254$ nm : t_R = 33.0 min.(major), t_R = 43.1 min (minor); $[\alpha]_D^{20} = -76.3$ (*c* 1, CH₂Cl₂); m.p. = 136-138°C; ¹H NMR (300 MHz, CDCl₃) Mixture of rotamers : δ 1.09 (s, 3H_(rot min.)) 1.20 (s, 3H_(rot maj)), 4.05-4.11 (m, 1H), 4.58-4.71 (m, 1H), 4.85-5.24 (m, 5H), 5.67 (s, 1H_(rot min.)), 5.92 (s, 1H_(rot maj)), 6.98-7.40 (m, 14H), 9.34 (s, 1H_(rot min.)), 9.62 (s, 1H_(rot maj)); ¹³C NMR (75 MHz, CDCl₃) Major rotamer : δ 19.9 (CH₃), 48.4 (CH), 68.5 (CH₂), 69.7 (CH₂), 70.7 (C), 76.2 (CH₂), 116.3 (d, J = 21 Hz, 2CH), 128.4, 128.7, 128.8, 129.0 (10 CH_{arom}), 130.6 (d, J = 7.6 Hz, 2CH), 130.7 (d, J = 3.2 Hz, C), 134.7 (C), 134.9 (C), 156.2 (C), 156.7 (C), 162.5 (d, J = 247 Hz, C), 195.6 (C); IR : γ 3321, 2836, 1743, 1720, 1546, 1408, 1345, 1219, 749, 722, 698; HRMS: (*m/z*) calculated for C₂₇H₂₆FN₃O₇Na: 546.1652, found: 546.1642.

NCbz

NHCbz

Dibenzyl-1-((*2S*,*3S***)-2-methyl-4-nitro-1-oxo-3-(3-chlorophenyl)butan-2-yl)** hydrazine-1,2-dicarboxylate. The reaction was carried out over 4 hours for the Michael addition and 90 hours for the electrophilic amination.

Yield : 85%; Ee: 98%, the ee was determined on the single diastereoisomer by HPLC analysis on a AS-H column: heptane/*i*-PrOH 9/1, flow rate 0.8 mL/min, $\lambda = 254$ nm : t_R = 30.6 min.(major), t_R = 46.0 min (minor); $[\alpha]_D^{20} = -76.5$ (*c* 1, CH₂Cl₂); m.p. = 180-181°C; ¹H NMR (300 MHz, CDCl₃) Mixture of rotamers : δ 1.09 (s, 3H_(rot min.)) 1.21 (s, 3H_(rot maj)), 4.00-4.09 (m, 1H), 4.52-4.66 (m, 1H), 4.82-5.25 (m, 5H), 5.51 (s, 1H_(rot min.)), 5.84 (s, 1H_(rot maj)), 6.93-7.40 (m, 14H), 9.30 (s, 1H_(rot min.)), 9.59 (s, 1H_(rot maj)); ¹³C NMR (75 MHz, CDCl₃) Major rotamer : δ 20.0 (CH₃), 48.8 (CH), 68.5 (CH₂), 69.7 (CH₂), 70.5 (C), 75.9 (CH₂), 126.4 (2CH), 128.4, 128.7, 128.8, 128.9, 129.0, 129.7 (11 CH_{arom}), 130.4 (CH), 134.6 (C), 134.8 (C), 135.1 (C), 137.2 (C), 156.1 (C), 156.6 (C), 195.3 (C); IR : γ 3305, 2832, 1748, 1732, 1672, 1558, 1412, 1345, 1227, 753, 738, 694; HRMS: (*m/z*) calculated for C₂₇H₂₆ClN₃O₇Na: 562.1357, found: 562.1332.

Dibenzyl-1-((2S,3S)-2-methyl-4-nitro-1-oxo-3-(3-methoxyphenyl)butan-2-NO2yl) hydrazine-1,2-dicarboxylate. The reaction was carried out over 4 hours for thezMichael addition and 88 hours for the electrophilic amination.

Yield : 76%; Ee: 96%, the ee was determined on the single diastereoisomer by HPLC analysis on a AS-H column: heptane/*i*-PrOH 9/1, flow rate 0.8 mL/min, $\lambda = 254$ nm, 35°C : t_R = 32.0 min.(major), t_R = 66.3 min (minor); $[\alpha]_D{}^{20} = -76.2$ (*c* 1, CH₂Cl₂); m.p. = 98-100°C; ¹H NMR (300 MHz, CDCl₃) Mixture of rotamers : δ 1.12 (s, 3H_(rot min.)) 1.24 (s, 3H_(rot maj)), 3.74 (s, 3H), 4.00-4.09 (m, 1H), 4.60-4.73 (m, 1H), 4.84-5.26 (m, 5H), 5.62 (s, 1H_(rot min.)), 5.94 (s, 1H_(rot maj)), 6.60-6.86 (m, 3H), 7.18-7.40 (m, 11H), 9.35 (s, 1H_(rot min.)), 9.62 (s, 1H_(rot maj)); ¹³C NMR (75 MHz, CDCl₃) Major rotamer : δ 20.0 (CH₃), 49.0 (CH), 55.1 (CH₃) 68.5 (CH₂), 69.5 (CH₂), 70.6 (C), 76.0 (CH₂), 113.7 (CH), 116.0 (CH), 120.2 (CH) 128.3, 128.6, 128.7, 128.8, 130.2 (11 CH_{arom}), 134.7 (C), 134.9 (C), 136.4 (C), 156.0 (C), 156.6 (C), 159.9 (C), 195.6 (C); IR : γ 3314, 2836, 1744, 1680, 1550, 1451, 1341, 1219, 749, 726, 695; HRMS: (*m/z*) calculated for C₂₈H₂₉N₃O₈Na: 558.1852, found: 558.1833.

This journal is (c) The Royal Society of Chemistry 2010

Procedure for the oxidation of aldehyde 5

To a solution of aldehyde **5** (190 mg, 0.38 mmol) in CH₃OH/CH₃CN/H₂O (1/2/1, 8 mL) was added KH₂PO₄ (200 mg, 1.47 mmol), NaClO₂ (140 mg, 1.30 mmol) and 30% H₂O₂ (1.4 mL) at 0°C. The mixture was allowed warm to room temperature and stirred 2 hours. The solution was acidified with 2 M HCl till pH = 3. Saturated Na₂SO₃ aqueous (1 mL) was added at 0°C and the mixture was acidified with 2 M HCl till pH = 3 again. The aqueous phase was extracted by ethyl acetate. The combined organic layer was washed by brine and dried over MgSO₄. The solvent was removed *in vacuo* and the residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH 96/4) to give the corresponding carboxylic acid as a colorless oil (160 mg, 83 %).

Yield : 83%; $[\alpha]_D^{20} = -161.5 \ (c \ 1, \ CH_2Cl_2)$;¹H NMR (300 MHz, CDCl₃): $\delta 1.34 \ (s, \ 3H)$, 4.17 (dd, J= 11.7 and 2.8 Hz, 1H), 4.70 (t, J=12.7 Hz, 1H), 5.07-5.26 (m, 4H), 5.44-5.48 (d, J=12.7 Hz, 1H), 6.28 (s, 1H), 7.03-7.05 (m, 2H), 7.25-7.41 (m, 13H); ¹³C NMR (75 MHz, CDCl₃): $\delta 24.0 \ (CH_3)$, 51.2 (CH), 68.8 (CH₂), 70.0 (CH₂), 70.2 (CH₂), 77.4 (C), 128.7, 128.8, 128.9, 129.0, 129.2, 129.3, 129.4, (15CH_{arom}), 134.0 (C), 134.5 (C), 135.4 (C), 155.6 (C), 159.8 (C), 171.4 (C); IR : $\gamma 3286$, 3065, 2950, 1716, 1550, 1495, 1451, 1262, 734, 690; HRMS: (*m/z*) calculated for C₂₇H₂₇N₃O₈Na: 544.1696, found: 544.1672.

This journal is (c) The Royal Society of Chemistry 2010

Procedure for the synthesis of compound 8

To a solution of carboxylic acid (52 mg, 0.1 mmol) in toluene/MeOH (2/1, 1 mL) was added dropwise a solution of TMSCHN₂ (2M in hexanes, 0.1 mL, 0.2 mmol) at room temperature. The solution was stirred 10 minutes and the excess of TMSCHN₂ was quenched with few drops of AcOH. The solvent was removed *in vacuo* and the residue was purified by flash chromatography on silica gel (Pentane/EtOAc 4/1) to afford the corresponding ester **8** as a colorless oil (32 mg, 60 %).

Yield : 60%; $[\alpha]_D^{20} = -89.0$ (*c* 1, CH₂Cl₂);¹H NMR (300 MHz, CDCl₃): δ 1.53 (s, 3H), 3.63 (s, 3H), 4.02-4.21 (m, 1H), 4.72-5.43 (m, 6H), 5.96 (s, 1H), 7.05-7.12 (m, 2H), 7.21-7.41 (m, 13H); ¹³C NMR (75 MHz, CDCl₃) Major rotamer : δ 22.3 (CH₃), 50.8 (CH), 52.9 (CH₃), 68.2 (CH₂), 68.5 (CH₂), 69.0 (CH₂), 76.6 (C), 128.2, 128.4, 128.6, 128.6, 128.8, 128.8, 129.2 (15CH_{arom}), 135.1 (C), 135.3 (C), 135.4 (C), 155.9 (C), 155.9 (C), 172.4 (C); IR : γ 3294, 3025, 2939, 1708, 1542, 1451, 1215, 738, 698; HRMS: (*m/z*) calculated for C₂₈H₂₉N₃O₈Na: 558.1852, found: 558.1831.

19

1/1

1/1

10 ₂	Chromatogram		Chronatogram Information User Name User Name Discription Beacoption Beacoption Process Name View Constant Name Name Name Name Name Name Name Name	Channel & Pesk Information Tatle al. 25-CFi2 Strondogram Nance al. 25-CFi2 Strondogram Nance al. 25-CFi2 Strondogram Nance al. 25-CFi2 Cannel Name CER2 Manual) Manual) Perk Name CE Cannel Name CER2 Deck Name CE Cannel Name CER2 Deck Name CE Altacovan 2 Altacovan 2 Altacovan 2
	Chromatogram	1000 100 1000 1	Chromatogram Information User Phane Description Perception Processing Processing Processing Sample Nation Second Science Processing Second Science Processing Second Science Science Acquisition Sequence Acquisition Sequence Science	Characterian Table Sample Name Sample Name

28

1/1

1/1

ORTEP diagram of 4

