# Supporting Information

# **Catalytic Asymmetric Michael Addition with Curcumin Derivative**

## Wenjun Li, Wenbin Wu, Feng Yu, Huicai Huang Xinmiao Liang, Jinxing Ye\*

Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

# Contents

| A: Procedure and Characterization for the Synthesis of Organocatalysts | S2         |
|------------------------------------------------------------------------|------------|
| B: Procedure for the Synthesis of Racemic Products                     | S7         |
| C: NMR Spectra of Organocatalysts                                      | <b>S</b> 8 |
| D: NMR Spectra of Michael Addition Products                            | S18        |
| E: Chiral Analysis of Michael Addition Products                        | S38        |
| F: X-Ray Analysis Data and Absolute Configuration                      | S58        |
| G: References                                                          | S72        |

## A: Procedure and Characterization for the Synthesis of Organocatalysts

Organocatalysts **1a-1d** were prepared following the literature procedures <sup>[1-4]</sup>. The synthesis of tertiary amine-thiourea organocatalysts (**1e-1n**) were depicted in the following.



The characterization data of sulfonamides were depicted in the following.



The product was obtained in 95% yield, yellow solid. Mp = 142-143 °C;  $[\alpha]_D{}^{22}$  = 30.0 (*c* = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.33 (d, *J* = 8.0 Hz, 2H), 7.17-7.12 (m, 10H), 6.98 (d, *J* = 8.0 Hz, 2H), 4.39 (d, *J* = 5.2 Hz, 1H), 4.14 (d, *J* = 5.2 Hz, 1z)

1H), 2.33 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 142.5, 141.5, 139.3, 137.2, 129.1, 128.3, 128.2, 127.4, 127.3, 127.0, 126.8, 126.6, 63.5, 60.6, 21.4. HRMS (ESI): exact mass calculated for [M+H]<sup>+</sup> (C<sub>21</sub>H<sub>23</sub>N<sub>2</sub>O<sub>2</sub>S) requires m/z 367.1480, found m/z 367.1476.



The product was obtained in 94% yield, yellow solid. Mp = 158-159 °C;  $[\alpha]_D{}^{22}$  = 38.3 (*c* = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.87 (s, 2H), 7.80 (s, 1H), 7.17-7.09 (m, 10H), 4.53 (d, *J* = 4.8 Hz, 1H), 4.18 (d, *J* = 4.8 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): d (ppm) 143.2, 140.9, 138.1, 132.3, 131.9, 128.7,

128.5, 127.9, 127.8, 127.1, 126.9, 126.2, 125.5, 125.4, 123.7, 121.0, 63.4, 60.1. HRMS (ESI): exact mass calculated for  $[M+H]^+$  (C<sub>22</sub>H<sub>19</sub>F<sub>6</sub>N<sub>2</sub>O<sub>2</sub>S) requires m/z 489.1071, found m/z 489.1065.



The product was obtained in 93% yield, yellow solid. Mp = 166-167 °C;  $[\alpha]_D^{22} = 25.2$  (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.31-7.29 (m, 2H), 7.10-7.09 (m, 3H), 6.88-6.78 (m, 7H), 5.03 (d, J = 10.8 Hz, 1H), 4.90 (d, J = 10.8 Hz, 1H), 4.13-4.07 (m, 2H), 2.78-2.72 (m, 1H), 1.16-1.12 (m, 12H), 1.06 (d, J = 6.4 Hz, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 152.2,

149.8, 136.2, 134.2, 133.7, 128.6, 128.5, 127.8, 127.3, 123.1, 61.7, 59.2, 34.0, 29.6, 25.1, 24.8, 23.6. HRMS (ESI): exact mass calculated for  $[M+H]^+$  (C<sub>29</sub>H<sub>39</sub>N<sub>2</sub>O<sub>2</sub>S) requires m/z 479.2732, found m/z 479.2732.

127.8, 127.0, 126.9, 63.7, 60.3, 40.8. HRMS (ESI): exact mass calculated for  $[M+H]^+$  (C<sub>15</sub>H<sub>19</sub>N<sub>2</sub>O<sub>2</sub>S) requires m/z 291.1167, found m/z 291.1167.



The product was obtained in 91% yield, yellow solid. Mp = 155-156 °C;  $[\alpha]_D^{22}$  = 32.3 (*c* = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.50 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.21-7.16 (m, 10H), 4.57 (d, *J* = 4.4 Hz, 1H), 4.21 (d, *J* =

4.4 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 143.6, 141.1, 139.0, 128.5, 128.4, 127.8, 127.7, 127.1, 126.8, 126.2, 125.6, 125.5, 63.2, 60.1. HRMS (ESI): exact mass calculated for  $[M+H]^+$  (C<sub>21</sub>H<sub>20</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>S) requires m/z 421.1198, found m/z 421.1190.



The product was obtained in 92% yield, yellow solid. Mp = 158-159 °C;  $[\alpha]_D^{22} = 14.5$  (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.15-7.14 (m, 3H), 7.06-7.00 (m, 5H), 6.94-6.92 (m, 2H), 6.70 (s, 2H), 4.33 (d, J = 6.8 Hz, 1H), 4.00 (d, J = 6.8 Hz, 1H), 2.41 (s, 6H), 2.21 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 

(ppm) 141.7, 141.6, 138.7, 134.1, 131.6, 128.3, 127.8, 127.3, 127.2, 127.2, 126.6, 63.9, 60.8, 22.9, 20.8. HRMS (ESI): exact mass calculated for  $[M+H]^+$  (C<sub>23</sub>H<sub>27</sub>N<sub>2</sub>O<sub>2</sub>S) requires m/z 395.1793, found m/z 395.1784.



The product was obtained in 95% yield, yellow solid. Mp = 138-139 <sup>o</sup>C;  $[\alpha]_D^{22} = 28.8$  (*c* = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ (ppm) 7.27-7.23 (m, 2H), 7.18-7.06 (m, 11H), 4.70 (d, *J* = 4.8 Hz, 1H), 4.27 (d, *J* = 4.8 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 141.1, 138.7, 136.0, 134.4, 131.7, 131.0, 128.3, 128.2, 127.6, 126.6, 126.4,

64.2, 59.9. HRMS (ESI): exact mass calculated for  $[M+H]^+$  ( $C_{20}H_{19}Cl_2N_2O_2S$ ) requires m/z 421.0544, found m/z 421.0547.



The product was obtained in 94% yield, yellow solid. Mp = 133-135 °C;  $[\alpha]_D^{22} = 29.1$  (*c* = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 

(ppm) 7.64 (t, J = 8.0 Hz, 2H), 7.46 (t, J = 8.0 Hz, 2H), 7.31 (t, J = 8.0 Hz, 2H), 7.21-7.06 (m, 10H), 4.54 (d, J = 4.4 Hz, 1H), 4.22 (d, J = 4.4 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 141.0, 139.3, 138.8, 131.9, 131.8, 130.8, 128.4, 128.3, 128.1, 128.0, 127.9, 127.5, 127.0, 126.7, 126.3, 124.3, 121.6, 63.9, 60.0. HRMS (ESI): exact mass calculated for [M+H]<sup>+</sup> (C<sub>21</sub>H<sub>20</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>S) requires m/z 421.1198, found m/z 421.1192.

The characterization data of organocatalysts were depicted in the following.



Catalyst **1e**: The product was obtained in 84% yield, yellow solid. Mp = 143-144 °C;  $[\alpha]_D^{22} = -1.6$  (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H-NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 8.66 (d, J = 4.4 Hz, 1H), 8.03-7.93 (m, 5H), 7.48 (d, J = 4.4 Hz, 1H), 7.39-7.36 (m, 1H), 7.10-7.02 (m, 5H), 6.94-6.90 (m, 5H), 5.86-5.77 (m, 3H), 5.01-4.89 (m, 3H), 3.97 (s, 3H), 3.29-3.23 (m, 3H), 2.77-2.70 (m, 2H), 2.34 (br, 1H), 1.76-1.65 (m, 3H), 1.41-1.35 (m, 1H), 1.08-1.03 (m, 1H). <sup>13</sup>C-NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 205.4, 183.5, 170.1, 157.6, 147.5, 144.8, 144.5, 141.8, 138.1, 136-7CF<sub>3</sub> 136.8, 131.7, 131.5, 131.3, 128.3, 128.0, 127.8, 127.5, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 127.2, 12

125.4, 124.0, 121.4, 113.7, 102.8, 63.1, 62.2, 62.1, 60.5, 59.7, 55.5, 55.3, 40.9, 39.7, 27.7, 27.6, 25.7, 19.9, 13.6. HRMS (ESI): exact mass calculated for  $[M+H]^+$  (C<sub>43</sub>H<sub>42</sub>N<sub>5</sub>O<sub>3</sub>F<sub>6</sub>S<sub>2</sub>) requires m/z 854.2633, found m/z 854.2632.



Catalyst 1f: The product was obtained in 82% yield, yellow solid. Mp = 154-155 °C;  $[\alpha]_{D}^{22} = 9.8$  (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H-NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>CO): δ (ppm) 8.75-8.74 (m, 1H), 8.03-8.00 (m, 2H), 7.65-7.63 (m, 2H), 7.51-7.43 (m, 4H), 7.09-6.89 (m, 10H), 5.84-5.70 (m, 3H), 4.99-4.88 (m, 2H), 4.74-4.71 (m, 1H), 4.05 (s, 3H), 3.26-3.18 (m, 3H), 2.68 (br, 2H), 2.30 (br, 1H), 1.69-1.57 (m, 3H), 1.40-1.34 (m, 1H), 1.05-1.00 (m, 1H). <sup>13</sup>C-NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>CO): δ (ppm) 205.5, 183.2, 170.1, 157.8, 147.7, 145.2, 144.8, 141.8, 138.5, 137.9, 132.6, 132.3, 131.6, 128.1, 127.8, 127.7, 127.4, 127.2, 125.6, 124.9, 122.3, 121.6, 113.7, 102.7, 63.3, 62.5, 59.7, 55.4, 40.9, 39.6, 27.6, 25.7, 20.0, 13.7. exact mass calculated HRMS (ESI): for  $[M+H]^+$ 

(C<sub>42</sub>H<sub>43</sub>N<sub>5</sub>O<sub>3</sub>S<sub>2</sub>F<sub>3</sub>) requires m/z 786.2759, found m/z 786.2753.



Catalyst **1g:** The product was obtained in 85% yield, yellow solid. Mp = 151-152 °C;  $[\alpha]_D^{22} = -8.7$  (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H-NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 8.70-8.69 (m, 1H), 7.99-7.93 (m, 2H), 7.76-7.69 (m, 3H), 7.59-7.55 (m, 1H), 7.50-7.40 (m, 3H), 7.08 (br, 3H), 6.95-6.90 (m, 6H), 5.84-5.75 (m, 3H), 5.00-4.88 (m, 2H), 4.77-4.75 (m, 1H), 4.03 (s, 3H), 3.23 (br, 3H), 2.71 (br, 2H), 2.31 (br, 1H), 1.73-1.59 (m, 3H), 1.37-1.30 (m, 1H), 1.09-1.04 (m, 1H). <sup>13</sup>C-NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 205.5, 157.8, 147.7, 144.8, 141.8, 139.8, 137.8, 132.2, 131.0, 128.1, 127.8, 127.7, 127.4, 127.2, 124.5,

121.8, 121.5, 113.7, 102.6, 63.7, 62.5, 59.7, 55.4, 40.8, 39.6, 27.6, 25.6, 20.0, 13.7. HRMS (ESI): exact mass calculated for  $[M+H]^+$  (C<sub>42</sub>H<sub>43</sub>N<sub>5</sub>O<sub>3</sub>S<sub>2</sub>F<sub>3</sub>) requires m/z 786.2759, found m/z 786.2760.



Catalyst **1h**: The product was obtained in 84% yield, yellow solid. Mp = 157-158 °C;  $[\alpha]_D^{22} = 7.6$  (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H-NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 8.72-8.71 (m, 1H), 7.99-7.93 (m, 3H), 7.53 (br, 1H), 7.43-7.40 (m, 1H), 7.20-6.96 (m, 9H), 6.88-6.86 (m, 3H), 5.85-5.75 (m, 3H), 5.00-4.74 (m, 3H), 4.04 (s, 3H), 3.23 (br, 3H), 2.93-2.71 (m, 3H), 2.30 (br, 1H), 1.71-1.59 (m, 3H), 1.36-1.30 (m, 1H), 1.10-1.05 (m, 1H). <sup>13</sup>C-NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 205.4, 170.1, 157.7, 147.7, 144.8, 141.8, 137.2, 136.2, 133.9, 132.2, 131.6, 131.0, 128.2, 128.1, 127.7, 127.4, 127.3, 121.3, 113.7, 64.1, 59.6, 55.3, 40.8, 39.6,

27.6, 27.5, 25.5, 19.9, 13.6. HRMS (ESI): exact mass calculated for  $[M+H]^+$  (C<sub>41</sub>H<sub>42</sub>N<sub>5</sub>O<sub>3</sub>S<sub>2</sub>Cl<sub>2</sub>) requires m/z 786.2106, found m/z 786.2090.



Catalyst **1j**: The product was obtained in 84% yield, yellow solid. Mp = 138-139 °C;  $[\alpha]_D^{22} = 4.5$  (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H-NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 8.70-8.68 (m, 1H), 8.00-7.95 (m, 2H), 7.50-7.27 (m, 5H), 7.24-7.13 (m, 7H), 5.84-5.75 (m, 2H), 4.99-4.73 (m, 3H), 4.02 (s, 3H), 3.26-3.20 (m, 3H), 2.89 (s, 3H), 2.50 (br, 2H), 2.39 (s, 1H), 2.30 (br, 1H), 1.77-1.49 (m, 3H), 1.37-1.30 (m, 1H), 1.08-1.03 (m, 1H). <sup>13</sup>C-NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 205.5, 170.1, 157.7, 147.6, 144.8, 141.8, 139.7, 138.7, 131.6, 128.2, 127.9,

127.8, 127.5, 127.0, 121.5, 113.7, 102.7, 68.5, 64.4, 63.3, 62.5, 59.7, 55.4, 40.8, 40.6, 40.4, 39.6, 27.6, 25.6, 20.0, 13.7. HRMS (ESI): exact mass calculated for  $[M+H]^+$  (C<sub>36</sub>H<sub>42</sub>N<sub>5</sub>O<sub>3</sub>S<sub>2</sub>) requires m/z 656.2729, found m/z 656.2733.



Catalyst **1k**: The product was obtained in 84% yield, yellow solid. Mp = 145-146 °C;  $[\alpha]_D^{22} = -12.2$  (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H-NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 8.73-8.74 (m, 1H), 8.00-8.03 (m, 2H), 7.51-7.39 (m, 5H), 7.13-6.90 (m, 11H), 5.85-5.76 (m, 1H), 5.69-5.63 (m, 1H), 5.00-4.88 (m, 2H), 4.62-4.60 (m, 1H), 4.06 (s, 3H), 3.29-3.18 (m, 3H), 2.93 (br, 2H), 2.69 (br, 2H), 2.28 (s, 3H), 1.69-1.58 (m, 3H), 1.40-1.35 (m, 1H), 1.03-1.02 (m, 1H).<sup>13</sup>C-NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 205.5, 157.9, 147.7, 144.8, 142.4, 141.8, 138.5, 131.6, 129.0, 128.0, 127.8, 127.7, 127.4, 127.0, 126.7, 121.6, 113.7, 63.2, 62.7, 59.7, 55.5, 40.9, 39.6, 27.7, 25.7, 20.5, 20.0, 13.6. HRMS (ESI): exact mass calculated for [M+H]<sup>+</sup> (C<sub>42</sub>H<sub>46</sub>N<sub>5</sub>O<sub>3</sub>S<sub>2</sub>) requires m/z 732.3042, found m/z 732.3055.

Catalyst 11: The product was obtained in 84% yield, yellow solid. Mp = 148-149 °C;  $[\alpha]_D^{22} = 1.7$  (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H-NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 8.71 (br, 1H), 8.00-7.93 (m, 3H), 7.54-7.41 (m, 2H), 7.06-6.82 (m, 9H), 6.71 (s, 2H), 5.84-5.68 (m, 3H), 5.01-4.89 (m, 2H), 4.54-4.52 (m, 1H), 4.03 (s, 3H), 3.28-3.25 (m, 3H), 2.35 (s, 6H), 2.17 (s, 3H), 1.73-1.61 (m, 3H), 1.35-1.30 (m, 3H), 1.10-1.07 (m, 1H), 0.89-0.87 (m, 1H). <sup>13</sup>C-NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 205.6, 170.1, 157.8, 147.8, 144.8, 141.6, 141.5, 138.7, 138.4, 135.2, 131.6, 131.4, 128.1, 127.9, 127.6, 127.4, 127.0, 121.5, 113.9, 102.8, 63.1, 62.7, 59.7, 55.4, 55.3, 40.9, 39.5, 27.6, 25.6, 22.3, 20.0, 13.8. HRMS (ESI): exact mass calculated for [M+H]<sup>+</sup> (C<sub>44</sub>H<sub>50</sub>N<sub>5</sub>O<sub>3</sub>S<sub>2</sub>) requires m/z 760.3355, found m/z 760.3365.



Catalyst **1m**: The product was obtained in 84% yield, yellow solid. Mp = 185-186 °C;  $[\alpha]_D^{22} = 5.3$  (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H-NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 8.72 (s, 1H), 8.02-7.86 (m, 4H), 7.43 (br, 1H), 7.06-6.92 (m, 9H), 6.79-6.76 (m, 2H), 5.83-5.75 (m, 3H), 5.01-4.88 (m, 2H), 4.65 (br, 1H), 4.03 (s, 3H), 3.24 (br, 3H), 2.93-2.73 (m, 5H), 2.32 (br, 1H), 1.73-1.61 (m, 3H), 1.34-1.30 (m, 2H), 1.18 (d, J = 6.8 Hz, 6H), 1.08-1.00 (m, 12H). <sup>13</sup>C-NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 205.4, 157.7, 152.3, 149.5, 147.8, 144.8, 141.7, 138.7, 138.5, 134.5, 131.7, 128.0, 127.7, 127.4, 127.3, 126.3, 123.3, 121.5, 121.4, 113.8, 102.6, 62.9, 59.7, 55.3, 40.7, 39.6, 27.7, 25.5, 24.4, 24.2, 23.1, 20.1,

13.7. HRMS (ESI): exact mass calculated for  $[M+H]^+$  ( $C_{50}H_{62}N_5O_3S_2$ ) requires m/z 844.4294, found m/z 844.4295.



Catalyst **1n**: The product was obtained in 84% yield, yellow solid. Mp = 152-153 °C;  $[\alpha]_D^{22} = 2.5$  (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H-NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 8.66 (d, J = 4.4 Hz, 1H), 8.03-7.93 (m, 5H), 7.48 (d, J = 4.4 Hz, 1H), 7.39-7.36 (m, 1H), 7.10-7.02 (m, 5H), 6.94-6.90 (m, 5H), 5.86-5.77 (m, 3H), 5.01-4.89 (m, 3H), 3.97 (s, 3H), 3.29-3.23 (m, 3H), 2.77-2.70 (m, 2H), 2.34 (br, 1H), 1.76-1.65 (m, 3H), 1.41-1.35 (m, 1H), 1.08-1.03 (m, 1H). <sup>13</sup>C-NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) 205.4, 183.5, 170.1, 157.6, 147.5, 144.8, 144.5, 141.8, 138.1, 136.8, 131.7, 131.5, 131.3, 128.3, 128.0, 127.8, 127.5, 127.2,

125.4, 124.0, 121.4, 113.7, 102.8, 63.1, 62.2, 62.1, 60.5, 59.7, 55.5, 55.3, 40.9, 39.7, 27.7, 27.6, 25.7, 19.9, 13.6. HRMS (ESI): exact mass calculated for  $[M+H]^+$  (C<sub>43</sub>H<sub>42</sub>N<sub>5</sub>O<sub>3</sub>F<sub>6</sub>S<sub>2</sub>) requires m/z 854.2633, found m/z 854.2638.

## **B:** Procedure for the Synthesis of Racemic Products



To a solution of trans- $\beta$ -substituted nitroolefins 2 (0.10 mmol) in dichloromethane (0.2 mL) were added curcumin derivates 3 (0.10 mmol) and catalyst (0.01 mmol). The reaction mixture was stirred at room temperature for 72h and then the solvent was removed under vacuum. The residues were purified by silica gel chromatography to yield the desired addition products.

# **C: NMR Spectra of Organocatalysts**

#### Catalyst 1e



Catalyst 1f



S9



ppm (t1)

#### Catalyst 1h









S13







#### Catalyst 1m



#### Catalyst 1n



# **D: NMR Spectra of Michael Addition Products**



### 4-(2-nitro-1-phenylethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione(4aa)



4-(1-(2-chlorophenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ba)



4-(1-(3-chlorophenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ca)



4-(1-(4-chlorophenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4da)



# 4-(1-(3-bromophenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ea)



# 4-(1-(2-fluorophenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4fa)



# 4-(1-(3-fluorophenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ga)



4-(1-(4-fluorophenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ha)



## 4-(1-(4-methoxyphenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ia)

# 4-(1-(2,3-dimethoxyphenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ja)





4-(1-(2,4-dimethoxyphenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ka)









## 4-(1-(furan-2-yl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4na)



# 4-(1-nitropentan-2-yl)-1,7-diphenylhepta-1,6-diene-3,5-dione (40a)



# 4-(3-methyl-1-nitrobutan-2-yl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4pa)





### 4-(2-nitro-1-phenylethyl)-1,7-dip-tolylhepta-1,6-diene-3,5-dione (4ab)



### 1,7-bis(4-chlorophenyl)-4-(2-nitro-1-phenylethyl)hepta-1,6-diene-3,5-dione (4ac)




# 1,7-bis(4-hydroxy-3-methoxyphenyl)-4-(2-nitro-1-phenylethyl)hepta-1,6-diene-3,5-dione (4ae)



# E: Chiral Analysis of Michael Addition Products

# 4-(2-nitro-1-phenylethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4aa)



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 12.082 | 25805.3 | 991.4  | 0.4338 | 0.851    | 49.858 |
| 2 | 15.908 | 25952.6 | 743.2  | 0.5457 | 0.781    | 50.142 |



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 12.089 | 20413.2 | 851.7  | 0.3699 | 0.729    | 97.999 |
| 2 | 15.967 | 416.9   | 16     | 0.4157 | 0        | 2.001  |

# 4-(1-(2-chlorophenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ba)



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 12.973 | 69536   | 1850.6 | 0.5651 | 0.831    | 49.896 |
| 2 | 15.272 | 69826.5 | 1588.3 | 0.6716 | 0.785    | 50.104 |



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 12.373 | 60757.6 | 2047   | 0.4598 | 0.673    | 98.600 |
| 2 | 15.079 | 862.6   | 26     | 0.552  | 0.611    | 1.400  |

# 4-(1-(3-chlorophenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ca)



| # | Time   | Area   | Height | Width  | Symmetry | Area/% |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 11.637 | 6837.4 | 295.2  | 0.3171 | 0        | 49.905 |
| 2 | 16.4   | 6863.6 | 188.8  | 0.4978 | 0        | 50.095 |



| # | Time   | Area    | Height | Width | Symmetry | Area/% |
|---|--------|---------|--------|-------|----------|--------|
| 1 | 11.772 | 25397.8 | 991.3  | 0.395 | 0.801    | 96.288 |
| 2 | 16.773 | 979     | 26.4   | 0.618 | 0.872    | 3.712  |

## 4-(1-(4-chlorophenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4da)



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 11.266 | 20508.1 | 837.9  | 0.3827 | 0        | 50.278 |
| 2 | 14.895 | 20281.6 | 609.8  | 0.5381 | 0        | 49.722 |



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 11.495 | 25031.1 | 940.2  | 0.414  | 0.803    | 95.426 |
| 2 | 15.254 | 1199.9  | 41     | 0.4883 | 0.896    | 4.574  |

# 4-(1-(3-bromophenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ea)



| # | Time   | Area   | Height | Width  | Symmetry | Area/% |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 12.262 | 4420.3 | 180.4  | 0.3213 | 0        | 50.137 |
| 2 | 17.021 | 4396.1 | 119.3  | 0.4472 | 0        | 49.863 |



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 12.355 | 12077.4 | 458.3  | 0.4065 | 0.855    | 94.901 |
| 2 | 17.197 | 649     | 19.5   | 0.5308 | 0        | 5.099  |

# 4-(1-(2-fluorophenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4fa)



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 14.069 | 11312.2 | 375.7  | 0.4677 | 0.821    | 49.968 |
| 2 | 16.084 | 11326.5 | 348.9  | 0.4617 | 0        | 50.032 |



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 13.691 | 49547.6 | 1542.4 | 0.5015 | 0.716    | 97.752 |
| 2 | 15.808 | 1139.3  | 31.8   | 0.5443 | 0.986    | 2.248  |

# 4-(1-(3-fluorophenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ga)



| # | Time   | Area   | Height | Width  | Symmetry | Area/% |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 11.484 | 8399.4 | 335.6  | 0.4058 | 0        | 50.194 |
| 2 | 16.654 | 8334.3 | 206.1  | 0.57   | 0        | 49.806 |



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 11.745 | 35582.6 | 1283.3 | 0.4267 | 0        | 95.919 |
| 2 | 17.115 | 1513.8  | 37.8   | 0.6668 | 1.011    | 4.081  |

# 4-(1-(4-fluorophenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ha)



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 11.49  | 13349.7 | 513.4  | 0.4334 | 0.798    | 50.009 |
| 2 | 15.368 | 13344.9 | 365.5  | 0.6085 | 0.898    | 49.991 |



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 11.373 | 66082.6 | 2218.9 | 0.4494 | 0.676    | 95.324 |
| 2 | 15.304 | 3241.4  | 85.5   | 0.5212 | 0        | 4.676  |

# 4-(1-(4-methoxyphenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ia)



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 15.768 | 12907.9 | 340.6  | 0.6316 | 0.939    | 49.385 |
| 2 | 21.582 | 13229.3 | 250.6  | 0.88   | 0.861    | 50.615 |



| # | Time   | Area     | Height | Width  | Symmetry | Area/% |
|---|--------|----------|--------|--------|----------|--------|
| 1 | 15.44  | 156395.2 | 3683.9 | 0.633  | 0        | 94.509 |
| 2 | 21.471 | 9086.6   | 199.6  | 0.7589 | 0.846    | 5.491  |

# 4-(1-(2,3-dimethoxyphenyl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ja)



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 11.938 | 63156.9 | 1671.7 | 0.6297 | 1.044    | 48.126 |
| 2 | 16.503 | 68074.3 | 1259.4 | 0.767  | 0        | 51.874 |



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 12.383 | 33246.1 | 953.5  | 0.5527 | 0        | 97.963 |
| 2 | 17.132 | 691.4   | 15.3   | 0.6959 | 1.077    | 2.037  |

#### VWD1 A, 波长=254 nm (LIWENJUN\090320\24OME(XX)000049.D) mAU 175 150 125 13.872 100 17.635 75 50 25 0 2.5 7.5 12.5 5 10 15 17.5 20 min Ó

| 4-(1- | -(2,4 | 1-dimethoxy | phenyl)-2- | nitroethyl) | -1,7-dij | ohenylhepta | -1,6-diene | -3,5-dione | (4ka) |
|-------|-------|-------------|------------|-------------|----------|-------------|------------|------------|-------|
|-------|-------|-------------|------------|-------------|----------|-------------|------------|------------|-------|

| # | Time   | Area   | Height | Width  | Symmetry | Area/% |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 13.872 | 2883.3 | 95.9   | 0.4558 | 0        | 50.061 |
| 2 | 17.635 | 2876.3 | 67.9   | 0.6632 | 0.889    | 49.939 |



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 13.387 | 10164.2 | 343.5  | 0.4614 | 0        | 97.453 |
| 2 | 17.496 | 265.7   | 5.8    | 0.7083 | 0.906    | 2.547  |





| # | Time   | Area   | Height | Width  | Symmetry | Area/% |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 11.12  | 3998.7 | 117.8  | 0.5656 | 1.163    | 48.763 |
| 2 | 14.785 | 4201.6 | 113.7  | 0.6161 | 1.045    | 51.237 |



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 11.218 | 29982.3 | 1281.2 | 0.3604 | 0.776    | 95.557 |
| 2 | 15.081 | 1394.1  | 45     | 0.5164 | 0.945    | 4.443  |

## 4-(1-(naphthalen-1-yl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4ma)



| 0 | 2.5 5  | 7.5     | 10 12.5 | 15     | 17.5 2   | 0 22.5 | min |
|---|--------|---------|---------|--------|----------|--------|-----|
| # | Time   | Area    | Height  | Width  | Symmetry | Area/% |     |
| 1 | 13.566 | 49377.6 | 1345    | 0.5579 | 0.797    | 95.154 |     |
| 2 | 18.906 | 2514.9  | 57.9    | 0.7237 | 0.937    | 4.846  |     |

# 4-(1-(furan-2-yl)-2-nitroethyl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4na)



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 22.868 | 18528.9 | 329.8  | 0.8007 | 0        | 49.797 |
| 2 | 26.654 | 18679.9 | 296.9  | 0.9685 | 0.755    | 50.203 |



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 24.666 | 28733.7 | 564.9  | 0.7914 | 0.674    | 96.716 |
| 2 | 28.644 | 975.7   | 21.1   | 0.7692 | 0.807    | 3.284  |

## 4-(1-nitropentan-2-yl)-1,7-diphenylhepta-1,6-diene-3,5-dione (40a)



| # | Time   | Area   | Height | Width  | Symmetry | Area/% |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 19.947 | 8474.3 | 226    | 0.5744 | 0.811    | 49.305 |
| 2 | 21.484 | 8713.2 | 208.1  | 0.6369 | 0.723    | 50.695 |



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 19.356 | 65700.5 | 1681.3 | 0.6018 | 0        | 96.205 |
| 2 | 21.102 | 2591.7  | 66.8   | 0.6336 | 0        | 3.795  |

# 4-(3-methyl-1-nitrobutan-2-yl)-1,7-diphenylhepta-1,6-diene-3,5-dione (4pa)



| # | Time  | Area   | Height | Width  | Symmetry | Area/% |
|---|-------|--------|--------|--------|----------|--------|
| 1 | 8.295 | 9726.2 | 603.2  | 0.2687 | 0.767    | 49.900 |
| 2 | 9.666 | 9765.1 | 486.2  | 0.3347 | 0.668    | 50.100 |



| # | Time  | Area   | Height | Width  | Symmetry | Area/% |
|---|-------|--------|--------|--------|----------|--------|
| 1 | 8.42  | 478.3  | 34.1   | 0.2339 | 0.978    | 7.900  |
| 2 | 9.802 | 5575.2 | 275.8  | 0.3086 | 0.647    | 92.100 |





| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 13.525 | 17897.4 | 418.1  | 0.7134 | 1.297    | 50.803 |
| 2 | 20.711 | 17331.7 | 310.9  | 0.8484 | 0.842    | 49.197 |



| # | Time   | Area     | Height | Width  | Symmetry | Area/% |
|---|--------|----------|--------|--------|----------|--------|
| 1 | 13.461 | 129018.6 | 3118.4 | 0.621  | 0.68     | 94.945 |
| 2 | 20.896 | 6868.5   | 135.3  | 0.8463 | 0.837    | 5.055  |

# 1,7-bis(4-chlorophenyl)-4-(2-nitro-1-phenylethyl)hepta-1,6-diene-3,5-dione (4ac)



| # | Time   | Area   | Height | Width  | Symmetry | Area/% |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 13.05  | 3033.4 | 82.4   | 0.6132 | 0.998    | 49.723 |
| 2 | 23.941 | 3067.1 | 43.2   | 1.0703 | 0.981    | 50.277 |



| # | Time   | Area  | Height | Width  | Symmetry | Area/% |
|---|--------|-------|--------|--------|----------|--------|
| 1 | 12.919 | 13163 | 333.2  | 0.5832 | 0.943    | 96.065 |
| 2 | 24.107 | 539.1 | 7.5    | 1.2058 | 0.965    | 3.935  |

### 1,7-bis(2-fluorophenyl)-4-(2-nitro-1-phenylethyl)hepta-1,6-diene-3,5-dione (4ad)



| # | Time   | Area   | Height | Width  | Symmetry | Area/% |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 13.171 | 6800.6 | 251.6  | 0.4504 | 0.91     | 50.085 |
| 2 | 16.05  | 6777.6 | 199.5  | 0.5466 | 0        | 49.915 |



| # | Time   | Area    | Height | Width  | Symmetry | Area/% |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 13.126 | 10170.7 | 377    | 0.4123 | 0.928    | 98.043 |
| 2 | 15.915 | 203     | 7      | 0.4581 | 0.908    | 1.957  |

# 1,7-bis(4-hydroxy-3-methoxyphenyl)-4-(2-nitro-1-phenylethyl)hepta-1,6-diene-3,5-dione (4ae)





| # | Time   | Area     | Height | Width  | Symmetry | Area/% |
|---|--------|----------|--------|--------|----------|--------|
| 1 | 15.788 | 126710.9 | 1690.6 | 1.1487 | 0        | 96.179 |
| 2 | 22.189 | 5033.3   | 54.2   | 1.5484 | 0.761    | 3.821  |

# F: X-Ray Analysis Data and Absolute Configuration











Table 1. Crystal data and structure refinement for 794851.

| Identification code         | 794851                                                                                                        |
|-----------------------------|---------------------------------------------------------------------------------------------------------------|
| Empirical formula           | C27 H22 Br N O4                                                                                               |
| Formula weight              | 504.37                                                                                                        |
| Temperature                 | 293(2) K                                                                                                      |
| Wavelength                  | 0.71073 A                                                                                                     |
| Crystal system, space group | Monoclinic, P2(1)                                                                                             |
| Unit cell dimensions        | a = 5.4962(10) A alpha = 90 deg.<br>b = 14.702(3) A beta = 100.037(3) deg.<br>c = 14.657(3) A gamma = 90 deg. |
| Volume                      | 1166.3(4) A^3                                                                                                 |
| Z, Calculated density       | 2, 1.436 Mg/m^3                                                                                               |

| Absorption coefficient            | 1.796 mm^-1                                 |
|-----------------------------------|---------------------------------------------|
| F(000)                            | 516                                         |
| Crystal size                      | 0.412 x 0.309 x 0.125 mm                    |
| Theta range for data collection   | 1.98 to 25.99 deg.                          |
| Limiting indices                  | -6<=h<=5, -16<=k<=18, -17<=l<=18            |
| Reflections collected / unique    | 6407 / 4047 [R(int) = 0.0766]               |
| Completeness to theta = 25.99     | 99.6 %                                      |
| Absorption correction             | Empirical                                   |
| Max. and min. transmission        | 1.0000 and 0.3343                           |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters    | 4047 / 3 / 316                              |
| Goodness-of-fit on F <sup>2</sup> | 0.938                                       |
| Final R indices [I>2sigma(I)]     | R1 = 0.0590, wR2 = 0.1375                   |
| R indices (all data)              | R1 = 0.0803, $wR2 = 0.1467$                 |
| Absolute structure parameter      | 0.041(14)                                   |
| Largest diff. peak and hole       | 0.487 and -0.405 e.A^-3                     |

Table 2. Atomic coordinates (  $x \ 10^{4}$ ) and equivalent isotropic displacement parameters (A<sup>2</sup>  $x \ 10^{3}$ ) for 794851.

| U(¢ | eq) is defined | l as one thi | rd of the tr | ace of the | orthogonalize | d |
|-----|----------------|--------------|--------------|------------|---------------|---|
| Uij | tensor.        |              |              |            |               |   |

|       | x        | У        | Z        | U(eq)  |
|-------|----------|----------|----------|--------|
| Br(1) | -1067(1) | 3185(1)  | 6144(1)  | 78(1)  |
| N(1)  | 1773(11) | 5704(4)  | 9630(3)  | 54(1)  |
| O(1)  | 8169(8)  | 2999(4)  | 9067(3)  | 71(1)  |
| O(2)  | 7742(9)  | 3605(3)  | 10951(3) | 69(1)  |
| O(3)  | -178(11) | 6009(4)  | 9734(4)  | 93(2)  |
| O(4)  | 3406(11) | 6163(3)  | 9419(4)  | 80(2)  |
| C(1)  | 4245(10) | 4301(4)  | 9348(4)  | 40(1)  |
| C(2)  | 2208(11) | 4712(4)  | 9822(4)  | 50(1)  |
| C(3)  | 4534(9)  | 3312(4)  | 9682(3)  | 43(1)  |
| C(4)  | 6098(12) | 2761(4)  | 9107(4)  | 53(2)  |
| C(5)  | 4330(30) | 1945(10) | 8677(9)  | 44(3)  |
| C(6)  | 5100(30) | 1570(9)  | 7919(10) | 57(3)  |
| C(6') | 3470(50) | 1617(13) | 8276(14) | 68(7)  |
| C(5') | 5360(40) | 2081(12) | 8444(14) | 40(4)  |
| C(7)  | 5743(10) | 3269(5)  | 10696(3) | 52(1)  |
| C(8)  | 4160(11) | 2855(4)  | 11326(4) | 59(2)  |
| C(9)  | 4710(12) | 2885(4)  | 12207(4) | 60(2)  |
| C(10) | 3709(11) | 4380(4)  | 8293(4)  | 42(1)  |
| C(11) | 1763(10) | 3895(4)  | 7779(4)  | 46(1)  |
| C(12) | 1449(10) | 3933(4)  | 6828(4)  | 52(1)  |
| C(13) | 2947(12) | 4417(5)  | 6360(4)  | 59(2)  |
| C(14) | 4858(12) | 4907(5)  | 6889(4)  | 62(2)  |
| C(15) | 5221(11) | 4891(5)  | 7836(5)  | 49(2)  |
| C(16) | 3250(20) | 877(6)   | 7459(8)  | 111(4) |
| C(17) | 1310(20) | 394(6)   | 7701(6)  | 103(3) |
| C(18) | 139(18)  | -279(6)  | 7135(7)  | 89(3)  |
| C(19) | 832(18)  | -450(6)  | 6310(7)  | 91(3)  |
| C(20) | 2680(20) | 23(7)    | 6043(7)  | 102(3) |
| C(21) | 3930(20) | 670(8)   | 6622(10) | 128(4) |
| C(22) | 3384(11) | 2498(4)  | 12887(5) | 55(2)  |
| C(23) | 4299(13) | 2579(5)  | 13821(5) | 71(2)  |
| C(24) | 3113(15) | 2218(6)  | 14468(5) | 79(2)  |
| C(25) | 964(14)  | 1746(5)  | 14215(6) | 72(2)  |
| C(26) | -20(14)  | 1645(5)  | 13285(5) | 66(2)  |
| C(27) | 1138(12) | 2020(5)  | 12626(5) | 60(2)  |

| Br(1)-C(12) | 1.908(6)  |
|-------------|-----------|
| N(1)-O(3)   | 1.197(7)  |
| N(1)-O(4)   | 1.205(7)  |
| N(1)-C(2)   | 1.496(8)  |
| O(1)-C(4)   | 1.202(7)  |
| O(2)-C(7)   | 1.203(7)  |
| C(1)-C(10)  | 1.527(7)  |
| C(1)-C(3)   | 1.533(8)  |
| C(1)-C(2)   | 1.540(8)  |
| C(1)-H(1)   | 0.9800    |
| C(2)-H(2A)  | 0.9700    |
| C(2)-H(2B)  | 0.9700    |
| C(3)-C(7)   | 1.519(7)  |
| C(3)-C(4)   | 1.536(8)  |
| C(3)-H(3)   | 0.9800    |
| C(4)-C(5')  | 1.404(19) |
| C(4)-C(5)   | 1.603(18) |
| C(5)-C(6)   | 1.37(2)   |
| C(5)-H(5)   | 0.9300    |
| C(6)-C(16)  | 1.510(18) |
| C(6)-H(6)   | 0.9300    |
| C(6')-C(5') | 1.23(3)   |
| C(6')-C(16) | 1.607(17) |
| C(6')-H(6') | 0.9300    |
| C(5')-H(5') | 0.9300    |
| C(7)-C(8)   | 1.504(8)  |
| C(8)-C(9)   | 1.275(8)  |
| C(8)-H(8)   | 0.9300    |
| C(9)-C(22)  | 1.449(8)  |
| C(9)-H(9)   | 0.9300    |
| C(10)-C(15) | 1.378(8)  |
| C(10)-C(11) | 1.392(8)  |
| C(11)-C(12) | 1.377(8)  |
| C(11)-H(11) | 0.9300    |
| C(12)-C(13) | 1.360(9)  |
| C(13)-C(14) | 1.393(9)  |
| C(13)-H(13) | 0.9300    |
| C(14)-C(15) | 1.367(9)  |
| C(14)-H(14) | 0.9300    |
| C(15)-H(15) | 0.9300    |
| C(16)-C(21) | 1.376(17) |

| Table 3. | Bond lengths | [A] | and angles | [deg] | for 794851. |
|----------|--------------|-----|------------|-------|-------------|
|          | 0            |     |            | L 01  |             |

| C(16)-C(17)      | 1.380(16) |
|------------------|-----------|
| C(17)-C(18)      | 1.376(12) |
| С(17)-Н(17)      | 0.9300    |
| C(18)-C(19)      | 1.353(12) |
| C(18)-H(18)      | 0.9300    |
| C(19)-C(20)      | 1.343(13) |
| С(19)-Н(19)      | 0.9300    |
| C(20)-C(21)      | 1.378(15) |
| C(20)-H(20)      | 0.9300    |
| C(21)-H(21)      | 0.9300    |
| C(22)-C(23)      | 1.379(10) |
| C(22)-C(27)      | 1.415(10) |
| C(23)-C(24)      | 1.350(10) |
| C(23)-H(23)      | 0.9300    |
| C(24)-C(25)      | 1.364(11) |
| C(24)-H(24)      | 0.9300    |
| C(25)-C(26)      | 1.384(11) |
| C(25)-H(25)      | 0.9300    |
| C(26)-C(27)      | 1.362(10) |
| C(26)-H(26)      | 0.9300    |
| C(27)-H(27)      | 0.9300    |
|                  |           |
| O(3)-N(1)-O(4)   | 123.1(6)  |
| O(3)-N(1)-C(2)   | 117.3(6)  |
| O(4)-N(1)-C(2)   | 119.5(5)  |
| C(10)-C(1)-C(3)  | 112.7(4)  |
| C(10)-C(1)-C(2)  | 113.6(5)  |
| C(3)-C(1)-C(2)   | 105.7(4)  |
| C(10)-C(1)-H(1)  | 108.2     |
| C(3)-C(1)-H(1)   | 108.2     |
| C(2)-C(1)-H(1)   | 108.2     |
| N(1)-C(2)-C(1)   | 113.7(5)  |
| N(1)-C(2)-H(2A)  | 108.8     |
| C(1)-C(2)-H(2A)  | 108.8     |
| N(1)-C(2)-H(2B)  | 108.8     |
| C(1)-C(2)-H(2B)  | 108.8     |
| H(2A)-C(2)-H(2B) | 107.7     |
| C(7)-C(3)-C(1)   | 110.8(5)  |
| C(7)-C(3)-C(4)   | 108.9(4)  |
| C(1)-C(3)-C(4)   | 111.2(4)  |
| C(7)-C(3)-H(3)   | 108.6     |
| C(1)-C(3)-H(3)   | 108.6     |
| C(4)-C(3)-H(3)   | 108.6     |
| O(1)-C(4)-C(5')  | 109.5(11) |

| O(1)-C(4)-C(3)    | 119.9(6)  |
|-------------------|-----------|
| C(5')-C(4)-C(3)   | 129.4(11) |
| O(1)-C(4)-C(5)    | 135.4(7)  |
| C(5')-C(4)-C(5)   | 27.4(8)   |
| C(3)-C(4)-C(5)    | 104.6(7)  |
| C(6)-C(5)-C(4)    | 111.7(14) |
| C(6)-C(5)-H(5)    | 124.1     |
| C(4)-C(5)-H(5)    | 124.1     |
| C(5)-C(6)-C(16)   | 110.9(13) |
| C(5)-C(6)-H(6)    | 124.5     |
| C(16)-C(6)-H(6)   | 124.5     |
| C(5')-C(6')-C(16) | 118(2)    |
| C(5')-C(6')-H(6') | 120.8     |
| C(16)-C(6')-H(6') | 120.8     |
| C(6')-C(5')-C(4)  | 132(2)    |
| C(6')-C(5')-H(5') | 114.2     |
| C(4)-C(5')-H(5')  | 114.2     |
| O(2)-C(7)-C(8)    | 124.7(5)  |
| O(2)-C(7)-C(3)    | 120.5(5)  |
| C(8)-C(7)-C(3)    | 114.6(5)  |
| C(9)-C(8)-C(7)    | 123.2(6)  |
| C(9)-C(8)-H(8)    | 118.4     |
| C(7)-C(8)-H(8)    | 118.4     |
| C(8)-C(9)-C(22)   | 128.6(7)  |
| C(8)-C(9)-H(9)    | 115.7     |
| C(22)-C(9)-H(9)   | 115.7     |
| C(15)-C(10)-C(11) | 119.1(5)  |
| C(15)-C(10)-C(1)  | 120.5(5)  |
| C(11)-C(10)-C(1)  | 120.2(5)  |
| C(12)-C(11)-C(10) | 118.5(5)  |
| C(12)-C(11)-H(11) | 120.8     |
| C(10)-C(11)-H(11) | 120.8     |
| C(13)-C(12)-C(11) | 123.5(6)  |
| C(13)-C(12)-Br(1) | 118.9(4)  |
| C(11)-C(12)-Br(1) | 117.4(5)  |
| C(12)-C(13)-C(14) | 117.0(5)  |
| C(12)-C(13)-H(13) | 121.5     |
| C(14)-C(13)-H(13) | 121.5     |
| C(15)-C(14)-C(13) | 121.2(6)  |
| C(15)-C(14)-H(14) | 119.4     |
| C(13)-C(14)-H(14) | 119.4     |
| C(14)-C(15)-C(10) | 120.7(6)  |
| C(14)-C(15)-H(15) | 119.7     |
| C(10)-C(15)-H(15) | 119.6     |

| C(21)-C(16)-C(17) | 117.2(9)  |
|-------------------|-----------|
| C(21)-C(16)-C(6)  | 106.4(12) |
| C(17)-C(16)-C(6)  | 136.1(12) |
| C(21)-C(16)-C(6') | 144.7(14) |
| C(17)-C(16)-C(6') | 96.8(13)  |
| C(6)-C(16)-C(6')  | 41.6(10)  |
| C(18)-C(17)-C(16) | 121.1(10) |
| С(18)-С(17)-Н(17) | 119.5     |
| С(16)-С(17)-Н(17) | 119.4     |
| C(19)-C(18)-C(17) | 119.8(10) |
| C(19)-C(18)-H(18) | 120.1     |
| C(17)-C(18)-H(18) | 120.1     |
| C(20)-C(19)-C(18) | 120.6(9)  |
| С(20)-С(19)-Н(19) | 119.7     |
| С(18)-С(19)-Н(19) | 119.7     |
| C(19)-C(20)-C(21) | 120.0(11) |
| С(19)-С(20)-Н(20) | 120.0     |
| С(21)-С(20)-Н(20) | 120.0     |
| C(16)-C(21)-C(20) | 121.2(11) |
| С(16)-С(21)-Н(21) | 119.4     |
| C(20)-C(21)-H(21) | 119.4     |
| C(23)-C(22)-C(27) | 117.5(6)  |
| C(23)-C(22)-C(9)  | 120.6(6)  |
| C(27)-C(22)-C(9)  | 122.0(6)  |
| C(24)-C(23)-C(22) | 121.8(7)  |
| C(24)-C(23)-H(23) | 119.1     |
| С(22)-С(23)-Н(23) | 119.1     |
| C(23)-C(24)-C(25) | 120.7(7)  |
| C(23)-C(24)-H(24) | 119.6     |
| C(25)-C(24)-H(24) | 119.6     |
| C(24)-C(25)-C(26) | 119.5(7)  |
| C(24)-C(25)-H(25) | 120.2     |
| C(26)-C(25)-H(25) | 120.2     |
| C(27)-C(26)-C(25) | 120.3(7)  |
| С(27)-С(26)-Н(26) | 119.8     |
| C(25)-C(26)-H(26) | 119.8     |
| C(26)-C(27)-C(22) | 120.2(7)  |
| С(26)-С(27)-Н(27) | 119.9     |
| С(22)-С(27)-Н(27) | 119.9     |
|                   |           |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A<sup>2</sup> x 10<sup>3</sup>) for 794851.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a\*^2 U11 + ... + 2 h k a\* b\* U12 ]

|       | U11    | U22    | U33    | U2     | 3 U     | 13      | U12 |
|-------|--------|--------|--------|--------|---------|---------|-----|
|       |        |        |        |        |         |         |     |
| Br(1) | 74(1)  | 104(1) | 53(1)  | -22(1) | 1(1)    | -8(1)   |     |
| N(1)  | 74(4)  | 52(3)  | 37(3)  | -6(2)  | 9(3)    | 2(3)    |     |
| O(1)  | 67(3)  | 83(4)  | 70(3)  | 3(3)   | 34(2)   | 5(3)    |     |
| O(2)  | 68(3)  | 88(4)  | 44(2)  | 5(2)   | -7(2)   | -17(2)  |     |
| O(3)  | 81(4)  | 72(4)  | 129(5) | 3(3)   | 29(4)   | 26(3)   |     |
| O(4)  | 108(4) | 47(3)  | 94(4)  | 1(3)   | 42(3)   | -6(3)   |     |
| C(1)  | 45(3)  | 42(3)  | 33(3)  | 3(2)   | 7(2)    | -4(2)   |     |
| C(2)  | 61(4)  | 46(3)  | 44(3)  | 1(3)   | 15(3)   | 4(3)    |     |
| C(3)  | 43(3)  | 45(3)  | 40(2)  | 5(3)   | 6(2)    | -9(3)   |     |
| C(4)  | 71(4)  | 47(3)  | 38(3)  | 6(3)   | 2(3)    | 5(3)    |     |
| C(5)  | 50(9)  | 50(8)  | 42(9)  | 4(6)   | 31(6)   | 12(6)   |     |
| C(6)  | 62(8)  | 55(8)  | 62(9)  | 18(7)  | 32(7)   | 13(6)   |     |
| C(6') | 81(16) | 60(13) | 50(12) | -3(9)  | -24(12) | -17(11) |     |

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2011

| C(5') | 55(12)  | 39(10) | 29(9)   | -15(8) | 16(8)  | 15(8)  |
|-------|---------|--------|---------|--------|--------|--------|
| C(7)  | 63(3)   | 54(3)  | 40(3)   | -1(3)  | 13(2)  | 11(4)  |
| C(8)  | 64(4)   | 56(4)  | 54(4)   | 1(3)   | 3(3)   | 8(3)   |
| C(9)  | 66(4)   | 63(5)  | 53(4)   | 4(3)   | 17(3)  | 9(3)   |
| C(10) | 49(4)   | 47(3)  | 29(3)   | 5(3)   | 6(3)   | 5(3)   |
| C(11) | 45(3)   | 53(4)  | 42(3)   | 4(3)   | 12(3)  | 0(3)   |
| C(12) | 50(3)   | 64(4)  | 37(3)   | -9(3)  | 0(3)   | 6(3)   |
| C(13) | 69(4)   | 78(5)  | 29(3)   | 5(3)   | 8(3)   | 8(4)   |
| C(14) | 71(4)   | 72(5)  | 50(4)   | 12(3)  | 25(3)  | -3(3)  |
| C(15) | 48(4)   | 59(4)  | 42(4)   | 2(3)   | 10(3)  | -6(3)  |
| C(16) | 162(10) | 42(4)  | 96(7)   | 12(5)  | -72(7) | -13(5) |
| C(17) | 169(9)  | 57(5)  | 73(5)   | -14(4) | -9(6)  | -5(6)  |
| C(18) | 110(7)  | 54(5)  | 94(7)   | -10(5) | -8(5)  | -4(4)  |
| C(19) | 111(7)  | 61(5)  | 83(6)   | 0(5)   | -32(5) | -8(5)  |
| C(20) | 128(8)  | 83(7)  | 90(7)   | 4(5)   | 6(6)   | 7(6)   |
| C(21) | 122(8)  | 90(8)  | 145(10) | 34(8)  | -49(8) | -22(6) |
| C(22) | 55(4)   | 50(4)  | 67(4)   | 17(3)  | 31(3)  | 7(3)   |
| C(23) | 64(4)   | 87(5)  | 63(5)   | 1(4)   | 12(4)  | 0(4)   |
| C(24) | 89(6)   | 101(6) | 50(4)   | 3(4)   | 21(4)  | 11(5)  |
| C(25) | 71(5)   | 85(5)  | 68(5)   | 14(4)  | 39(4)  | 9(4)   |
| C(26) | 57(4)   | 72(5)  | 71(5)   | 13(4)  | 18(4)  | 0(4)   |
| C(27) | 69(4)   | 66(4)  | 47(4)   | 5(3)   | 15(3)  | 7(3)   |

#### Table 5. Hydrogen coordinates ( x 10^4) and isotropic

displacement parameters (A<sup>2</sup> x 10<sup>3</sup>) for 794851.

|       |      |      | _     |       |
|-------|------|------|-------|-------|
|       | X    | У    | Z     | U(eq) |
|       |      |      |       |       |
| H(1)  | 5793 | 4623 | 9577  | 48    |
| H(2A) | 678  | 4385 | 9614  | 60    |
| H(2B) | 2656 | 4624 | 10486 | 60    |
| H(3)  | 2890 | 3035 | 9615  | 51    |
| H(5)  | 2956 | 1749 | 8913  | 53    |
| H(6)  | 6554 | 1722 | 7715  | 68    |
| H(6') | 2204 | 1693 | 8613  | 81    |
| H(5') | 6510 | 1959 | 8063  | 48    |
| H(8)  | 2708 | 2562 | 11060 | 71    |
| H(9)  | 6153 | 3197 | 12446 | 72    |
| H(11) | 700  | 3554 | 8072  | 55    |
| H(13) | 2707 | 4420 | 5716  | 71    |
| H(14) | 5907 | 5252 | 6593  | 75    |

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2011

| H(15) | 6500  | 5228 | 8174  | 59  |
|-------|-------|------|-------|-----|
| H(17) | 781   | 525  | 8255  | 124 |
| H(18) | -1124 | -615 | 7319  | 107 |
| H(19) | 22    | -898 | 5925  | 109 |
| H(20) | 3108  | -87  | 5467  | 122 |
| H(21) | 5262  | 972  | 6445  | 153 |
| H(23) | 5773  | 2891 | 14010 | 85  |
| H(24) | 3767  | 2292 | 15093 | 95  |
| H(25) | 166   | 1494 | 14665 | 86  |
| H(26) | -1478 | 1320 | 13109 | 79  |
| H(27) | 449   | 1961 | 12003 | 72  |
|       |       |      |       |     |

### Table 6. Torsion angles [deg] for 794851.

| O(3)-N(1)-C(2)-C(1)  | 158.7(6)   |
|----------------------|------------|
| O(4)-N(1)-C(2)-C(1)  | -24.2(7)   |
| C(10)-C(1)-C(2)-N(1) | -59.9(7)   |
| C(3)-C(1)-C(2)-N(1)  | 176.0(4)   |
| C(10)-C(1)-C(3)-C(7) | 164.3(5)   |
| C(2)-C(1)-C(3)-C(7)  | -71.1(5)   |
| C(10)-C(1)-C(3)-C(4) | 43.1(6)    |
| C(2)-C(1)-C(3)-C(4)  | 167.7(4)   |
| C(7)-C(3)-C(4)-O(1)  | -64.2(7)   |
| C(1)-C(3)-C(4)-O(1)  | 58.2(7)    |
| C(7)-C(3)-C(4)-C(5') | 129.6(12)  |
| C(1)-C(3)-C(4)-C(5') | -108.1(12) |
| C(7)-C(3)-C(4)-C(5)  | 116.1(7)   |
| C(1)-C(3)-C(4)-C(5)  | -121.5(6)  |
| O(1)-C(4)-C(5)-C(6)  | -19.8(15)  |
| C(5')-C(4)-C(5)-C(6) | 2.8(17)    |
| C(3)-C(4)-C(5)-C(6)  | 159.9(9)   |
| C(4)-C(5)-C(6)-C(16) | -173.5(8)  |

| C(16)-C(6')-C(5')-C(4)  | -179.2(14) |
|-------------------------|------------|
| O(1)-C(4)-C(5')-C(6')   | 176(2)     |
| C(3)-C(4)-C(5')-C(6')   | -17(3)     |
| C(5)-C(4)-C(5')-C(6')   | 12.3(18)   |
| C(1)-C(3)-C(7)-O(2)     | -57.6(7)   |
| C(4)-C(3)-C(7)-O(2)     | 65.0(8)    |
| C(1)-C(3)-C(7)-C(8)     | 117.6(6)   |
| C(4)-C(3)-C(7)-C(8)     | -119.8(6)  |
| O(2)-C(7)-C(8)-C(9)     | 5.8(11)    |
| C(3)-C(7)-C(8)-C(9)     | -169.2(6)  |
| C(7)-C(8)-C(9)-C(22)    | -178.4(6)  |
| C(3)-C(1)-C(10)-C(15)   | -123.5(6)  |
| C(2)-C(1)-C(10)-C(15)   | 116.3(6)   |
| C(3)-C(1)-C(10)-C(11)   | 53.0(7)    |
| C(2)-C(1)-C(10)-C(11)   | -67.2(7)   |
| C(15)-C(10)-C(11)-C(12) | 1.1(9)     |
| C(1)-C(10)-C(11)-C(12)  | -175.4(5)  |
| C(10)-C(11)-C(12)-C(13) | 0.2(9)     |
| C(10)-C(11)-C(12)-Br(1) | 175.1(4)   |
| C(11)-C(12)-C(13)-C(14) | -1.2(10)   |
| Br(1)-C(12)-C(13)-C(14) | -176.0(5)  |
| C(12)-C(13)-C(14)-C(15) | 0.8(10)    |
| C(13)-C(14)-C(15)-C(10) | 0.5(10)    |
|-------------------------|------------|
| C(11)-C(10)-C(15)-C(14) | -1.5(9)    |
| C(1)-C(10)-C(15)-C(14)  | 175.0(6)   |
| C(5)-C(6)-C(16)-C(21)   | 168.9(10)  |
| C(5)-C(6)-C(16)-C(17)   | -16.6(18)  |
| C(5)-C(6)-C(16)-C(6')   | 7.1(14)    |
| C(5')-C(6')-C(16)-C(21) | -30(3)     |
| C(5')-C(6')-C(16)-C(17) | 164.5(18)  |
| C(5')-C(6')-C(16)-C(6)  | 0.8(14)    |
| C(21)-C(16)-C(17)-C(18) | 1.4(15)    |
| C(6)-C(16)-C(17)-C(18)  | -172.7(10) |
| C(6')-C(16)-C(17)-C(18) | 171.7(11)  |
| C(16)-C(17)-C(18)-C(19) | -2.6(14)   |
| C(17)-C(18)-C(19)-C(20) | 1.0(13)    |
| C(18)-C(19)-C(20)-C(21) | 1.9(14)    |
| C(17)-C(16)-C(21)-C(20) | 1.5(15)    |
| C(6)-C(16)-C(21)-C(20)  | 177.2(9)   |
| C(6')-C(16)-C(21)-C(20) | -161.7(17) |
| C(19)-C(20)-C(21)-C(16) | -3.2(15)   |
| C(8)-C(9)-C(22)-C(23)   | 178.3(7)   |
| C(8)-C(9)-C(22)-C(27)   | -1.2(11)   |
| C(27)-C(22)-C(23)-C(24) | 0.0(10)    |

| C(9)-C(22)-C(23)-C(24)  | -179.4(7) |
|-------------------------|-----------|
| C(22)-C(23)-C(24)-C(25) | 0.9(12)   |
| C(23)-C(24)-C(25)-C(26) | -0.7(12)  |
| C(24)-C(25)-C(26)-C(27) | -0.5(11)  |
| C(25)-C(26)-C(27)-C(22) | 1.4(11)   |
| C(23)-C(22)-C(27)-C(26) | -1.2(10)  |
| C(9)-C(22)-C(27)-C(26)  | 178.3(6)  |
|                         |           |

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 794851 [A and deg.].

| D-HA              | d(D-H) | d(HA) | d(DA)    | <(DHA) |
|-------------------|--------|-------|----------|--------|
| C(11)-H(11)O(1)#1 | 0.93   | 2.33  | 3.240(7) | 165.7  |
| C(3)-H(3)O(1)#1   | 0.98   | 2.58  | 3.488(7) | 154.1  |
| C(2)-H(2A)O(1)#1  | 0.97   | 2.51  | 3.411(8) | 154.1  |

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z

**G:** References

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

- 1. J. X. Ye, D. J. Dixon and P. S. Hynes, Chem. Commun., 2005, 4481.
- 2. Z. H. Zhang, X. Q. Dong, X. J. Wu and C. J. Wang, Chem. Commun., 2008, 1431.
- 3. T. Okino, Y. Hoashi and Y. Takemoto, J. Am. Chem. Soc., 2003, 125, 12672.
- 4. J. M. Andrés, R. Manzano and R. Pedrosa, Chem. -Eur. J., 2008, 5116.