SUPPORTING INFORMATION

for

Kinetic studies of retinol addition radicals

Ali El-Agamey, *^{a,b,c} Shunichi Fukuzumi, *^{a,d} K. Razi Naqvi,^e and David J McGarvey^b

^aDepartment of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; ^bSchool of Physical and Geographical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK; ^cChemistry Department, Faculty of Science, Mansoura University, New Damietta, Damietta, Egypt; ^dDepartment of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea; ^eDepartment of Physics, Norwegian University of Science and Technology (NTNU), N-7491,

Trondheim, Norway.

*Corresponding authors: Ali El-Agamey (Osaka University); Shunichi Fukuzumi (Osaka University)

E-mails: <u>a el agamey@yahoo.co.uk;</u> <u>fukuzumi@chem.eng.osaka-u.ac.jp</u> Tel. No.: +81-0668797369; Fax No.: +81-0668797370

Contents

Fig. S1 Transient spectra of 2-PyrS' obtained following 266 nm laser photolysis of 2, 2⁻ dipyridyl disulfide ($\sim 3.0 \times 10^{-4}$ M) in air-saturated methanol (laser energy ~ 7 mJ). The inset shows the transient profiles at 380 and 490 nm.

Fig. S2 Transient absorption spectra obtained following LFP (266 nm) of phenyl disulfide ($\sim 6 \times 10^{-4}$ M) in air-saturated methanol (laser energy ~ 10 mJ).

Fig. S3 Normalized kinetic absorption profiles for the decay of PhS' at 450 nm in air- and argon-saturated methanol (laser energy ~4 mJ).

Fig. S4 Transient spectra of 2-PyrS-retinol' obtained following 266 nm laser photolysis of 2, 2`-dipyridyl disulfide ($\sim 3.0 \times 10^{-4}$ M) in the presence of retinol ($\sim 5.0 \times 10^{-5}$ M) in air-saturated methanol at room temperature (laser energy ~ 4 mJ). The inset shows a kinetic absorption profile for the decay of 2-PyrS-retinol' at 380 nm.

Fig. S5 Transient spectra of PhS-retinol' obtained following 266 nm laser photolysis of phenyl disulfide ($\sim 6 \times 10^{-4}$ M) in the presence of retinol ($\sim 5.0 \times 10^{-5}$ M) in air-saturated methanol at room temperature (laser energy ~ 4 mJ). The inset shows a kinetic absorption profile for the decay of PhS-retinol' at 380 nm.

Fig. S6 Transient spectra of 4-PyrS-retinol' obtained following 266 nm laser photolysis of 4, 4'-dipyridyl disulfide ($\sim 1.0 \times 10^{-4}$ M) in the presence of retinol ($\sim 4.0 \times 10^{-5}$ M) in air-saturated cyclohexane at room temperature (laser energy ~ 4 mJ). The inset shows a kinetic absorption profile for the decay of 4-PyrS-retinol' at 380 nm.

Fig. S7 Transient spectra of 4-PyrS-retinol' obtained following 266 nm laser photolysis of 4, 4'-dipyridyl disulfide ($\sim 2.0 \times 10^{-4}$ M) in the presence of retinol ($\sim 4.0 \times 10^{-5}$ M) in argon-saturated methanol at room temperature (laser energy ~ 4 mJ). The inset shows a kinetic absorption profile for the decay of 4-PyrS-retinol' at 380 nm.

Fig. S8 Plots of pseudo-first order rate constants (k_{obs}) for formation of PhS-retinol[•], 4-PyrS-retinol[•] or 2-PyrS-retinol[•] at 380 nm, from the reaction of retinol with phenyl disulfide, 4, 4[•]-dipyridyl disulfide or 2, 2[•]-dipyridyl disulfide, respectively in airsaturated methanol versus the concentration of retinol (laser energy ~4.0 mJ).

Fig. S9 Kinetic absorption profiles for the formation of 4-PyrS-retinol at 380 nm at various retinol concentrations formed following 266 nm laser photolysis (laser energy ~4 mJ) of 4, 4 dipyridyl disulfide ($\sim 2.0 \times 10^{-4}$ M) in the presence of retinol in air-saturated methanol.

Fig. S10 Kinetic absorption profiles for the formation of 2-PyrS-retinol[•] at 380 nm at various retinol concentrations formed following 266 nm laser photolysis (laser energy ~4 mJ) of 2, 2[•]-dipyridyl disulfide (~ 3.0×10^{-4} M) in the presence of retinol in air-saturated methanol.

Fig. S11 Kinetic absorption profiles for the formation of PhS-retinol at 380 nm at various retinol concentrations formed following 266 nm laser photolysis (laser energy ~4 mJ) of phenyl disulfide (~ 6.0×10^{-4} M) in the presence of retinol in air-saturated methanol.

Fig. S12 Arrhenius plot for the slow growth (at 380 nm) generated from the reaction of 4-PyrS' (4,4`-dipyridyl disulfide $\sim 2 \times 10^{-4}$ M) and retinol ($\sim 8.0 \times 10^{-5}$ M), in argonsaturated methanol (laser energy ~ 4 mJ).

Fig. S13 Transient spectra of 4-PyrS-retinol[•] obtained following 266 nm laser photolysis of 4, 4[•]-dipyridyl disulfide ($\sim 2.0 \times 10^{-4}$ M) in the presence of retinol ($\sim 4.0 \times 10^{-5}$ M) in air-saturated methanol at 334 K (laser energy ~ 4 mJ). The inset shows a kinetic absorption profile of 4-PyrS-retinol[•] at 380 nm.

Fig. S14 Eyring plots for the slow growth (at 380 nm) generated from the reaction of 4-PyrS' or 2-PyrS' with retinol ($\sim 8.0 \times 10^{-5}$ M), in argon-saturated methanol (laser energy ~ 4 mJ).

Fig. S15 Transient profiles, at 380 nm, for 4-PyrS-retinol and 4-PyrS in argon-saturated methanol at 334 K (laser energy ~4 mJ).

Fig. S16 Transient profiles, at 380 nm, for 2-PyrS-retinol and 2-PyrS in argon-saturated methanol at 334 K (laser energy ~4 mJ).

Fig. S17 Transient profile of PhS-retinol[•], at 380 nm, following 266 nm laser photolysis (laser energy ~4 mJ) of phenyl disulfide (~ 6×10^{-4} M) in the presence of retinol (~ 9.0×10^{-5} M), in argon-saturated methanol at 333 K.

Fig. S18 Normalized kinetic absorption profiles for the decay of 4-PyrS-retinol[•] at 380 nm in methanol at various oxygen concentrations (5, 21, 50 and 100%) formed following 266 nm laser photolysis (laser energy ~4 mJ) of 4, 4[•]-dipyridyl disulfide (~2 × 10⁻⁴ M) in the presence of retinol (~8.0 × 10⁻⁵ M). The inset shows plots of pseudo-first order rate constants (k_{obs}) for the fast and slow decay of 4-PyrS-retinol[•], at 380 nm, versus the oxygen concentration.

Fig. S19 The influence of temperature on the normalized transient profiles, at 380 nm, of 2-PyrS-retinol following 266 nm laser photolysis (laser energy ~4 mJ) of 2, 2 dipyridyl disulfide (~ 3.0×10^{-4} M) in the presence of retinol (~ 8×10^{-5} M), in air-saturated methanol.

Fig. S20 Plots of pseudo-first order rate constants (k_{obs}) for the fast and slow decay of PhS-retinol' at 380 nm, generated following 266 nm laser photolysis of phenyl disulfide (~6 × 10⁻⁴ M) with retinol (~9.0 × 10⁻⁵ M) in methanol, versus the oxygen concentration (laser energy ~4 mJ). The inset shows normalized kinetic absorption profiles for the decay of PhS-retinol', at 380 nm, at various oxygen concentrations (1, 5, 21, 50, 100% and argon).

Fig. S21 The influence of temperature on the normalized transient profiles, at 380 nm, of PhS-retinol' following 266 nm laser photolysis (laser energy ~4 mJ) of phenyl disulfide ($\sim 6 \times 10^{-4}$ M) in the presence of retinol ($\sim 9.0 \times 10^{-5}$ M), in air-saturated methanol.

Table S1: Values of k_{obs} for the slow absorption rise at 380 nm following 266 nm LFP (laser energy ~4 mJ) of 4, 4[°]-dipyridyl disulfide (~2 × 10⁻⁴ M) in the presence of retinol (~8.0 × 10⁻⁵ M), in argon-saturated methanol at different temperatures.

Table S2: Values of k_{obs} for the slow absorption rise at 380 nm following 266 nm LFP (laser energy ~4 mJ) of 2, 2⁻-dipyridyl disulfide (~3.0 × 10⁻⁴ M) in the presence of retinol (~8.0 × 10⁻⁵ M), in argon-saturated methanol at different temperatures.

Fig. S1 Transient spectra of 2-PyrS' obtained following 266 nm laser photolysis of 2, 2`- dipyridyl disulfide ($\sim 3.0 \times 10^{-4}$ M) in air-saturated methanol (laser energy ~ 7 mJ). The inset shows the transient profiles at 380 and 490 nm.

Fig. S2 Transient absorption spectra obtained following LFP (266 nm) of phenyl disulfide ($\sim 6 \times 10^{-4}$ M) in air-saturated methanol (laser energy ~ 10 mJ).

Fig. S3 Normalized kinetic absorption profiles for the decay of PhS[•] at 450 nm in air- and argon-saturated methanol (laser energy ~4 mJ).

Fig. S4 Transient spectra of 2-PyrS-retinol[•] obtained following 266 nm laser photolysis of 2, 2[•]-dipyridyl disulfide ($\sim 3.0 \times 10^{-4}$ M) in the presence of retinol ($\sim 5.0 \times 10^{-5}$ M) in air-saturated methanol at room temperature (laser energy ~ 4 mJ). The inset shows a kinetic absorption profile for the decay of 2-PyrS-retinol[•] at 380 nm.

Fig. S5 Transient spectra of PhS-retinol' obtained following 266 nm laser photolysis of phenyl disulfide ($\sim 6 \times 10^{-4}$ M) in the presence of retinol ($\sim 5.0 \times 10^{-5}$ M) in air-saturated methanol at room temperature (laser energy ~ 4 mJ). The inset shows a kinetic absorption profile for the decay of PhS-retinol' at 380 nm.

Fig. S6 Transient spectra of 4-PyrS-retinol[•] obtained following 266 nm laser photolysis of 4, 4[•]-dipyridyl disulfide ($\sim 1.0 \times 10^{-4}$ M) in the presence of retinol ($\sim 4.0 \times 10^{-5}$ M) in air-saturated cyclohexane at room temperature (laser energy ~ 4 mJ). The inset shows a kinetic absorption profile for the decay of 4-PyrS-retinol[•] at 380 nm.

Fig. S7 Transient spectra of 4-PyrS-retinol[•] obtained following 266 nm laser photolysis of 4, 4[•]-dipyridyl disulfide ($\sim 2.0 \times 10^{-4}$ M) in the presence of retinol ($\sim 4.0 \times 10^{-5}$ M) in argon-saturated methanol at room temperature (laser energy ~ 4 mJ). The inset shows a kinetic absorption profile for the decay of 4-PyrS-retinol[•] at 380 nm.

Fig. S8 Plots of pseudo-first order rate constants (k_{obs}) for formation of PhS-retinol[•], 4-PyrS-retinol[•] or 2-PyrS-retinol[•] at 380 nm, from the reaction of retinol with phenyl disulfide, 4, 4[°]-dipyridyl disulfide or 2, 2[°]-dipyridyl disulfide, respectively in airsaturated methanol versus the concentration of retinol (laser energy ~4.0 mJ).

Fig. S9 Kinetic absorption profiles for the formation of 4-PyrS-retinol at 380 nm at various retinol concentrations formed following 266 nm laser photolysis (laser energy ~4 mJ) of 4, 4[°]-dipyridyl disulfide (~ 2.0×10^{-4} M) in the presence of retinol in air-saturated methanol.

Fig. S10 Kinetic absorption profiles for the formation of 2-PyrS-retinol[•] at 380 nm at various retinol concentrations formed following 266 nm laser photolysis (laser energy ~4 mJ) of 2, 2[•]-dipyridyl disulfide (~ 3.0×10^{-4} M) in the presence of retinol in air-saturated methanol.

Fig. S11 Kinetic absorption profiles for the formation of PhS-retinol at 380 nm at various retinol concentrations formed following 266 nm laser photolysis (laser energy ~4 mJ) of phenyl disulfide (~ 6.0×10^{-4} M) in the presence of retinol in air-saturated methanol.

Fig. S12 Arrhenius plot for the slow growth (at 380 nm) generated from the reaction of 4-PyrS' (4,4'-dipyridyl disulfide $\sim 2 \times 10^{-4}$ M) and retinol ($\sim 8.0 \times 10^{-5}$ M), in argonsaturated methanol (laser energy ~ 4 mJ).

Fig. S13 Transient spectra of 4-PyrS-retinol' obtained following 266 nm laser photolysis of 4, 4'-dipyridyl disulfide ($\sim 2.0 \times 10^{-4}$ M) in the presence of retinol ($\sim 4.0 \times 10^{-5}$ M) in air-saturated methanol at 334 K (laser energy ~ 4 mJ). The inset shows a kinetic absorption profile of 4-PyrS-retinol' at 380 nm.

Fig. S14 Eyring plots for the slow growth (at 380 nm) generated from the reaction of 4-PyrS' or 2-PyrS' with retinol ($\sim 8.0 \times 10^{-5}$ M), in argon-saturated methanol (laser energy ~ 4 mJ).

Fig. S15 Transient profiles, at 380 nm, for 4-PyrS-retinol and 4-PyrS in argon-saturated methanol at 334 K (laser energy ~4 mJ).

Fig. S16 Transient profiles, at 380 nm, for 2-PyrS-retinol and 2-PyrS in argon-saturated methanol at 334 K (laser energy ~4 mJ).

Fig. S17 Transient profile of PhS-retinol[•], at 380 nm, following 266 nm laser photolysis (laser energy ~4 mJ) of phenyl disulfide (~ 6×10^{-4} M) in the presence of retinol (~ 9.0×10^{-5} M), in argon-saturated methanol at 333 K.

Fig. S18 Normalized kinetic absorption profiles for the decay of 4-PyrS-retinol' at 380 nm in methanol at various oxygen concentrations (5, 21, 50 and 100%) formed following 266 nm laser photolysis (laser energy ~4 mJ) of 4, 4'-dipyridyl disulfide (~2 × 10⁻⁴ M) in the presence of retinol (~8.0 × 10⁻⁵ M). The inset shows plots of pseudo-first order rate constants (k_{obs}) for the fast and slow decay of 4-PyrS-retinol', at 380 nm, versus the oxygen concentration.

Fig. S19 The influence of temperature on the normalized transient profiles, at 380 nm, of 2-PyrS-retinol following 266 nm laser photolysis (laser energy ~4 mJ) of 2, 2 dipyridyl disulfide (~ 3.0×10^{-4} M) in the presence of retinol (~ 8×10^{-5} M), in air-saturated methanol.

Fig. S20 Plots of pseudo-first order rate constants (k_{obs}) for the fast and slow decay of PhS-retinol' at 380 nm, generated following 266 nm laser photolysis of phenyl disulfide (~6 × 10⁻⁴ M) with retinol (~9.0 × 10⁻⁵ M) in methanol, versus the oxygen concentration (laser energy ~4 mJ). The inset shows normalized kinetic absorption profiles for the decay of PhS-retinol', at 380 nm, at various oxygen concentrations (1, 5, 21, 50, 100% and argon).

Fig. S21 The influence of temperature on the normalized transient profiles, at 380 nm, of PhS-retinol' following 266 nm laser photolysis (laser energy ~4 mJ) of phenyl disulfide (~ 6×10^{-4} M) in the presence of retinol (~ 9.0×10^{-5} M), in air-saturated methanol.

Table S1: Values of k_{obs} for the slow absorption rise at 380 nm following 266 nm LFP (laser energy ~4 mJ) of 4, 4`-dipyridyl disulfide (~2 × 10⁻⁴ M) in the presence of retinol (~8.0 × 10⁻⁵ M), in argon-saturated methanol at different temperatures.

$k_{\rm obs}$ for the slow absorption rise/ s ⁻¹
1.78 × 10 ⁴
1.10 × 10 ⁴
7.45 × 10 ³
4.25 × 10 ³
1.39 × 10 ³

Table S2: Values of k_{obs} for the slow absorption rise at 380 nm following 266 nm LFP (laser energy ~4 mJ) of 2, 2⁻-dipyridyl disulfide (~3.0 × 10⁻⁴ M) in the presence of retinol (~8.0 × 10⁻⁵ M), in argon-saturated methanol at different temperatures.

T/K	$k_{\rm obs}$ for the slow absorption rise/ s ⁻¹
334	3.29×10^4
327	2.14 × 10 ⁴
321	1.60 × 10 ⁴
311	8.55 × 10 ³
296	3.48×10^{3}