Supporting Information

Addition-substitution reactions of 2-thio-3-chloroacrylamides with carbon, nitrogen, oxygen, sulfur and selenium nucleophiles Marie Kissane,^a Maureen Murphy,^a Elisabeth O'Brien,^a Jay Chopra,^a Linda Murphy,^a Stuart G. Collins,^a Simon E. Lawrence^a and Anita R. Maguire^b*

^aDepartment of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Ireland ^bDepartment of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, University College Cork, Ireland email: a.maguire@ucc.ie

Carbon Based Nucleophiles

Alkylation of malonate adducts

Alkylation of the malonate adducts can be envisaged at either the α - or γ -position, and a brief exploration was undertaken to establish the potential synthetic utility of this transformation. Thus, **2c** was treated with allyl bromide, benzyl bromide and methyl iodide in the presence of potassium carbonate in acetonitrile. Table 1 summarises the results.

Table 1 Alkylation of 2c

This journal is (c) The Royal Society of Chemistry 2010

methyl iodide	3 c	45
2		

a) Isolated yield after chromatographic purification

To confirm that γ -alkylation had occurred, **3c** was independently synthesised by reacting diethyl 2-methylmalonate with **1c**, the spectroscopic details of which were identical to those of **3c** when prepared from the methylation of the diethyl malonate substituted acrylamide **2c** (Scheme 1).

Scheme 1

Nitrogen Based Nucleophiles

Examination of the X-ray structure of **24a** reveals the existence of a hydrogen bond from the amide proton to an oxygen of the sulfone, leading to a highly organised and rigid six-membered structure (Figure 1).

Figure 1

Interestingly, analysis of the dihedral angles outlined in Table 2 reveal that the acrylamide unit is quite distorted from planarity, reflecting limited conjugation between nitrogen and the acrylamide system. However, this isomer is clearly more stable than the analogous Z isomer, which was never observed.

	Dihedral Angle
O3-C7-C8-C9	-37.4
N1-C7-C8-C9	143.3
N2-C9-C8-C7	-14.9
C10-N2-C8-C9	-12.9
C13-N2-C8-C9	-174.2

Table 2 Selected Dihedral Angles in 24a

Reaction with ammonia and hydroxylamine

Treatment of the sulfide 1a with ammonia and hydroxylamine resulted in complex mixtures of products due to the possibilities for E and Z isomer formation and imine-amine tautomerisation.

Treatment of the sulfide 1a with hydroxylamine (generated *in situ* from hydroxylamine hydrochloride and potassium carbonate) yielded two products, tentatively assigned as the oxime isomers 29a (Scheme 2). However, due to interconversion of the *E* and *Z* isomers, these were not isolated or fully characterised.

While full characterisation was not possible, two pairs of doublets at $\delta_{\rm H}$ 4.69 and 7.59 (*J* 8) for the isomer tentatively assigned as *Z*, and at $\delta_{\rm H}$ 5.39 and 7.00 (*J* 8) for the isomer tentatively assigned as *E*, characteristic of the oxime were evident in the ¹H NMR spectrum. Tentative stereochemical assignment of the *E* isomer was made on the basis that the ¹H NMR spectrum showed a broad OH signal at $\delta_{\rm H}$ 10.11-10.27, deshielded due to intramolecular hydrogen-bonding, while the other isomer had an OH signal at $\delta_{\rm H}$ 3.09. The ratio of the *E* and *Z* oximes was determined in several solvents and was estimated by ¹H NMR integration of

the α and β -protons. In acetone- d_6 and DMSO- d_6 , the Z isomer was favoured (1.4:1) while they were equally abundant in d_4 -methanol (1:1).

On reaction of **1a** with 2.2 equivalents of aqueous ammonia in acetone, the reaction was incomplete by TLC analysis after 74 hours and a further 2.2 equivalents of aqueous ammonia was added. After stirring at room temperature for a further 24 hours, only traces of the sulfide **1a** remained and following the work-up, a mixture of isomers of the ammonia adduct, tentatively assigned as the *E* and *Z* isomers and potentially containing imino tautomers, was obtained. Chromatographic purification proved complex as equilibration of the *E* and *Z* isomers and tautomers made isolation difficult. Thus, the isomers were not isolated or fully characterised but were tentatively assigned as *E* and *Z* isomers of the β-aminoacrylamide **30a** and β-iminoacrylamide **31a** (Scheme 3).

Scheme 3

In contrast, reaction of the sulfoxide **18c** with 2.2 equivalents of aqueous ammonia in acetone gave the adduct **32c** as a single stereoisomer (tentatively assigned as E) following stirring at room temperature for 16 hours (Scheme 4). The extended conjugation with the sulfoxide favours the enamino tautomer, with no evidence for the analogous imino tautomer at the sulfoxide level of oxidation.

The observation of only one stereoisomer of **32c** can be rationalised in terms of stabilisation of the enamino adduct by intramolecular hydrogen bonding. The ¹H NMR spectroscopic evidence supports the *E* isomer assignment, with the signal for the β -hydrogen in the range $\delta_{\rm H}$ 7.29-7.62, and one enamine proton involved in hydrogen hydrogen bonding being more deshielded ($\delta_{\rm H}$ 7.27) than the other non-hydrogen bonded proton ($\delta_{\rm H}$ 5.38).

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Oxygen Based Nucleophiles

The relative stereochemistry of the major isomer of the acetal **38a** was determined by single crystal X-ray diffraction after recrystallisation of a sample from acetonitrile/acetone (Figure 2).

Figure 2

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Experimental

Carbon Nucleophiles

Addition of enolate of diethyl malonate

(1S)-N-1-Phenylethyl-4,4-di(ethoxycarbonyl)-2-(phenylthio)-2-pentenamide 2b

This was prepared following the procedure described for pentenamide 2a using DIPA (73 mg, 0.7 mmol), *n*-butyllithium (0.3 mL, 1.6 M in hexane, 0.69 mmol), diethylmalonate (101 mg, 0.7 mmol), **1b** (0.20g, 0.63 mmol) and THF (5 and 5 mL) at 0 °C for 1 h and then at 10 °C for 1 h. Purification by chromatography using ethyl acetate-hexane (20:80) as eluent gave **2b** (0.20 g, 72%) as a colourless oil. The product contained a minor isomer which could not be separated by chromatography. The ratio was estimated to be (30:1) by ¹H NMR integration; $[\alpha]_{20}^{D}$ -0.37 (c 9 in ethanol); (Found C, 64.80; H, 6.22; N, 3.11. C₂₄H₂₇NO₅S requires C, 65.29; H, 6.16; N, 3.17%); v_{max}/cm⁻¹ (film) 3339 (br NH), 1747 (CO ester), 1643 (CO α , β -unsaturated amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.27 (9H, m, 2 × CH₃CH₂O and CH₃CHPh), 4.11, 4.29 (4H, m, 2 × CH₂O), 4.90 [1H, d, J 10, C(4)H], 4.96-5.05 (1H, dq, J 7, 8, NCH), 6.90-7.30 (10H, m, ArH), 7.60 [1H, d, J 10, C(3)H=]; $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 13.9 (CH₃CH₂O), 21.3 (CH₃CHPh), 49.3 (NCH), 54.2 [C(4)H], 64.2 (CH₂O) 125.8, 127.0, 127.1, 128.1, 128.5, 129.5 (aromatic CH), 132.4, 133.5 (quaternary aromatic C and SC=), 139.7 [C(3)H=], 142.5 (quaternary aromatic C), 162.0 (CO amide), 166.4 (CO ester); MS m/z 441 (M⁺, 23%), 395 (17%, M⁺-EtOH), 291 (30%), 120 (22%), 105 (100%); Signals for the minor isomer were seen in the ¹H NMR spectrum at 5.40 [1H, d, J 9, C(4)H], 6.78 [1H, d, J 10, C(3)H=]; all other signals were identical to the major isomer.

N-Benzyl-4-ethoxycarbonyl-2-(phenylthio)-2-pentenamide-5-ethylester 2c

This was prepared following the procedure described for pentenamide **2a** using DIPA (0.5 mL, 3.6 mmol), *n*-butyllithium (2.4 mL, 1.6 M in hexane, 3.8 mmol), diethylmalonate (0.6 mL, 3.6 mmol), **1c** (1.00 g, 3.3 mmol) and THF (20 and 15 mL) at 0 °C. Following stirring at room temperature for 1.5 h, the crude product was obtained as an orange oil. Following chromatography on silica gel using 20:80 ethyl acetate/hexane the pure product **2c** was isolated as a white solid (1.25 g, 88%); m.p. 82–84 °C; (Found C, 64.81 ; H, 5.92; N, 3.27; S, 7.81; C₂₃H₂₅NO₅S requires C, 64.62; H, 5.89; N, 3.28; S, 7.50%) ; v_{max}/cm^{-1} (film) 3331

(NH), 1750, 1734 (CO ester), 1649 (CO amide); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.27 (6H, t, *J* 7.3, 2 × CH₃), 4.22 (4H, q, *J* 7.0, 2 × CH₂), 4.40 (2H, d, *J* 5.9, NCH₂Ph), 4.91 [1H, d, *J* 9.7, CH(CO₂Et)₂], 6.83-6.91 (2H, m, ArH), 7.06-7.33 (9H, m, ArH, NH), 7.67 [1H, d, *J* 9.7, C(3)H=]; $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 14.4 (CH₃, OCH₂CH₃), 44.5 (CH₂, NCH₂Ph), 54.6 [CH, CH(CO₂Et)₂], 62.5 (CH₂, OCH₂CH₃), 127.3, 127.7, 128.4, 128.9, 129.1, 129.9 (CH, aromatic CH), 132.5, 133.9, 137.9 (C, 2 × aromatic *C*, PhS*C*=), 140.7 [CH, *C*(3)H=],163.5 (C, amide CO), 166.8 (C, ester CO); MS *m*/*z* 427 (11%, M⁺), 268 [7%, (M–C₇H₁₁O₄)⁺], 91 [100%, (CH₂Ph)⁺]. There is some evidence, including TLC evidence, that this compound is interconverting with a minor isomer in a 15:1 ratio; $\delta_{\rm H}$ (270 MHz, CDCl₃) 4.38 (2H, d, *J* 5.9, NCH₂Ph), 5.49 [1H, d, *J* 9.7, CH(CO₂Et)₂], 6.82 [1H, d, *J* 9.7, C(3)H=].

Alkylation

N-phenylmethyl-4,4-di(ethoxycarbonyl)-5-phenyl-2-phenylthio-2-pentenamide 3b

Following the procedure described for the synthesis of **3a**, using **2c** (0.30 g, 0.69 mmol), potassium carbonate (0.19 g, 1.39 mmol) and benzyl bromide (0.17 mL, 1.39 mmol) in acetonitrile (6 mL) and acetone (3 mL), a mixture of products was recovered. Following chromatography on silica gel using 15:85 ethyl acetate/hexane as eluent, 3b was isolated as a white solid (0.13 g, 36%), and subsequently recrystallised from ether; mp 109-111 °C; (Found C, 69.80; H, 6.13; N, 2.92; S, 5.85; C₃₀H₃₁NO₅S requires C, 69.61; H, 6.04; N, 2.71; S, 6.19 %); v_{max}/cm^{-1} (KBr) 3352 (NH), 1733 (CO ester), 1650 (CO amide); δ_{H} (300 MHz, $CDCl_3$) 1.23-1.30 (6H, 2 × overlapping t, J 7.1, 2 × OCH_2CH_3), 3.43-3.53 [2H, ABq, J 13.7, $C(5)H_2$], 4.04-4.42 (6H, m, NCH₂Ph, 2 × OCH₂CH₃), 6.85-6.98 (3H, m, ArH), 7.13-7.30 (13H, m, ArH, NH), 7.57 [1H, s, C(3)H=]; $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 13.9, 14.1 (CH₃, 2 × OCH₂CH₃), 44.5, 45.4 [CH₂, NCH₂Ph, C(5)H₂], 60.9 [C, C(4)], 61.5, 61.7 (CH₂, 2 × OCH₂CH₃), 127.49, 127.52, 128.0, 128.08, 128.13, 128.6, 128.9 (CH, aromatic CH), 129.1 (C, =CSPh), 130.7 (CH, aromatic CH), 131.1 (C, aromatic C), 132.2 (CH, aromatic CH), 134.6, 137.1 (C, aromatic C), 144.9 [CH, C(3)H=], 163.8 (C, amide CO), 166.5, 168.5 (C, 2 \times CO ester); MS *m*/*z* 426 [2%, (M-CH₂Ph)⁺], 110 (93%, HSPh), 77 [80%, (C₆H₅)⁺], 43 [87%, $(CONH)^+$].

N-Phenylmethyl-4,4-di(ethoxycarbonyl)-2-phenylthio-2-pentenamide 3c *Method A*

The title compound was prepared following the procedure described for **3a**, using **2c** (0.44 g, 1.03 mmol), potassium carbonate (0.28 g, 2.06 mmol) and methyl iodide (0.13 mL, 2.06 mmol) in acetonitrile (6 mL) and acetone (3 mL). Following chromatography on silica gel using 15:85 ethyl acetate/hexane as eluent, the product **3c** was recovered as a solid (0.08 g) containing an impurity; mp 91–93 °C; $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.21 (8H, t, *J* 7.1, 2 × OCH₂CH₃, 2H due to overlapping impurity), 1.70 (3H, s, CH₃), 3.44-3.51 (1.4H, q, *J* 7.0, impurity), 4.01-4.22 (4H, 2 × sym. m, 2 × OCH₂CH₃), 4.36 (2H, d, *J* 5.9, NCH₂Ph), 6.74-6.79 (2H, m, Ar*H*), 6.96-7.31 (9H, m, Ar*H*, N*H*), 7.93 [1H, s, C(3)*H*=]; $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 13.9 (CH₃, OCH₂CH₃), 15.3 (CH₃, Impurity), 22.7 [CH₃, *C*(5)H₃], 44.1 (CH₂, NCH₂Ph), 56.3 [C, *C*(4)], 62.2 (CH₂, OCH₂CH₃), 65.9 (CH₂, impurity), 126.6, 127.2, 127.3, 128.5, 128.7, 129.4 (CH, aromatic CH), 133.8, 137.5 [C, =*C*(2), aromatic *C*], 147.4 [CH, *C*(3)H=], 163.7 (C, amide CO), 170.1 (C, ester CO); MS *m/z* 441 [7%, (M)⁺], 368 [4%, (M-CO₂Et)⁺], 135 [30%, (CONHCH₂Ph)⁺], 106 [57%, (NHCH₂Ph)⁺], 91 [75%, (CH₂Ph)⁺], 43 [100%, (CONH)⁺].

Method B

Diisopropylamine (0.25 mL, 0.18 g, 1.82 mmol) was dissolved in THF (10 mL) and cooled to 0 °C under nitrogen. *n*-Butyllithium (1.6 M solution in hexanes, 0.86 mL, 1.90 mmol) was added dropwise and the mixture was stirred for 20 min while warming to room temperature. Diethyl 2-methyl-malonate (0.28 mL, 1.80 mmol) was added and the mixture was stirred for a further 20 min. A solution of **1c** (0.53 g, 1.65 mmol) in THF (8 mL) was slowly added and stirring was continued for 1.5 h. The reaction was quenched with saturated aqueous ammonium chloride (10 mL), CH₂Cl₂ (25 mL) was added and the phases were separated. The aqueous layer was washed with CH₂Cl₂ (2 × 10 mL) and the combined organic layers were washed with a saturated solution of sodium bicarbonate (2 × 10 mL) and brine (2 × 10 mL), dried and concentrated under reduced pressure to give the crude product as a white solid. Following purification by column chromatography using hexane:ethyl acetate (80:20) as eluent, **3c** was obtained as a white solid (0.44 g, 67%), with spectroscopic details identical to those outlined above.

Addition of enolate of ethyl acetoacetate

N-(4-Methylphenyl)-4-ethoxycarbonyl-2-(phenylthio)-2-butenamide 5a

This was prepared following the procedure described for pentenamide 4a using DIPA (0.19 g, 1.90 mmol), *n*-butyllithium (0.73 mL, 1.6 M in hexane, 1.82 mmol), ethyl acetoacetate (0.24 g, 1.82 mmol), β -chloroacrylamide 1a (0.5 g, 1.65 mmol) and THF (20 mL). The

reaction was complete after stirring at 0 °C for 1 h followed by 4 h at room temperature. Purification by chromatography using ethyl acetate-hexane (15:85) as eluent gave β chloroacrylamide **1a** (64 mg, 13%) and **5a** (0.13 g, 22%) as a colourless oil; v_{max}/cm^{-1} (film) 3375 (br NH), 1738 (CO ester), 1675 (CO amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.26 (3H, t, *J* 7, CH₃CH₂O), 2.28 (3H, s, ArCH₃), 3.60 [2H, d *J* 7, C(4)H₂], 4.18 (2H, q, *J* 7, CH₂O), 7.06-7.40 (9H, m, ArH), 7.80 [1H, t, *J* 7, C(3)H=], 8.72 (1H, br s, NH); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 14.2 (CH₃, CH₃CH₂O), 20.9 (CH₃, ArCH₃), 36.6 [CH₂, C(4)H₂], 61.3 (CH₂, CH₂O), 120.2, 126.9, 127.5, 129.5, 129.6 (CH, aromatic CH), 129.9, 133.7, 134.4, 134.9 (4 × C, quaternary aromatic *C* and S*C*=), 143.7 [CH, *C*(3)H=], 161.5, 169.5 (2 × C, CO amide, CO ester).

Addition of enolate of cyclohexanone

N-(4-Methylphenyl)-3-(2-oxocyclohexyl)-2-(phenylthio)propenamide 6a

This was prepared following the procedure described for pentenamide **2a** using DIPA (50 µl, 0.36 mmol), *n*-butyllithium (0.16 mL, 1.6 M in hexane, 0.38 mmol), cyclohexanone (38 µl, 0.36 mmol), β-chloroacrylamide **1a** (100 mg, 0.33 mmol) and THF (4 mL). The reaction was complete after 10 min. Purification by chromatography using ethyl acetate-hexane (20:80) as eluent gave **6a** (61 mg, 51%) as a white, crystalline solid; mp 164–166°C; (Found C, 72.08; H, 6.53; N, 3.81; S, 8.52. C₂₂H₂₃NO₂S requires C, 72.30; H, 6.34; N, 3.83; S, 8.77%); v_{max}/cm⁻¹ (KBr) 3364 (br NH), 1702 (CO ketone), 1674 (CO α ,β-unsaturated amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.68-1.82 [2H, m, C(4)*H*₂ or C(5)*H*₂], 2.05-2.19 [2H, m, C(4)*H*₂ or C(5)*H*₂], 2.28 (3H, s, ArC*H*₃), 2.28-2.42 [2H, m, C(3)*H*₂], 2.44-2.58 [2H, m, C(6)*H*₂], 3.73-3.89 [1H, m, C(2)*H*], 7.05-7.31 (9H, m, Ar*H*), 7.73 [1H, d, *J* 9, C(3)*H*=], 8.63 (1H, br s, N*H*); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 21.2 (CH₃, ArCH₃), 24.3, 27.3, 33.6, 42.1 [CH₂, *C*(3)H₂, *C*(4)H₂, *C*(5)H₂, *C*(6)H₂], 53.5 [CH, *C*(2)H], 120.5, 127.1, 127.6 (CH, aromatic *C*H), 129.0 (C, aromatic *C* or *SC*=), 129.91, 129.94, (2 × CH, aromatic *C*H), 134.2, 134.4, 135.3 (3 × C, aromatic *C*), 149.1 [CH, *C*(3)H=], 161.8 (C, CO amide), 208.8 [C, *C*(1)O]; MS *m/z* 365 (M⁺, 7 %), 189 (27%), 135 (100%).

Addition of nBu₂CuLi

N-Benzyl-2-(phenylthio)-*Z*-2-heptenamide 7c

This was prepared following the procedure described for 7a using CuI (0.25 g, 1.32 mmol), *n*-butyllithium (1.7 mL, 1.6 M solution in hexanes, 2.64 mmol), **1c** (0.20 g, 0.66 mmol) and ether (25 mL and 20 mL) at -78 °C. Following 2.5 hours reaction time, during which the temperature

was maintained at -78 °C for 1 h and then allowed to warm slowly to room temperature, the crude product was shown to contain a complex mixture of compounds. These were separable by column chromatography on silica gel, using 30:70 ethyl acetate/hexane as eluent. The initial fraction consisting of mixed side-products was shown to be mainly diphenyldisulphide by ¹H spectroscopy. The minor E isomer of the addition product, 7c-E, was recovered in trace amounts (0.01g, <3%); $\delta_{\rm H}$ (270 MHz, CDCl₃) 0.94 [3H, t, J 7.0, C(7)H₃], 1.24-1.65 [4H, m, C(6)H₂, C(5)H₂], 2.65-2.81 [2H, m, C(4)H₂], 4.36 (2H, d, J 5.9, NCH₂Ph), 6.66 [1H, t, J 7.6, C(3)H=], 6.84-6.90 (2H, m, ArH), 6.98 (1H, br s, NH), 7.08-7.41 (8H, m, ArH). 7c-Z was recovered as a white solid (0.07 g, 34%) containing a trace of 1c. This was recrystallised from ether; mp 79-81 °C; (Found C, 74.30; H, 7.06; N, 4.35; C₂₀H₂₃NOS requires C, 73.80; H, 7.12; N, 4.30%); v_{max}/cm^{-1} (KBr) 3362 (NH), 1645 (CO), 1605, 1582 (C=C), 1515; δ_{H} (300 MHz, CDCl₃) 0.89 [3H, t, J 7.2, C(7)H₃], 1.22-1.54 [4H, m, C(6)H₂, C(5)H₂], 2.45-2.56 [2H, m, C(4)H₂], 4.41 (2H, d, J 5.9, NCH₂Ph), 6.85-6.94 (2H, m, ArH), 7.18-7.32 (9H, m, ArH, NH), 7.66 [1H, t, J 7.5, C(3)H=]; δ_{C} (75.5 MHz, CDCl₃) 13.8 [CH₃, C(7)H₃], 22.5 [CH₂, C(6)H₂], 30.5, 30.6 [CH₂, C(4)H₂ and C(5)H₂], 43.9 (CH₂, NCH₂), 125.8 (C, aromatic C), 126.1, 126.9, 127.16, 127.19, 128.5, 129.3 (CH, aromatic CH), 135.1, 137.9 [C, aromatic C, C(2) =], 153.1 [CH, C(3)H=], 164.3 (C, CO); MS m/z 325 (M⁺, 14%), 268 [5%, (M-C₄H₉)⁺], 191 [6%, (268-C₆H₅)⁺], 106 [24%, (NCH₂Ph)⁺], 91 $[100\%, (CH_2Ph)^+]$, 77 $[19\%, (C_6H_5)^+]$. The desulfinvlation product N-benzyl-2-heptenamide 8c (trans) was also recovered (0.03 g, 24%) as a yellow oily solid; (Found C, 77.80; H, 8.45; N, 6.00; C₁₄H₁₉NO requires C, 77.38; H, 8.81; N, 6.45%); v_{max}/cm⁻¹ (film) 3281 (NH), 2957, 2927 (CH), 1668 (CO), 1633 (C=C); δ_H (270 MHz, CDCl₃) 0.90 [3H, t, J 7.0, C(7)H₃], 1.20-1.55 [4H, m, C(5)H₂, C(6)H₂], 2.13-2.25 [2H, m, C(4)H₂], 4.50 (2H, d, J 5.7, NCH₂Ph), 5.73-5.86 [2H, br s. overlapping dt, J 15.1, 1.4, C(2)H=, NH], 6.82-6.95 [1H, dt, J 15.1, 7.0, C(3)H=], 7.15-7.42 (5H, m, ArH); δ_C (67.8 MHz, CDCl₃) 13.8 [CH₃, C(7)H₃], 22.2 [CH₂, C(6)H₂], 30.3 [CH₂, C(5)H₂], 31.8 [CH₂, C(4)H₂], 43.6 (CH₂, NCH₂Ph), 123.2 [CH, =C(2)H], 127.5, 127.9, 128.7 (CH, aromatic CH), 145.4 (C, aromatic C), 145.4 [CH, C(3)H=], 166.0 (C, CO); MS m/z 217 (M⁺, 40%), 188 $(C_4H_9)^+$], 43 [100%, (CONH)⁺].

N,N-Dimethyl-2-(phenylthio)-2-heptenamide 7d

This was prepared following the procedure described for 7a using CuI (0.32 g, 1.65 mmol), *n*-butyllithium (2.1 mL, 1.6 M solution in hexanes, 3.30 mmol), 1d (0.20 g, 0.83 mmol) and ether (25 mL and 20 mL) at -78 °C over 3.5 h. Following column chromatography on silica gel using

4:1:5 ethyl acetate/dichloromethane/hexane, the minor *E* isomer of the adduct, **7d**-*E*, was recovered as an oil (0.002 g, 1%); $\delta_{\rm H}$ (270 MHz, CDCl₃) 0.85-0.96 [3H, m, C(7)H₃], 1.24-1.43 [4H, m, C(6)H₂, C(5)H₂], 2.05-2.16 [2H, m, C(4)H₂], 2.89, 2.86 (6H, 2 × s, N(CH₃)₂], 5.91 [1H, t, *J* 7.6, C(3)H=], 7.18-7.33, 7.40-7.53 (5H, 2 × m, ArH). It is worth noting that this does not significantly isomerise to the *Z* form (~ 5%), even after 18 months at room temperature. The *Z* adduct **7d**-*Z* was recovered as an oil (0.07 g, 34%); $\delta_{\rm H}$ (270 MHz, CDCl₃) 0.88-0.98 [3H, m, C(7)H₃], 1.26-1.52 [4H, m, C(6)H₂, C(5)H₂], 2.32-2.44 [2H, m, C(4)H₂], 2.70, 2.92 (6H, 2 × br s, N(CH₃)₂], 6.09 [1H, t, *J* 7.3, C(3)H=], 7.19-7.50 (5H, m, ArH). This fraction also contained a tiny trace of the *E* isomer, **7d**-*E*, and a trace of the starting material **1d**. A final fraction containing both *cis*- and *trans*- isomers of the desulphinylation product **8d**, in a 1:1 ratio, was also recovered as an oil (0.03 g, 23%); $\delta_{\rm H}$ (270 MHz, CDCl₃) 0.87-0.96 [6H, m, C(7)H₃], 1.25-1.51 [8H, m, C(6)H₂, C(5)H₂], 2.29-2.40 [2H, m, C(4)H₂ (*cis*)], 3.00, 3.04 [12H, 2 × s, N(CH₃)₂], 5.82-6.00 [2H, m, C(2)H= (both *cis* and *trans*)], 6.20-6.28 [1H, dt, *J* 14.9, 1.6, C(3)H= (*cis*)], 6.82-6.93 [1H, dt, *J* 15.1, 6.7, C(3)H= (*trans*)].

N-Ethyl-2-(phenylthio)-2-heptenamide 7e

This was prepared following the above procedure for the synthesis of **7a**, from **1e** (0.24 g, 0.99 mmol), CuI (0.38 g, 1.99 mmol) and *n*-butyllithium (1.6 M in hexanes, 2.5 mL, 3.99 mmol) in ether (40 mL), over 2.5 hours at -78 °C. Following purification by column chromatography on silica gel using 12:88 ethyl acetate/hexane as eluent, an initial fraction was recovered (0.006 g) containing a mixture of compounds, one of which has been tentatively identified as **9e**; $\delta_{\rm H}$ (270 MHz, CDCl₃) 2.12-2.24 [1H, m, C*H*(Bu)₂], 3.81 (1H, d, *J* 4.1, C*H*SPh). The *Z* adduct, **7e**-*Z*, was recovered as an oil (0.04 g, 15%); $v_{\rm max}/\rm cm^{-1}$ (film) 3329 (NH), 1651 (CO), 1608, 1583 (C=C), 1517; $\delta_{\rm H}$ (270 MHz, CDCl₃) 0.88 [3H, t, *J* 7.0, C(7)*H*₃], 0.97 (3H, t, *J* 7.4, NCH₂CH₃), 1.24-1.52 [4H, m, C(6)*H*₂, C(5)*H*₂], 2.42-2.53 [2H, m, C(4)*H*₂], 3.19-3.32 (2H, m, NCH₂), 6.96 (1H, br s, N*H*), 7.10-7.34 (5H, m, Ar*H*), 7.62 [1H, t, *J* 7.6, C(3)*H*=]; $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 13.8 [CH₃, C(7)H₃], 14.5 (CH₃, NCH₂CH₃), 22.5 [CH₂, *C*(6)H₂], 30.5, 30.6 [CH₂, *C*(5)H₂, *C*(4)H₂], 34.9 (CH₂, NCH₂), 126.0 (CH, aromatic CH), 126.9 (C, aromatic *C* or =*C*SPh), 127.1, 129.5 (CH, aromatic *C*H), 135.4 (C, aromatic *C* or =*C*SPh-), 152.5 [CH, *C*(3)H=], 164.2 (C, CO); MS *m/z* 263 (M⁺, 75%), 154 [32%, (M-PhS)⁺], 109 [35%, (PhS)⁺], 72 [94%, (CONHEt)⁺], 43 [100%, (CONH)⁺].

N-i-Propyl-2-(phenylthio)-2-heptenamide 7f

This was prepared following the above procedure for the synthesis of 7a, using 1f (0.40 g, 1.57 mmol), CuI (0.60 g, 3.14 mmol) and n-butyllithium (1.6 M in hexanes, 3.9 mL, 6.27 mmol) in ether (55 mL) over 2.25 hours at -78 °C. Following column chromatography on silica gel using 12:88 ethyl acetate/hexane as eluent, an initial fraction containing a mixture of impurities, including diphenyldisulphide was recovered. The Z adduct, 7f-Z was recovered as a clear oil (0.07 g, 15%); ν_{max}/cm⁻¹ (film) 3310 (NH), 1660 (CO), 1609, 1584 (C=C), 1514; δ_H (300 MHz, CDCl₃) 0.89 [3H, t, J 7.2, C(7)H₃], 0.97 [6H, d, J 6.5, NCH(CH₃)₂], 1.27-1.52 [4H, m, C(6)H₂, C(5)H₂], 2.42-2.52 [2H, m, C(4)H₂], 3.92-4.08 (1H, septet, J 6.5, NCH), 6.72 (1H, br d, NH), 7.12-7.33 (5H, m, ArH), 7.56 [1H, t, J 7.5, C(3)H=]; δ_{C} (75.5 MHz, CDCl₃) 13.8 [CH₃, C(7)H₃], 22.4 [CH₃, NCH(CH₃)₂], 22.5 [CH₂, C(6)H₂], 30.54 [2 × CH₂, C(5)H₂, C(4)H₂], 41.8 (CH, NCH), 126.1 (CH, aromatic CH), 126.30 (C, aromatic C), 127.1, 129.2 (CH, aromatic CH), 135.2 (C, aromatic C), 151.9 [CH, C(3)H=], 163.30 (C, CO); MS m/z 277 (M⁺, 28%), 168 [12%, (M-PhS)⁺], 57 [69%, $(C_4H_9)^+$], 43 [100%, (CONH)⁺]. Another fraction (0.01 g) was recovered containing a complex mixture of side products, one of which was tentatively identified as the *E* isomer **7f**-*E* by the signal at $\delta_{\rm H}$ 6.56 [1H, t, J 7.4, C(3)H=]. Another of these compounds has been tentatively identified as the diadduct **8f**; $\delta_{\rm H}$ 2.10-2.24 [1H, m, CH(Bu)₂], 3.79 (1H, d, J 4.3, CHSPh).

N-(4-Methylphenyl)-3-methyl-2-(phenylthio)-Z-2-heptenamide 7g

This was prepared following the procedure described for **7a** using cuprous iodide (0.25 g, 1.32 mmol), *n*-butyllithium (1.65 ml, 1.6 M in hexane, 2.64 mmol), **1g** (0.21 g, 0.66 mmol), and ether (25 and 10 ml). The reaction was complete by TLC analysis after 17 h. Purification by chromatography using ethyl acetate-hexane (5:95) as eluent gave **7g** (26 mg, 12%) as a white, crystalline solid, mp 89–91 °C; (Found C, 73.90; H, 7.28; N, 4.18; S, 9.09. $C_{21}H_{25}NOS$ requires C, 74.30; H, 7.42; N, 4.13; S, 9.44%); v_{max}/cm^{-1} (KBr) 3255 (br NH), 1640, 1592 (CO α,β -unsaturated amide); δ_{H} (270 MHz, CDCl₃) 0.93 [3H, t, *J* 7, C(7)*H*₃], 1.33-1.55 [4H, m, C(6)*H*₂ and C(5)*H*₂], 2.26 (3H, s, ArC*H*₃), 2.29 (3H, s, *CH*₃CH=), 2.55-2.65 [2H, m, C(4)*H*₂], 7.02-7.31 (9H, m, Ar*H*), 8.31 (1H, br s, N*H*); δ_{C} (67.8 MHz, CDCl₃) 13.9 [*C*(7)H₃], 20.8 (ArCH₃), 21.8 (*C*H₃C=), 22.8 [*C*(6)H₂], 30.4 [*C*(5)H₂], 38.6 [*C*(4)H₂], 120.3 (aromatic *C*H), 121.7 (*C* or S*C*=), 126.3, 127.7, 129.3, 129.6 (aromatic *C*H), 133.9,

This journal is (c) The Royal Society of Chemistry 2010

135.3, 135.4 (aromatic *C* or S*C*=), 159.0 (*C*=), 164.6 (*C*O); MS *m/z* 339 (M⁺, 83 %), 282 (2%, M⁺-Buⁿ), 233 (19%, M⁺-NH^pTol), 205 (7%, M⁺-CONH^pTol).

Addition of Me₂CuLi

N-(4-Methylphenyl)-2-(phenylthio)-2-butenamide 10a

This was obtained following the procedure for **10c** using **1a** (0.38 g, 1.25 mmol), CuI (0.48 g, 2.50 mmol), and methyl lithium (3.1 mL, 1.6 M solution in ether, 4.99 mmol) in dry ether (50 mL) at – 78 °C, for 2.5 hours reaction time. After chromatography on silica gel using 25:75 ethyl acetate/hexane as eluent, the initial fraction recovered contained starting material (9%) with a trace of **10a**. The pure product **10a** was recovered as a white solid (0.10 g, 30%); mp 100–101 °C; v_{max}/cm^{-1} (film) 3434 (NH), 1652 (CO); δ_{H} (300 MHz, CDCl₃) 2.10 [3H, d, *J* 6.9, C(4)*H*₃], 2.27 (3H, s, ArC*H*₃), 7.03-7.38 (9H, m, Ar*H*), 7.82 [1H, q, *J* 6.9, =C*H*], 8.80 (1H, br s, N*H*).

(S)-N-(1-Phenylethyl)-2-(phenylthio)-2-butenamide 10b

This was obtained using **1b** (0.30 g, 0.95 mmol), CuI (0.36 g, 1.89 mmol) and methyl lithium (2.7 mL, 1.4 M in ether, 3.79 mmol) in ether (35 mL) for 2 h at -57 °C. The crude product mixture, containing a 1:2 ratio of starting material to *Z* adduct, was reacted with morpholine (~0.2 mL) to remove the excess starting material, giving after chromatography on silica gel using 20:80 ethyl acetate/hexane as eluent, the pure product **10b** as a yellow oil (0.12 g, 44%); v_{max}/cm⁻¹ (film) 3428 (NH), 1652 (CO); $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.32 [3H, d, *J* 6.9, CH(*CH*₃)Ph], 2.09 [3H, d, *J* 7.0, =CH-*CH*₃], 4.92-5.09 [1H, m, NC*H*(CH₃)Ph], 6.93-7.02 (2H, m, Ar*H*), 7.12-7.33 (9H, m, Ar*H*, N*H*), 7.67 [1H, q, *J* 7.0, C(3)*H*=]; $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 17.1, 22.1 [2 × CH₃, =CH*C*H₃ and CH(*C*H₃)Ph], 49.6 (CH, NCH), 126.2, 126.7, 127.5, 127.7 (CH, aromatic *C*H), 128.9 (C, aromatic *C* or S*C*=), 128.9, 129.8 (CH, aromatic *C*H), 135.3, 143.3 (C, aromatic *C* or S*C*=), 147.8 [CH, *C*(3)H=], 163.71 (C, *CO*); MS *m*/*z* 297 (M⁺, 73%), 282 [8%, (M-CH₃)⁺], 149 [47%, (PhS=C=CHCH₃)⁺], 120 {43%, [NHCH(Me)Ph]⁺}, 105 {100%, [CH(Me)Ph]⁺}, 77 (48, [C₆H₅]⁺), 43 (92, [CONH]⁺).

N,N-Dimethyl-2-(phenylthio)-2-butenamide 10d

This was obtained following the procedure for **10c** using **1d**-*Z* (0.40 g, 1.65 mmol), CuI (0.63 g, 3.31 mmol), and methyl lithium (4.2 mL, 1.6 M in ether, 6.61 mmol) in dry ether (50 mL) for 1.75 h at -70 °C. Proton NMR spectroscopic analysis of the crude product mixture indicated a 3.6:1.0 ratio of *Z* to *E* isomers of the adduct with no trace of starting material. Following chromatography,

This journal is (c) The Royal Society of Chemistry 2010

using 4:1:5 ethyl acetate/dichloromethane/hexane as eluent, an inseparable mixture of *E* and *Z* adducts was recovered as a yellow oil (0.12 g, 34%). While initially a 4:1 ratio of *Z* to *E* isomers was present, isomerisation over three weeks gave a 1:1 ratio of *Z* to *E* when the mixture was stored as a neat oil at room temperature; v_{max}/cm^{-1} (film) 3344 (NH), 1709 (CO), 1634 (C=C); δ_{H} (300 MHz, CDCl₃) 1.74 [3H, d, *J* 7.1, =CHCH₃ (*E*)], 1.94 [3H, d, *J* 6.8, =CHCH₃ (*Z*)], 2.70, 2.87 [6H, 2 × br s, N(CH₃)₂ (*Z*)], 2.81, 2.86 [6H, 2 × s, N(CH₃)₂ (*E*)], 5.95 [1H, q, *J* 7.1, =CHCH₃ (*E*)], 6.18 [1H, q, *J* 6.8, =CHCH₃ (*Z*)], 7.18-7.57 (10H, m, ArH for both isomers); δ_{C} (75.5 MHz, CDCl₃) 15.0*, 15.9 [CH₃, =CHCH₃ (*E*+*Z*)], 34.3, 34.8, 37.6, 38.6 [CH₃, N(CH₃)₂ (*E*+*Z*)], 127.5, 127.9, 128.8, 130.9, 131.5, 132.1, 132.5 [aromatic *C*, *C*(3)H=, =*C*S], 167.5, 168.3* [C, *CO* (*E*+*Z*)], (Some CH and C signals in aromatic region not seen); MS *m/z* 149 [35%, (PhS=C=CHCH₃)⁺], 77 [66%, (C₆H₅)⁺], 72 [78%, (CONMe₂)⁺], 43 [100%, (CONH)⁺]. Note: Isomeric ratios were calculated using the integration traces of the β-hydrogen peaks in ¹H NMR spectra.

* Z isomer

This experiment was repeated on the same scale, with the same conditions, using the *E* isomer of the starting material 1d-*E*, giving a 3:8 initial ratio of *Z* to *E* adducts, which after chromatography had converted to a 1.1:1.0 ratio (71% yield). Spectroscopic details were identical to those described above.

N-Ethyl-2-(phenylthio)-2-butenamide 10e

This was obtained following the procedure for **10c** using **1e** (0.40 g, 1.66 mmol), CuI (0.79 g, 4.15 mmol), and methyl lithium (5.2mL, 1.6 M solution in ether, 8.30 mmol) in dry ether (55 mL) for 2.5 h at -78 °C. The crude product mixture contained a 0.8:1 ratio of starting material **1e** to *Z* adduct **10e**-*Z*, with a trace of **10e**-*E*. Following chromatography using 25:75 ethyl acetate/hexane as eluent, an initial fraction containing starting material (20%) was recovered. A second fraction contained a 1 : 4.5 : 0.4 ratio of starting material **1e** to **10e**-*Z* to **10e**-*E*; $\delta_{\rm H}$ (270 MHz, CDCl₃) 6.68 [1H, q, *J* 7.0, C(3)*H*= (*E*)]. The pure product **10e**-*Z* was isolated as an oil (0.12 g, 34%); $\delta_{\rm H}$ (270 MHz, CDCl₃) 0.97 (3H, t, *J* 7.6, NCH₂CH₃), 2.04 [3H, d, *J* 7.0, C(4)*H*₃], 3.18-3.34 (2H, m, *J* 7.6, NCH₂CH₃), 7.00 (1H, br s, N*H*), 7.12-7.34 (5H, m, Ar*H*), 7.69 [1H, q, *J* 7.0, C(3)*H*=].

N-i-Propyl-2-(phenylthio)-2-butenamide 10f

This was obtained following the procedure for **10c** using **1f** (0.40 g, 1.57 mmol), CuI (0.59 g, 3.14 mmol), and methyl lithium (3.9 mL, 1.6 M solution in ether, 6.27 mmol) in dry ether (50 mL) for 2.5 h reaction time at -78 °C. The crude product mixture contained a 1.5:1 ratio of starting

material **1f** to *Z* adduct **10f**-*Z*, and was treated with excess morpholine (~0.2 mL) as before, and following chromatography on silica gel using 20:80 ethyl acetate/hexane as eluent, the pure product **10f**-*Z* was recovered as an oil (0.07 g, 20%); v_{max}/cm^{-1} (film) 3383 (NH), 1660 (CO), 1612, 1588 (C=C), 1519; $\delta_{\rm H}$ (300 MHz, CDCl₃) 0.98 [6H, d, *J* 6.5, CH(CH₃)₂], 2.05 (3H, d, *J* 7.0, =CH-CH₃), 3.90-4.09 [1H, m, *J* 6.5, CH(CH₃)₂], 6.73 (1H, br d, NH), 7.12-7.55 (5H, m, ArH), 7.54 [1H, q, *J* 7.0, C(3)*H*=]; $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 15.6 (CH₃, =CHCH₃), 21.3, 21.4 [2 × CH₃, CH(CH₃)₂], 40.8 [CH, CH(CH₃)₂], 125.1, 126.0, 128.0 (CH, aromatic CH), 133.3, 134.1 (C, aromatic *C*, S*C*=), 145.9 [CH, *C*(3)H=], 162.3 (C, CO); MS *m/z* 235 (M⁺, 85%), 192 [8%, (M-*i*-Pr)⁺], 177 [14%, (M-NH-*i*-Pr)⁺], 149 [58%, (PhS=C=CHCH₃)⁺], 109 [57%, (PhS)⁺], 43 [100%, (CONH)⁺]; There was also evidence for the presence of the *E* isomer in trace amounts; $\delta_{\rm H}$ 6.65 [q, *J* 7.0, C(3)*H*=].

N-(2-Propenyl)-2-(phenylthio)-2-butenamide 10h

This was obtained following the procedure for **10c** using **1h** (0.40 g, 1.58 mmol), CuI (0.60 g, 3.16 mmol), and methyl lithium (4.0 mL, 1.6 M solution in ether, 6.32 mmol) in dry ether (55 mL) for 2.25 h reaction time, giving a crude mixture containing a 0.3 : 1 : 0.1 ratio of starting material **1h** to **10h**-*E*. Following chromatography on silica gel using 12:88 ethyl acetate/hexane as eluent, an initial fraction was recovered containing a 0.7 : 1 : 0.05 ratio of starting material **1h** to **10h**-*E*. The addition product **10h**-*Z* was isolated in a second fraction as a pale yellow oil (0.16 g, 42%); v_{max} /cm⁻¹ (film) 3388 (NH), 1659 (CO), 1612, 1583 (C=C), 1514; δ_{H} (300 MHz, CDCl₃) 2.08 (3H, d, *J* 7.0, =CHC*H*₃), 3.82-3.91 (2H, m, NC*H*₂CH=CH₂), 4.85-5.02 (2H, m, NCH₂CH=CH₂), 5.59-5.78 (1H, m, NCH₂CH=CH₂), 7.04-7.33 (6H, m, Ar*H*, N*H*), 7.75 [1H, q, *J* 7.0, C(3)*H*=]; δ_{C} (75.5 MHz, CDCl₃) 17.1 (CH₃, =CHCH₃), 42.6 (CH₂, NCH₂), 116.3 (CH₂, NCH₂CH=CH₂), 126.5, 127.1, 129.7 (CH, aromatic CH), 134.1 (CH, CH₂CH=CH₂), 135.2 (C, aromatic *C* or S*C*=), 148.9 [CH, *C*(3)H=], 164.6 (C, CO); MS *m*/*z* 233 (M⁺, 7%), 218 [18%, (M-CH₃)⁺], 149 [33%, (PhS=CH=CHCH₃)⁺], 109 [55%, (PhS)⁺], 77 [57%, (C₆H₅)⁺], 55 [81%, (NCH₂CH=CH₂)⁺], 43 [100%, (CONH)⁺], 41 [95%, (CH₂CH=CH₂)⁺]. This fraction also contained a trace of **10h**-*E*; δ_{H} 6.73 [1H, q, *J* 7.0, C(3)*H*=].

N-n-Butyl-2-(phenylthio)-2-butenamide 10i

This was obtained following the procedure for **10c** using **1i** (0.36 g, 1.32 mmol), CuI (0.50 g, 2.64 mmol), and methyl lithium (3.3 mL, 1.6 M solution in ether, 5.29 mmol) in dry ether (50 mL) for 3.5 h reaction time at -50 °C. The crude product contained a 0.75 : 1.0 ratio of starting material **1i**

to adduct **10**i, and was treated with morpholine (~0.2 mL) as outlined previously. Following chromatography on silica gel using 20:80 ethyl acetate/hexane as eluent, the product was recovered as an off-white solid (0.10 g, 29%); v_{max}/cm^{-1} (KBr) 3338 (NH), 1651 (CO), 1613, 1583 (C=C), 1518; δ_{H} (300 MHz, CDCl₃) 0.78 [3H, t, *J* 7.3, C(4')*H*₃], 1.02-1.16 [2H, m, C(3')*H*₂], 1.25-1.39 [2H, m, C(2')*H*₂], 2.06 (3H, d, *J* 6.9, =CHC*H*₃), 3.15-3.28 (2H, m, NC*H*₂), 6.99 (1H, br s, N*H*), 7.12-7.32 (5H, m, Ar*H*), 7.69 [1H, q, *J* 6.9, C(3)*H*=]; δ_{C} (75.5 MHz, CDCl₃) 13.7 [CH₃, *C*(4')*H*₃], 16.7 (CH₃, =CHC*H*₃), 19.8 [CH₂, *C*(3')H₂], 31.4 [CH₂, C(2')H₂], 39.6 (CH₂, NCH₂), 126.0, 126.7 (CH, aromatic *C*H), 127.1 (C, aromatic *C* or *SC*=), 129.3 (CH, aromatic *C*H), 134.1 (C, aromatic *C* or *=C*S), 147.6 [CH, *C*(3)H=], 164.1 (C, CO); MS *m*/*z* 249 (M⁺, 5%), 234 [15%, (M-CH₃)⁺], 149 [12%, (PhS=C=CHCH₃)⁺], 109 [26%, (PhS)⁺], 72 [74%, (NHC₄H₉)⁺], 57 [87%, (C₄H₉)⁺], 43 [100%, (CONH)⁺]. There was also a trace (~ 5%) of the *E* adduct present; δ_{H} 6.69 [1H, q, *J* 6.9, C(3)*H*=].

N-Methyl-2-(phenylthio)-2-butenamide 10j

This was obtained following the procedure for **10c** using **1j** (0.30 g, 1.32 mmol), CuI (0.50 g, 2.64 mmol), and methyl lithium (3.3 mL, 1.6 M solution in ether, 5.29 mmol) in dry ether (50 mL) for 3.5 h reaction time at -50 °C. The crude product contained a 1:2.4 ratio of starting material **1j** to adduct **10j**, and was treated with morpholine (~0.2 mL) as outlined previously. Following chromatography on silica gel using 15:85 ethyl acetate/hexane as eluent, the product **10j** was recovered as a white solid (0.08 g, 29%); mp 55–56 °C; (Found C, 63.74; H, 6.69; N, 6.72; S, 15.02; C₁₁H₁₃NOS requires C, 63.74; H, 6.32; N, 6.76; S, 15.45%); v_{max}/cm⁻¹ (film) 3336 (NH), 1651 (CO), 1612, 1583 (C=C), 1520; $\delta_{\rm H}$ (300 MHz, CDCl₃) 2.05 (3H, d, *J* 7.0, =CHCH₃), 2.79 (3H, d, *J* 6.0, NCH₃), 6.98 (1H, br s, N*H*), 7.07-7.30 (5H, m, Ar*H*), 7.75 [1H, q, *J* 7.0, C(3)*H*=]; $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 16.7 (CH₃, =CHCH₃), 26.9 (CH₃, NCH₃), 125.9, 126.4 (CH, aromatic *C*H), 126.5 (C, aromatic *C* or *SC*=), 129.3 (CH, aromatic CH), 134.9 (C, aromatic *C* or *SC*=), 148.3 [CH, *C*(3)H=], 165.0 (C, *CO*); MS *m*/*z* 208 (M⁺+1, 82%), 149 [30%, (PhS=C=CHCH₃)⁺], 134 [29%, (PhS=C=CH)⁺], 109 [31%, (PhS)⁺], 98 [26%, (M-PhS)⁺], 77 [44%, (C₆H₅)⁺], 58 [84%, (CONHCH₃)⁺], 43 [100%, (CONH)⁺]. There was also a trace of the *E* isomer present; $\delta_{\rm H}$ 6.70 [1H, q, *J* 7.0, C(3)*H*=].

2-(Phenylthio)-2-butenamide 10k

This was obtained following, using 1k (0.20 g, 0.95 mmol), CuI (0.36 g, 1.89 mmol) and methyl lithium (2.7 mL, 1.4 M in ether, 3.79 mmol) in dry ether (35 mL) for 2 h at -57 °C. The crude

product mixture, containing a 0.7:1 ratio of starting material to adduct, was reacted with morpholine (~0.2 mL) as before to remove the excess starting material, giving after chromatography on silica gel using 4:1:5 ethyl acetate/dichloromethane/hexane as eluent, the pure product **10k** as a white solid (0.07 g, 39%); v_{max}/cm^{-1} (KBr) 3414 (NH), 1652 (CO), 1605 (C=C); $\delta_{\rm H}$ (300 MHz, CDCl₃) 2.08 (3H, d, *J* 7.0, =CHC*H*₃), 6.03, 6.84 (2H, 2 × br s, N*H*₂), 7.12-7.30 (5H, m, Ar*H*), 7.73 [1H, q, *J* 7.0, C(3)*H*=]; $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 17.2 (CH₃, =CHCH₃), 126.5 (CH, aromatic CH), 126.8 (C, aromatic *C* or S*C*=), 127.1, 129.7 (CH, aromatic CH), 135.2 (C, aromatic *C* or S*C*=), 149.9 [CH, *C*(3)H=], 167.2 (C, *CO*); MS *m/z* 193 (M⁺, 3%), 149 [23%, (PhS=C=CHCH₃)⁺], 43 [100%, (CONH)⁺]. There was no evidence for the presence of the *E* isomer.

Addition of Ph₂CuLi

N-(4-Methylphenyl)-3-phenylpropynamide 11a²⁴

This was obtained following the method described for **11c**, using **1a** (0.50 g, 1.65 mmol), CuI (0.63 g, 3.30 mmol) and phenyl lithium (3.7 mL, 1.8 M solution in ether, 6.60 mmol) in ether (50 mL) at -78 °C for 2.5 h. Following column chromatography on silica gel using 20:80 ethyl acetate/hexane as eluent, **11a** was isolated as a solid (0.12g, 31%); mp 139–141 °C (lit.²⁴ 140-141 °C); v_{max}/cm^{-1} (film) 2214(C=C), 1636(CO); δ_{H} (300 MHz) 2.33 (3H, s, ArCH₃), 7.08-7.62 (9H, m, Ar*H*), 7.69 (1H, br s, N*H*); δ_{C} (75 MHz) 20.9 (CH₃, ArCH₃), 83.6, 85.6 (C, *C*=*C*), 120.0 (C, aromatic *C*), 120.1, 128.5, 129.6, 130.2, 132.6 (CH, aromatic *C*H), 134.6, 134.9 (C, aromatic *C*), 151.1 (C, *C*O).

N-i-Propyl-3-phenylpropynamide 11f

This was obtained following the method described for **11a** using **1f** (0.25 g, 0.96 mmol), CuI (0.37 g, 1.93 mmol) and phenyl lithium (2.2 mL, 1.8 M solution in ether, 3.85 mmol) in ether (40 mL) for 2 h at -78 °C. After chromatography on silica gel using 12:88 ethyl acetate/hexane as eluent, the initial fractions contained a mixture of **1f** and aromatic side products. In the third fraction the pure alkynamide **11f** was recovered as a white solid (0.14 g, 77%); mp 68–70 °C; (Found C, 76.70; H, 6.91; N, 7.52. C₁₂H₁₃NO requires C, 76.98; H, 6.99; N, 7.48%); v_{max}/cm^{-1} (KBr) 3248 (NH), 2221 (C=C), 1625 (C=O); δ_{H} (300 MHz, CDCl₃) 1.22 [6H, d, *J* 6.5, NCH(CH₃)₂], 4.10-4.27 [1H, m, *J* 6.5, NCH(CH₃)₂], 5.89 (1H, br s, N*H*), 7.25-7.59 (5H, m, Ar*H*); δ_{C} (67.8 MHz, CDCl₃) 22.6 [CH₃, CH(CH₃)₂], 42.0 [CH, CH(CH₃)₂], 83.4, 84.0 (C, *C*=*C*), 120.4 (C, aromatic *C*), 128.4,

This journal is (c) The Royal Society of Chemistry 2010

129.8, 132.3 (CH, aromatic *C*H), 152.5 (C, *C*O); MS m/z 187 (M⁺, 18%), 172 [17%, (M-CH₃)⁺], 129 [100%, (PhC=C-C=O)⁺], 102 (13%, Ph-C=CH), 58 [11%, (NH-*i*-Pr)⁺].

Nitrogen Nucleophiles

Addition of primary and secondary amines

N-(4-Benzyl)-3-N',N'-dimethylamino-2-(benzylthio)propenamide 14v

This was prepared following the procedure described for propenamide **14a** using dimethylamine (5.6 M in ethanol, 4 mL, 22.6 mmol) and **1v** (0.3 g, 0.94 mmol). The reaction was complete by TLC analysis after 15 min to give the crude product **14v** as a yellow oil (0.239 g, 78%). ¹H NMR spectroscopic analysis showed that no further purification was required; v_{max}/cm^{-1} (film) 3382 (NH), 1637 (CO amide); δ_{H} (400 MHz, CDCl₃) 2.92 [6H, s, N(CH₃)₂], 3.53 (2H, s, CH₂S), 4.43 (2H, d, *J* 5.9, NHCH₂), 7.08-7.38 (10H, m, Ar*H*), 7.51 (1H, br t, *J* 5.3, N*H*), 7.97 [1H, s, C(3)*H*]; δ_{C} (75.5 MHz, CDCl₃) 42.6 (CH₂, SCH₂ or NHCH₂), 43.0 (CH₃, br, CH₃N), 44.1 (CH₂, SCH₂ or NHCH₂), 85.7 [C, *C*(2)S], 127.0, 127.6, 128.4, 128.5, 128.9 (5 × CH, aromatic *C*H), 138.1, 139.6 (2 × C, aromatic *C*), 152.8 [CH, *C*(3)H], 169.4 (C, *CO*); HRMS (ESI+): Exact mass calculated for C₁₉H₂₃N₂OS (M+H⁺) 327.1531. Found 327.1527 (M+H⁺); m/z (ESI⁺) 327.2 (M+H⁺).

N-(4-Methylphenyl)-3-N',N'-diethylamino-2-(phenylthio)propenamide 15a

This was prepared following the procedure described for propenamide **14a** using diethylamine (8 mL, 4.1 M in ethanol, 33 mmol), and **1a** (0.30 g, 0.99 mmol). The reaction was complete by TLC analysis after 10 min to give the crude product **15a** (0.31 g, 92%). Recrystallisation from ether gave **15a** (0.25 g, 73%) as a white, crystalline solid; mp 105–106 °C; (Found C, 70.74; H, 7.03; N, 8.35; S, 9.47. C₂₀H₂₄N₂OS requires C, 70.55; H, 7.11; N, 8.23; S, 9.42%); v_{max}/cm^{-1} (KBr) 3346 (br NH), 1652, 1583 (CO α , β -unsaturated amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.17 (6H, t, *J* 7, CH₃CH₂N), 2.26 (3H, s, ArCH₃), 3.35-3.65 (4H, br m, NCH₂), 7.04-7.39 (9H, m, ArH), 8.35 [1H, s, C(3)H=], 8.88 (1H, br s, NH); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) *C*H₂N broadened into the baseline at $\delta_{\rm C}$ 42-51, 14.6 (CH₃, CH₃CH₂N), 20.8 (CH₃, ArCH₃), 82.0 (S*C*=), 119.90, 119.92, 124.8, 125.2, 129.2 (CH, aromatic CH), 132.5, 136.7,

This journal is (c) The Royal Society of Chemistry 2010

139.1 (aromatic *C*), 152.2 [CH, *C*(3)H=], 167.3 (CO); MS *m*/*z* 340 (M⁺, 45 %), 234 (100%), 206 (31%), 110 (43%).

N-(4-Benzyl)-3-*N'*,*N'*-diethylamino-2-(benzylthio)propenamide 15v

This was prepared following the procedure described for propenamide **14a** using diethylamine (4.1 M in ethanol, 4 mL, 16.5 mmol) and **1v** (0.15 g, 0.47 mmol). The reaction was complete by TLC analysis after 15 min to give the product **15v** as a yellow oil (0.16 g, 95 %). ¹H NMR spectroscopic analysis showed that no further purification was required; v_{max}/cm^{-1} (film) 3386 (NH), 1633 (CO amide); δ_{H} (400 MHz, CDCl₃) 1.05 [6H, t, *J* 7.1 N(CH₂CH₃)₂], 3.24-3.39 [4H, br m, N(CH₂CH₃)₂], 3.56 (2H, s, SCH₂), 4.41 (2H, d, *J* 5.9, NHCH₂), 7.07-7.13 (2H, m, Ar*H*), 7.15-7.35 (8H, m, Ar*H*), 7.50 (1H, br t, *J* 5.6, N*H*), 8.00 [1H, s, C(3)*H*]; δ_{C} (75.5 MHz, CDCl₃) *C*H₂N broadened into the baseline at δ_{C} 42-51, 14.0 [CH₃, 2 × N(CH₂CH₃)₂], 42.2 (CH₂, SCH₂ or NHCH₂), 44.1 (CH₂, SCH₂ or NHCH₂), 84.8 [C, *C*(2)S], 127.0, 127.6, 128.46, 128.53, 128.9 (5 × CH, aromatic *C*H), 137.9, 139.6 (2 × C, aromatic *C*), 150.7 [CH, *C*(3)H], 169.5 (C, *C*O); HRMS (ESI+): Exact mass calculated for C₂₁H₂₇N₂OS (M+H⁺) 355.1844. Found 355.1834 (M+H⁺); m/z (ESI⁺) 355.2 (M+H⁺).

N-(4-Methylphenyl)-3-diisopropylamino-2-(phenylthio)propenamide 16a

β-Chloroacrylamide **1a** (100 mg, 0.33 mmol) was added to neat DIPA (3 mL) with stirring. After stirring for 1 h the reaction was complete by TLC analysis and CH₂Cl₂ (10 mL) and water (10 mL) were added. The phases were separated and the aqueous layer was washed with CH₂Cl₂ (2 × 5 mL). The combined organic layers were washed with aqueous saturated aqueous ammonium chloride (2 × 10 mL), brine (2 × 10 mL), dried and evaporated. The ¹H NMR spectrum of the crude product mixture showed that it was **16a**; $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.22-1.28 {6H, br m, [(CH₃)₂CH]_AN}, 1.48 {6H, d, *J* 7, [(CH₃)₂CH]_BN}, 2.26 (3H, s, ArCH₃), 3.31-3.35 (1H, sept, *J* 7, NCH_B), 3.50-3.72 (1H, br m, NCH_A), 7.03-7.40 (9H, m, ArH), 8.52 [1H, s, C(3)H=], 8.90 (1H, br s, NH).

N-(4-Methylphenyl)-3-morpholino-2-(phenylthio)propenamide 17a

Morpholine (72 μ l, 0.83 mmol) was added to a solution of **1a** (100 mg, 0.33 mmol) in CH₂Cl₂ (3 mL). The reaction was complete by TLC analysis after 5 min at room temperature and aqueous saturated aqueous ammonium chloride (10 mL) was added. The phases were separated and the aqueous layer was washed with CH₂Cl₂ (2 × 5 mL). The combined organic

layers were washed with aqueous sodium bicarbonate (2 × 10 mL), brine (2 × 10 mL), dried and evaporated to give a white, crystalline solid (95 mg). Recrystallisation from ethyl acetatehexane (1:9) gave β-morpholinopropenamide **17a** (78 mg, 67%) as a white, crystalline solid; mp 125–127 °C; (Found C, 67.61; H, 6.34; N, 7.83; S, 8.38. C₂₀H₂₂N₂O₂S requires C, 67.77; H, 6.26; N, 7.90; S, 9.05%); v_{max}/cm^{-1} (KBr) 3342 (br NH), 1647, 1576 (CO amide); δ_{H} (270 MHz, CDCl₃) 2.77 (3H, s, ArCH₃), 3.59-3.71 [4H, m, C(3')H₂ and C(5')H₂], 3.76-3.84 [4H, m, C(2')H₂ and C(6')H₂], 7.05-7.42 (9H, m, ArH), 8.26 [1H, s, C(3)H=], 8.85 (1H, br s, NH); δ_{C} (67.8 MHz, CDCl₃) 20.7 (ArCH₃), 50.8 (broad, NCH₂), 66.8 (OCH₂), 83.9 (SC=), 119.8, 125.0, 125.5, 129.2, 129.3 (aromatic CH), 132.8, 136.3, 137.6 (aromatic C), 152.1 [C(3)H=], 166.7 (CO); MS *m*/z 354 (M⁺, 3%), 268 [3%, M⁺-N(CH₂CH₂)₂O], 248 (4%, M⁺-NHTol).

N,N-Dimethyl-3-morpholino-2-(phenylthio)propenamide 17d

Morpholine (135 µl, 1.55 mmol) was added to a stirred solution of *N*,*N*-dimethyl-*E*-3-chloro-2-(phenylthio)propenamide *E*-1d (150 mg, 0.62 mmol) in CH₂Cl₂ (3 mL) at room temperature. After 4 h the reaction was incomplete by TLC analysis and a further 2 equivalents of morpholine (100 µl, 1.15 mmol) were added. After 23 h the reaction was complete by TLC and water (10 mL) and CH₂Cl₂ (10 mL) were added. The organic phase was washed with water (2 × 10 mL) and brine (10 mL), dried and evaporated to give 17d; $\delta_{\rm H}$ (60 MHz, CDCl₃) 2.86 (6H, s, NCH₃), 2.90-3.78 [8H, m, N(CH₂CH₂)₂O], 6.51 [1H, s, C(3)*H*=], 6.95-7.50 (5H, m, Ar*H*).

N-i-Propyl-3-morpholino-2-(phenylthio)propenamide 17f

This was prepared following the procedure described for β-morpholinopropenamide **14a** using **1f** (100 mg, 0.39 mmol), morpholine (85 µl, 0.98 mmol) and CH₂Cl₂ (2 mL) for a reaction time of 30 min to give the crude propenamide **17c**. Trituration with ether-hexane (1:99) gave **17f** (105 mg, 88%) as a white, crystalline solid; mp 95–97 °C; (Found C, 62.54; H, 7.00; N, 9.30; S, 10.59. C₁₆H₂₂N₂O₂S requires C, 62.71; H, 7.24; N, 9.14; S, 10.46%); v_{max}/cm^{-1} (film) 3386 (br NH), 1629, 1578 (CO α,β-unsaturated amide); δ_{H} (270 MHz, CDCl₃) 1.07 [6H, d, *J* 7, (CH₃)₂CHN], 3.56-3.63, 3.70-3.82 [2 × 4H, 2 × m, N(CH₂CH₂)₂O], 4.00-4.13 (1H, sym m, *J* 7, 8, NC*H*), 6.81 (1H, br d, *J* 7, N*H*), 7.10-7.30 (5H, m, Ar*H*), 8.16 [1H, s, C(3)*H*=]; δ_{C} (67.8 MHz, CDCl₃) 22.4 [(CH₃)₂CHN], 41.7 (NCH), 50.6 (CH₂N), 66.8

This journal is (c) The Royal Society of Chemistry 2010

(CHO), 84.1 (SC=), 125.0, 125.2, 129.1 (aromatic CH), 138.0 (aromatic C), 151.4 [C(3)H=], 167.7 (CO); MS *m*/*z* 306 (M⁺, 5%), 248 [1%, M⁺-NHCH(CH₃)₂], 99 (95%), 56 (100%).

(1'S)-*N*-(1-Phenylethyl)-*Z*-3-morpholino-2-(phenylthio)pentenamide 17l-*Z*, (1'S)-*N*-(1-phenylethyl)-*Z*-3-morpholino-2-(phenylthio)pentenamide 17l-*E*

Morpholine (19 µl, 0.22 mmol) was added to a stirred solution of **1**-*E* (30 mg, 0.09 mmol) in CH_2Cl_2 (1 mL). The reaction was incomplete by TLC analysis after 96 h at room temperature. Aqueous saturated ammonium chloride (10 mL) was added, the phases were separated and the aqueous layer was washed with CH_2Cl_2 (2 × 5 mL). The combined organic layers were washed with aqueous sodium bicarbonate (2 × 10 mL), brine (2 × 10 mL), dried and evaporated to give a mixture of three compounds tentatively assigned as *E* and *Z* isomers of **171** (in a ratio of 1.2:1) and **1**1-*E* as a white solid (65 mg).

Also, morpholine (32 µl, 0.36 mmol) was added to a stirred solution of **1**l-*Z* (50 mg, 0.15 mmol) in CH₂Cl₂ (2 mL). The reaction was complete by TLC analysis after 22 h at room temperature. Aqueous saturated ammonium chloride (10 mL) was added, the phases were separated and the aqueous layer was washed with CH₂Cl₂ (2 × 5 mL). The combined organic layers were washed with aqueous sodium bicarbonate (2 × 10 mL), brine (2 × 10 mL), dried and evaporated to give a mixture of two compounds tentatively assigned as *E* and *Z* isomers of **171** in a ratio of 1:1.3 as a white solid (67 mg). **171**-*Z*; $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.12 [3H, t, *J* 5, C(5)*H*₃], 1.13 [3H, d, *J* 6, C(2')*H*₃], 2.74 [2H, q, *J* 5, C(4)*H*₂], 3.40-3.43, 3.74-3.79 {8H, m, N[(CH₂)₂]₂ O}, 4.90-5.20 [1H, m, C(1')*H*], 6.91-7.45 (11H, m, Ar*H*, N*H*); and **171**-*E* $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.14 [3H, t, *J* 5, C(5)*H*₃], 1.40 [3H, d *J* 6, C(2')*H*₃], 2.68 [2H, q, *J* 5, C(4)*H*₂], 2.85-2.89, 3.66-3.70 {8H, m, N[(CH₂)₂]₂O}, 4.90-5.2 [1H, m, C(1')*H*], 6.91-7.45 (11H, m, Ar*H*, N*H*).

N-(4-Methylphenyl)-*Z*-3-morpholino-2-(phenylthio)pentenamide 17m-*Z*, *N*-(4methylphenyl)-*E*-3-morpholino-2-(phenylthio)pentenamide 17m-*E*

Morpholine (66 μ l, 0.75 mmol) was added to a stirred solution of Z-1m (100 mg, 0.30 mmol) in CH₂Cl₂ (3 mL). The reaction was incomplete by TLC analysis after 2 h at room temperature, therefore further morpholine (66 μ l, 0.75 mmol) was added and the reaction mixture was stirred at room temperature for 16 h, after which TLC analysis showed complete reaction. Aqueous saturated aqueous ammonium chloride (10 mL) was added, the phases

were separated and the aqueous layer was washed with CH_2Cl_2 (2 × 5 mL). The combined organic layers were washed with aqueous sodium bicarbonate (2 × 10 mL), brine (2 × 10 mL), dried and evaporated to give a mixture of two compounds tentatively assigned as *E* and *Z* isomers of **17m** in a ratio of 4:1, as a colourless oil (98 mg). Some signals could be distinguished for the major isomer (assigned *E*) at δ_H (270 MHz, CDCl₃) 2.29 (s, ArCH₃) 2.65 [q, *J* 7, C(4)H₂], 2.85-2.89, 3.66-3.70 [N(CH₂CH₂)₂O], 8.69 (1H, br s, NH), and for the minor isomer (assigned *Z*) at δ_H 2.25 (s, ArCH₃), 2.79 [q, *J* 7, C(4)H₂], 3.40-3.43, 3.74-3.79 [N(CH₂CH₂)₂O], 8.54 (1H, br s, NH). Other signals were observed at δ_H (270 MHz, CDCl₃) 1.13 [3H, d, *J* 7, C(5)H₃], 7.01-7.31 (9H, m, ArH).

N,*N*-Diphenyl-*Z*-3-morpholino-2-(phenylthio)propenamide 17n-*Z* and *N*,*N*-Diphenyl-*E*-3-morpholino-2-(phenylthio)propenamide 17n-*E*

These were prepared following the procedure described for β-morpholinopropenamide **14a** using *Z*-**1n** (63 mg, 0.17 mmol), morpholine (36 µl, 0.4 mmol) and CH₂Cl₂ (2 mL) with a reaction time of 3 h. Purification by chromatography using ethyl acetate-hexane (50:50) as eluent gave **17n**-*Z* (62 mg, 88 %) as a white, crystalline solid; mp 156–158 °C; (Found C, 72.03; H, 5.96; N, 6.58; S, 7.24. C₂₅H₂₄N₂O₂S requires C, 72.09; H, 5.81; N, 6.73; S, 7.70%); v_{max}/cm⁻¹ (film) 1633, 1587 (CO α ,β-unsaturated amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 3.50-3.58, 3.63-3.72 [2 × 4H, 2 × m, N(CH₂CH₂)₂O], 6.85-7.29 (15H, m, Ar*H*), 7.70 [1H, s, C(3)*H*=]; $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 50.7 (*C*H₂N), 66.8 (*C*H₂O), 89.9 (S*C*=), 124.5, 125.3, 126.1, 126.8, 128.9, 129.3 (aromatic CH), 126.4, 140.1, 145.3 (aromatic C), 153.7 [*C*(3)H=], 174.1 (*C*O); MS *m*/*z* 416 (M⁺, 1 %), 331 [3, M⁺-N(CH₂CH₂)₂O +H], Signals for the isomer tentatively assigned as the *E* isomer **17f**-*E* (*ca.* 8%) could be seen in the ¹H NMR spectrum at $\delta_{\rm H}$ (270 MHz, CDCl₃) 3.39-3.45, 3.76-3.84 [2 × 4H, 2 × m, N(CH₂CH₂)₂O], 6.72 [C(3)*H*=]; $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 53.5 (*C*H₂N), 66.4 (*C*H₂O), 91.5 (S*C*=), 169.5 (CO).

N-(4-Fluorophenyl)-Z-3-morpholino-2-(benzylthio)propenamide 170

Morpholine (0.13 mL, 1.45 mmol) was added to a solution of **10** (0.19 g, 0.58 mmol) in CH_2Cl_2 (4 mL). The reaction progress was monitored by TLC, which indicated that the reaction was complete after 10 min. Aqueous saturated ammonium chloride (10 mL) was added to the reaction mixture and the phases were then separated. The aqueous layer was extracted with dichloromethane (2 × 5 mL) and the combined organic layers were then washed with aqueous sodium bicarbonate (2 × 10 mL), brine (2 × 10 mL), dried, filtered and

the solvent was evaporated under reduced pressure to give **170** (0.15 g, 71%) as a white solid which required no further purification, mp 98–100 °C; v_{max}/cm^{-1} (KBr) 3338 (NH), 2961 (CH), 1651 (CO), 1579 (NH bend), 1509; $\delta_{\rm H}$ (300 MHz, CDCl₃) 3.48-3.62 [8H, m, N(C*H*₂C*H*₂)₂O], 3.65 (2H, s, SC*H*₂), 6.94-7.02 (2H, overlapping m, Ar*H*), 7.15-7.33 (5H, m, Ar*H*), 7.38-7.47 (2H, m, Ar*H*), 7.98 [1H, s, C(3)*H*=], 9.04 (1H, br s, N*H*); $\delta_{\rm c}$ (75.5 MHz, CDCl₃) 42.2 [CH₂, OC(3')H₂ & OC(5')H₂], 50.9 [CH₂, broad signal, NC(2')H₂ & NC(6')H₂], 66.9 (CH₂, SCH₂), 86.6 [C, *C*(2)S], 115.7 [CH, d, ²*J*_{CF} 22, aromatic *C*(3')H], 121.6 [CH, d, ³*J*_{CF} 8, aromatic C(2')H], 127.8, 129.0, 129.3 (3 × CH, 3 × aromatic C(4')], 167.5 (C, CO); HRMS (ES+): Exact mass calculated for C₂₀H₂₂N₂O₂SF [M+H]⁺ 373.1386. Found 373.1388; *m/z* (ES+) 373.2 {[(C₂₀H₂₁N₂O₂SF)+H⁺], 100%}.

N-n-Butyl-*Z*-3-morpholino-2-(benzylthio)propenamide 17p

The title compound was prepared as described above for **14a** using **1p** (0.19 g, 0.7 mmol) in dichloromethane (5 mL) and morpholine (0.15 mL, 1.7 mmol). TLC analysis showed the reaction to be complete after 10 min and following the work-up, **17p** (0.17 g, 75%) was obtained as a pale yellow oil which required no further purification; v_{max}/cm^{-1} (KBr) 3387 (NH), 3027 (CH), 2958 (CH), 1640 (CO), 1575 (NH bend), 1505; $\delta_{\rm H}$ (300 MHz, CDCl₃) 0.93 [3H, t, *J* 7.2, C(4')*H*₃], 1.29-1.53 [4H, m, C(3')*H*₂ & C(2')*H*₂], 3.25 (2H, q, *J* 6.6, C*H*₂NH), 3.42-3.52 [8H, m, N(C*H*₂C*H*₂)₂O], 3.57 (2H, s, SC*H*₂), 7.12-7.34 (6H, m, Ar*H* & N*H*), 7.88 [1H, s, C(3)*H*=]; $\delta_{\rm c}$ (75.5 MHz, CDCl₃) 13.9 [CH₃, *C*(4')H₃], 20.2 [CH₂, *C*(3')H₂], 31.4 [CH₂, *C*(2')H₂], 39.7 (CH₂, CH₂NH), 41.4 (CH₂, SCH₂), 50.3 [CH₂, br, NC(2'')H₂ & NC(6'')H₂], 66.5 [CH₂, OC(3'')H₂ & OC(5'')H₂], 86.6 [C, *C*(2)S], 127.2, 128.5, 128.9 (3 × CH, 3 × aromatic CH), 138.0 (C, aromatic C), 150.9 [CH, *C*(3)H=], 168.6 (C, CO); HRMS (ES+): Exact mass calculated for C₁₈H₂₇N₂O₂S [M+H]⁺ 335.1793. Found 335.1793; *m/z* (ES+) 335.1 {[(C₁₈H₂₆N₂O₂S)+H⁺], 100%}.

N-(4-Methylphenyl)-Z-3-morpholino-2-(benzylthio)propenamide 17q

This was synthesised according to the procedure outlined for 14a using 1q (0.20 g, 0.6 mmol) in dichloromethane (10 mL) and morpholine (0.13 mL, 1.5 mmol). The reaction was observed to be complete after 30 min by TLC analysis and following the work-up, 17q was obtained as a brown oil. This was then purified by column chromatography on silica gel using hexane-ethyl acetate as eluent (gradient elution 20-40% ethyl acetate) to give the pure adduct

17q (0.19 g, 87%) as a white solid, mp 115–116 °C; (Found C, 68.06; H, 6.50; N, 7.49; S, 8.85. $C_{21}H_{24}N_2O_2S$ requires C, 68.45; H, 6.56; N, 7.60; S, 8.70%); v_{max}/cm^{-1} (film) 3317 (NH), 2918 (CH), 1648 (CO), 1578, 1517 (NH bend), 1399 (CN stretch); δ_H (300 MHz, CDCl₃) 2.31 (3H, s, ArC*H*₃), 3.43-3.59 [8H, m, N(*CH*₂*CH*₂)₂*O*], 3.64 (2H, s, S*CH*₂), 7.11 (2H, d, *J* 8.4, Ar*H*), 7.18-7.34 (5H, m, Ar*H*), 7.40 (2H, d, *J* 8.4, Ar*H*), 7.97 [1H, s, C(3)*H*=], 9.07 (1H, br s, N*H*); δ_c (75.5 MHz, CDCl₃) 21.2 (CH₃, Ar*C*H₃), 42.1 (CH₂, S*C*H₂), 50.8 [CH₂, broad signal, NC(2')H₂ & NC(6')H₂], 66.9 [CH₂, OC(3')H₂ & OC(5')H₂], 86.9 [C, *C*(2)S], 120.0, 127.7, 129.0, 129.3, 129.7 (5 × CH, 5 × aromatic *C*H), 133.1, 136.9, 138.1 (3 × C, 3 × aromatic *C*), 152.0 [CH, *C*(3)H=], 167.4 (C, *CO*); HRMS (ES+): Exact mass calculated for $C_{21}H_{25}N_2O_2S$ [M+H]⁺ 369.1637. Found 369.1647; *m/z* (ES+) 369.3 {[($C_{21}H_{24}N_2O_2S$)+H⁺], 100%}.

N-(4-Methylphenyl)-Z-3-diisopropylamino-2-(benzenesulfinyl)propenamide 19a-Z and N-(4-Methylphenyl)-E-3-diisopropylamino-2-(benzenesulfinyl)propenamide 19a-E

This was prepared using the procedure described for **14a** using **18a** (0.30 g, 0.94 mmol), DIPA (0.32 mL, 2.35 mmol) and CH₂Cl₂ (9 mL). The crude product was purified on silica gel using hexane:ethyl acetate (40:60) as eluent to yield **19a** as an inseparable mixture of *Z* and *E* isomers in the ratio 1.7:1 (0.31 g, 87%); mp 49–52 °C; (Found C, 68.80; H, 7.46; N, 7.62; S, 8.29. C₂₂H₂₈N₂O₂S requires C, 68.72; H, 7.34; N, 7.29; S, 8.54%); v_{max}/cm^{-1} (KBr) 1659 (CO), 1513 (NH bend), 1005; δ_{H} (300 MHz, CDCl₃) 1.06-1.51 [12H, br m, (CH₃)₂CH-*Z* and (CH₃)₂CH-*E*], 2.28 (1.1H, s, ArCH₃-*E*), 2.33 (1.9H, s, ArCH₃-*Z*), 3.19-3.31 [0.38H, s, one of (CH₃)₂CH-*E*], 3.54-3.72 [0.38H, s, one of (CH₃)₂CH-*E*], 3.73-4.61 [1.24H, br s, 2 × (CH₃)₂CH-*Z*], 6.91-7.71 [9.4H, m, Ar*H* and =C(3)*H*N-*E*], 8.16 [0.6H, s, =C(3)*H*N-*Z*], 9.21 (0.4H, br s, N*H*-*E*), 9.61 (0.6H, br s, N*H*-*Z*).

19a-Z δ_c (75.5 MHz, CDCl₃) 19.6 (CH₃, ArCH₃), 21.2 [CH₃, (CH₃)₂CH], 47.3 [CH, (CH₃)₂CH], 97.0 [C, *C*(2)], 120.7, 124.8, 129.5, 129.8, 130.3 (CH, aromatic *C*H), 132.7 (C, aromatic *C*), 149.4 [CH, =*C*(3)HN], 166.1 (C, *C*O);

19a-*E* δ_c (75.5 MHz, CDCl₃) 19.6 (CH₃, ArCH₃), 21.2 [CH₃, (CH₃)₂CH], 48.2 [CH, (CH₃)₂CH], 103.5 [C, *C*(2)], 121.1, 125.4, 129.5, 129.7, 130.2 (CH, aromatic *C*H), 133.8, 144.1 (C, aromatic *C*), 147.4 [CH, =*C*(3)HN], 163.3 (C, *C*O); MS *m/z* 383 (M⁺ – 1, 11%).

N-(4-Methylphenyl)-*Z*-3-diethylamino-2-(phenylsulfinyl)propenamide 20a-*Z* and *N*-(4-Methylphenyl)-*E*-3-diethylamino-2-(phenylsulfinyl)propenamide 20a-*E*

This was prepared using the procedure described for **14a** using **18a** (0.2 g, 0.94 mmol) and diethylamine (4.1 M in ethanol, 3 mL, 12.4 mmol). The crude product contained a 1.8:1 mixture of the *Z* and *E* isomers of **20a**. As this compound decomposed to a black complex mixture of unidentified compounds within 1 h of its preparation, purification and full characterisation was not possible; v_{max}/cm^{-1} (film) 3472 (NH), 1661 (CO amide), 1078 (SO); **20a-Z:** $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.31 (6H, t, *J* 7.2, CH₃CH₂N), 2.22 (3H, s, ArCH₃), 3.38-3.59 (4H, br m, NCH₂), 6.91-7.65 (9H, m, ArH), 7.98 [1H, s, C(3)H], 9.68 (1H, s, NH); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 13.7 (CH₃, CH₃CH₂N), 20.79 (CH₃, ArCH₃), 48.9 (CH₂, br, CH₂N), 97.1 [C, *C*(2)S], 120.3, 124.7, 129.1, 129.92 (4 × CH, aromatic *C*H), 132.8, 136.1, 144.7 (3 × C, aromatic *C*), 151.6 [CH, *C*(3)H], 165.5 (C, CO).

20a-E: $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.20 (6H, t, *J* 7.2, CH₃CH₂N), 2.22 (3H, s, ArCH₃), 3.61-3.81 (4H, br m, NCH₂), 6.91-7.65 [10H, m, Ar*H* and C(3)*H*], 9.21 (1H, s, N*H*); $\delta_{\rm C}$ (75.5 MHz) 13.7 (CH₃, CH₃CH₂N), 20.84 (CH₃, ArCH₃), 43.6 (CH₂, br, CH₂N), 103.4 [C, C(2)S], 120.7, 124.9, 128.7, 129.2, 129.89 (5 × CH, aromatic *C*H), 133.4, 135.5, 143.7 (3 × C, aromatic *C*), 150.6 [CH, *C*(3)H], 162.2 (C, CO).

N-(4-Fluorophenyl)-*Z*-3-diethylamino-2-(methylsulfinyl)propenamide 20b-*Z* and *N*-(4-Fluorophenyl)-*E*-3-diethylamino-2-(methylsulfinyl)propenamide 20b-*E*

This was prepared using the procedure described for **14a** using **18b** (0.24 g, 0.90 mmol), diethylamine (0.23 mL, 2.26 mmol) and CH₂Cl₂ (7 mL). The crude product contained a 3:1 mixture of the *Z* and *E* isomers of **20b**. As this compound decomposed to a black complex mixture of unidentified compounds within 1 h of its preparation, purification and full characterisation was not possible; $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.11-1.32 (3H, m, CH₂CH₃), 2.75 (2.25H, s, SCH₃-*Z*), 2.90 (0.75H, s, SCH₃-*E*), 3.19-3.31 [0.38H, s, one of (CH₃)₂CH-*E*], 3.54-3.72 [0.38H, s, one of (CH₃)₂CH-*E*], 3.33-3.81 (2H, m, NCH₂), 6.86 [0.25H, s, =C(3)HN-*E*], 6.92-7.12 (2H, m, ArH), 7.49-7.59 (2H, m, ArH), 7.70 [0.75H, s, =C(3)HN-*Z*], 9.71 (0.25H, br s, NH-*E*), 10.37 (0.75H, br s, NH-*Z*).

N-(4-Benzyl)-*Z*-3-diethylamino-2-(benzylsulfinyl)propenamide 20g-*Z* and *N*-(4-Benzyl)-*E*-3-diethylamino-2-(benzylsulfinyl)propenamide 20g-*E*

This was prepared using the procedure described for 14a using 18g (0.3 g, 0.90 mmol), and diethylamine (4.1 M in ethanol, 4 mL, 16.5 mmol). The reaction was complete after stirring for 15 min at room temperature and the product as a orange oil (0.31 g, 92 %), and as a 5:1

mixture of the Z and E isomers of **20g**; v_{max}/cm^{-1} (film) 3410 (NH), 1642 (CO amide), 1029 (SO);

20g-Z: $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.97 (6H, t, *J* 7.2, C*H*₃CH₂N), 2.90-3.06 (4H, br m, NC*H*₂), 4.27 (1H, d, H_A of AB system, *J* 12.0, one of SC*H*₂), 4.37 (1H, d, H_B of AB system, *J* 12.0, one of SC*H*₂), 4.52 (1H, A of ABX, *J*_{AB} 14.7, *J*_{AX} 5.4, one of NC*H*₂Bn), 4.69 (1H, B of ABX, *J*_{AB} 14.7, *J*_{AX} 5.4, one of NC*H*₂Bn), 7.13-7.47 (10H, m, Ar*H*), 7.74 [1H, s, C(3)*H*], 8.86 (1H, br t, *J* 5.5, N*H*); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 11.3 [*C*H₃, 2 × N(CH₂CH₃)₂], 42.3 [CH₂, 2 × N(CH₂CH₃)], 43.5 (CH₂, NH*C*H₂), 58.9 (CH₂, S*C*H₂), 92.1 [C, *C*(2)S], 127.0, 127.7, 128.2, 128.4, 128.6, 128.7, 130.5 (6 × CH, aromatic *C*H), 130.7, 139.4 (2 × C, aromatic *C*), 150.8 [CH, *C*(3)H], 167.9 (C, *C*O).

20g-E: $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.06 (6H, t, *J* 7.2, C*H*₃CH₂N), 2.90-3.06 (4H, br m, NC*H*₂), 3.99 (2H, s, SC*H*₂Bn), 4.43-4.62 (2H, m, NC*H*₂Bn), 6.43 [1H, s, C(3)*H*], 7.13-7.47 (10H, m, Ar*H*), 8.20 (1H, br t, *J* 5.8, N*H*); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 11.3 [*C*H₃, 2 × N(CH₂CH₃)₂], 42.3 [CH₂, 2 × N(CH₂CH₃)], 43.5 (CH₂, NHCH₂), 58.4 (CH₂, SCH₂), 98.5 [C, *C*(2)S], 127.0, 127.7, 128.2, 128.4, 128.6, 128.7, 130.5 (6 × CH, aromatic *C*H), 130.7, 138.8 (2 × C, aromatic *C*), 148.8 [CH, *C*(3)H], 164.4 (C, *C*O).

HRMS (ESI+): Exact mass calculated for $C_{21}H_{27}N_2O_2S$ (M+H⁺). Found (M+H⁺); m/z (ESI⁺) 371.2 (M+H⁺).

N-(4-Methylphenyl)-*Z*-3-dimethylamino-2-(phenylsulfinyl)propenamide 21a-*Z* and *N*-(4-Methylphenyl)-*E*-3-dimethylamino-2-(phenylsulfinyl)propenamide 21a-*E*

This was prepared using the procedure described for **14a** using **18a** (0.2 g, 0.94 mmol), and dimethylamine (5.6 M in ethanol, 3 mL, 17.0 mmol). After stirring for 15 min at room temperature the reaction was complete by TLC analysis. The product was obtained as a yellow oil (0.19 g, 94 %), as a 1:1.2 mixture of the *Z* and *E* isomers of **21a**; v_{max}/cm^{-1} (film) 3472 (NH), 1660 (CO amide), 1080 (SO).

21a-*E***:** $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.22 (3H, s, ArC*H*₃), 3.10 [3H, s, one of N(*CH*₃)₂], 3.25 [3H, s, one of N(*CH*₃)₂], 6.90-7.64 [10H, m, Ar*H* and C(3)*H*; C(3)*H* can be seen as a singlet at 7.09], 9.08 (1H, s, N*H*); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 20.84 (CH₃, Ar*C*H₃), 44.0 [*C*H₃, 2 × N(*C*H₃)₂], 103.8 [C, *C*(2)S], 120.6, 124.9, 128.8, 129.2, 130.0 (5 × CH, aromatic *C*H), 133.4, 135.3, 143.5 (3 × C, aromatic *C*), 152.9 [CH, *C*(3)H], 162.0 (C, *C*O).

21a-Z: $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.22 (3H, s, ArCH₃), 3.10 [3H, s, one of N(CH₃)₂], 3.25 [3H, s, one of N(CH₃)₂], 6.90-7.64 (9H, m, ArH), 7.95 [1H, s, C(3)H], 9.66 (1H, s, NH); $\delta_{\rm C}$ (75.5

MHz, CDCl₃) 20.80 (CH₃, ArCH₃), 45.6 [CH₃, 2 × N(CH₃)₂], 98.8 [C, *C*(2)S], 120.3, 124.8, 129.1, 129.2, 129.9 (5 × CH, aromatic *C*H), 132.9, 136.1, 144.8 (3 × C, aromatic *C*), 153.6 [CH, *C*(3)H], 165.3 (C, *C*O).

HRMS (ESI+): Exact mass calculated for $C_{17}H_{17}N_2O_2S$ (M-CH₃⁻) 313.1011. Found 330.1344 (M-CH₃⁻); m/z (ESI⁺) 313.1 (M-CH₃⁻).

N-(4-Benzyl)-*Z*-3-dimethylamino-2-(benzylsulfinyl)propenamide 21g-*Z* and *N*-(4-Benzyl)-*E*-3-dimethylamino-2-(benzylsulfinyl)propenamide 21g-*E*

This was prepared using the procedure described for **14a** using **18g** (0.3 g, 0.90 mmol) and dimethylamine (5.6 M in ethanol, 4 mL, 22.6 mmol). After stirring for 15 min at room temperature the reaction was complete by TLC analysis and the product was obtained as a yellow oil (0.27 g, 89 %), as a 2.9:1 mixture of the *Z* and *E* isomers of **21g**; v_{max}/cm^{-1} (film) 3396 (NH), 1648 (CO amide), 1028 (SO).

21g-Z: $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.75 [6H, s, N(CH₃)₂], 4.25 (1H, d, H_A of AB system, *J* 11.9, one of SCH₂), 4.35 (1H, d, H_B of AB system, *J* 11.9, one of SCH₂), 4.52 (1H, A of ABX, *J*_{AB} 15.0, *J*_{AX} 5.7, one of NCH₂Bn), 4.69 (1H, B of ABX, *J*_{AB} 15.0, *J*_{BX} 5.7, one of NCH₂Bn), 7.08-7.49 (10H, m, ArH), 7.70 [1H, s, C(3)H], 8.84 (1H, bt, *J* 5.5, NH); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 43.4 [CH₃, N(CH₃)₂], 44.9 (CH₂, br, CH₂NH), 59.0 (CH₂, SCH₂), 94.0 [C, *C*(2)S], 127.0, 127.7, 128.3, 128.6, 128.7, 130.5 (5 × CH, aromatic *C*H), 130.8, 139.3 (2 × C, aromatic *C*), 153.0 [CH, *C*(3)H], 167.6 (C, CO).

21g-E: $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.98 [6H, s, N(CH₃)₂], 3.99 (2H, s, SCH₂Bn), 4.40-4.71 (2H, m, NCH₂Bn), 6.51 [1H, s, C(3)H], 7.08-7.49 (10H, m, ArH), 8.10 (1H, bt, *J* 5.5, NH); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 43.3 [CH₃, N(CH₃)₂], 43.7 (CH₂, CH₂NH), 58.3 (CH₂, SCH₂), 99.4 [C, *C*(2)S], 127.3, 127.9, 128.1, 128.66, 128.72, 130.4 (5 × CH, aromatic *C*H), 131.0, 138.8 (2 × C, aromatic *C*), 151.4 [CH, *C*(3)H], 164.3 (C, *C*O).

HRMS (ESI+): Exact mass calculated for $C_{19}H_{23}N_2O_2S$ (M+H⁺) 343.1480. Found 343.1480 (M+H⁺); m/z (ESI⁺) 343.2 (M+H⁺).

N-(4-Methylphenyl)-*Z*-3-piperidino-2-(benzenesulfinyl)propenamide 22a-*Z* and *N*-(4-Methylphenyl)-*E*-3-piperidino-2-(benzenesulfinyl)propenamide 22a-*E*

This was prepared using the procedure described for **14a** using **18a** (0.25 g, 0.78 mmol), piperidine (0.19 mL, 1.96 mmol) and CH_2Cl_2 (8 mL) to give a 1.7:1 mixture of the *E* and *Z* isomers of **22a**. Following purification on silica gel using hexane:ethyl acetate (40:60) as

eluent, **22a** was isolated as a pale yellow solid (0.17 g, 59%), (ratio of isomers identical following chromatography); mp 126–127 °C; (Found C, 68.05; H, 6.84; N, 7.28; S, 8.69. $C_{21}H_{24}N_2O_2S$ requires C, 68.45; H, 6.56; N, 7.60; S, 8.70%); v_{max}/cm^{-1} (KBr) 2380, 2341, 1658 (CO), 1601; δ_H (300 MHz, CDCl₃) 1.59-1.85 [6H, m, C(3') H_2 , C(4') H_2 , C(5') H_2 of Z and *E*], 2.23 (3H, s, ArC H_3), 3.51 (1.26H, br s, NC H_2 -*E*), 3.68 (0.74H, br s, NC H_2 -*Z*), 6.91-7.71 [9.63H, m, Ar*H* and =C(3)*H*N-*E*], 7.88 [0.37H, s, =C(3)*H*N-*Z*], 9.12 (0.63H, br s, N*H*-*E*), 9.65 (0.37H, br s, N*H*-*Z*).

22a-*Z*δ_c (75.5 MHz, CDCl₃) 20.8 (CH₃, ArCH₃), 23.6 [CH₂, *C*(4')H₂], 26.5 [CH₂, br, *C*(3')H₂ and *C*(5')H₂], 54.6 [CH₂, br, N(*C*H₂)₂], 96.7 [C, *C*(2)], 120.3, 124.8, 129.1, 130.0 (CH, aromatic *C*H), 132.8, 136.1, 144.4 (C, aromatic *C*), 152.5 [CH, =*C*(3)HN], 165.5 (C, *C*O);

22a-*E* δ_c (75.5 MHz, CDCl₃) 20.8 (CH₃, ArCH₃), 23.5 [CH₂, *C*(4')H₂], 25.4 [CH₂, br, *C*(3')H₂ and *C*(5')H₂], 54.4 [CH₂, br, N(CH₂)₂], 120.5 [C, *C*(2)], 120.7, 124.9, 129.1, 129.9 (CH, aromatic *C*H), 133.4, 135.2, 143.6 (C, aromatic *C*), 151.5 [CH, =*C*(3)HN], 162.6 (C, *C*O); MS *m*/*z* 368 (M⁺, 6%).

N-(4-Fluorophenyl)-*Z*-3-piperidino-2-(methylsulfinyl)propenamide 22b-*Z* and *N*-(4-Fluorophenyl)-*E*-3-piperidino-2-(methylsulfinyl)propenamide 22b-*E*

This was prepared using the procedure described for **14a** using **18b** (0.10 g, 0.38 mmol), piperidine (0.1 mL, 0.96 mmol) and CH₂Cl₂ (3 mL). The crude product contained a 1.1:1 mixture of the *E* and *Z* isomers of **22b**. As this compound decomposed to a black complex mixture of unidentified compounds within 1 h of its preparation, purification and full characterisation was not possible; $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.51-1.86 [6H, m, C(3')H₂, C(4')H₂, C(5')H₂ of *Z* and *E*], 2.72 (1.4H, s, SCH₃-*Z*), 2.75 (1.6H, s, SCH₃-*E*), 3.36-3.69 (4H, m, NCH₂ of *Z* and *E*), 6.83 [0.47H, s, =C(3)HN-*Z*], 6.92-7.12 (2H, m, Ar*H*), 7.49-7.61 [2.53H, m, Ar*H* and =C(3)HN-*E*], 9.72 (0.53H, br s, NH-*E*), 10.37 (0.47H, br s, NH-*Z*).

N-(4-Methylphenyl)-*Z*-3-morpholino-2-(benzenesulfinyl)propenamide 23a-*Z* and *N*-(4-Methylphenyl)-*E*-3-morpholino-2-(benzenesulfinyl)propenamide 23a-*E*

This was prepared following the procedure described for **14a** using **18a** (0.30 g, 0.94 mmol) in CH₂Cl₂ (10 mL) and morpholine (0.21 mL, 2.35 mmol). TLC analysis indicated that the reaction was complete after 5 min. Following purification by chromatography using hexane:ethyl acetate (40:60), the adduct (0.22 g, 64%) was obtained as a yellow solid and an inseparable mixture of *E* and *Z* isomers in a ratio of 3:1 respectively, mp 56–60 °C; (Found

This journal is (c) The Royal Society of Chemistry 2010

C, 64.72; H, 6.18; N, 7.78; S, 9.05. $C_{20}H_{22}N_2O_3S$ requires C, 64.84; H, 5.98; N, 7.56; S, 8.65%); v_{max}/cm^{-1} (KBr) 3338 (NH), 1654 (CO), 1522 (NH bend), 817; δ_H (300 MHz, CDCl₃) 2.24 (3H, s, ArCH₃ of *E* and *Z*), 3.41-3.89 [8H, m, N(CH₂CH₂)₂O of *E* and *Z*], 6.91-7.15 (4H, m, Ar*H*), 7.12-7.51 [3.75H, m, Ar*H* and =C(3)*H*N-*E*], 7.52-7.68 (2H, m, Ar*H*), 7.91 [1H, s,=C(3)*H*N-*Z*], 9.20 (0.75H, br s, N*H*-*E*), 9.62 (0.25, br s, N*H*-*Z*);

23a-*E*: δ_c (75.5 MHz, CDCl₃) 21.2 (CH₃, ArCH₃), 53.0 [CH₂, br, NC(2')H₂ & NC(6')H₂], 66.9 [CH₂, OC(3')H₂ & OC(5')H₂], 104.5 [C, C(2)S], 121.1, 125.2, 129.6, 130.6, 132.2 (5 × CH, 5 × aromatic CH), 134.2, 135.4, 143.6 (C, aromatic C), 151.5 [CH, C(3)H=], 162.6 (C, CO).

23a-*Z*: δ_c (75.5 MHz, CDCl₃) 21.2 (CH₃, ArCH₃), 52.2 [CH₂, br, NC(2')H₂ & NC(6')H₂], 66.9 [CH₂, OC(3')H₂ & OC(5')H₂], 99.0 [C, C(2)S], 120.8, 125.1, 129.3, 130.5, 132.3 (5 × CH, 5 × aromatic CH), 133.0, 136.3, 144.2 (C, aromatic C), 152.8 [CH, C(3)H=], 166.1 (C, CO); MS *m*/*z* 264 (M⁺ – CONHTol, 32%).

N-Ethyl-*Z*-3-morpholino-2-(benzenesulfinyl)propenamide 23c-*Z* and *N*-Ethyl-*E*-3-morpholino-2-(benzenesulfinyl)propenamide 23c-*E*

This was prepared following the procedure described for **14a** using **18c** (0.25 g, 0.97 mmol) in CH₂Cl₂ (5 mL) and morpholine (0.23 mL, 2.43 mmol). Following purification by chromatography using hexane:ethyl acetate (40:60), the adduct (0.22 g, 64%) was obtained as a yellow solid and an inseparable mixture of *E* and *Z* isomers in a ratio of 3.8:1 respectively, mp 60–63 °C; (Found C, 57.96; H, 6.64; N, 8.76; S, 10.00. C₁₅H₂₀N₂O₃S requires C, 58.42; H, 6.54; N, 9.08; S, 10.40%); v_{max}/cm^{-1} (KBr) 1639 (CO), 1443, 991; δ_{H} (300 MHz, CDCl₃) 0.69 (4.75H, t, *J* 7.3, CH₂CH₃ of *E*), 0.77 (1.25H, t, *J* 7.3, CH₂CH₃ of *Z*), 2.78-3.26 (2H, m, CH₂CH₃ of *E* and *Z*), 3.39-3.91 [8H, m, N(CH₂CH₂)₂O of *E* and *Z*], 6.95 [0.79H, s, =C(3)*H*N of *E*], 7.18-7.71 (5H, m, Ar*H*), 7.83 [1H, s,=C(3)*H*N-*Z*];

23c-*E*: δ_c (75.5 MHz, CDCl₃) 14.2 (CH₃, CH₂CH₃), 33.8 (CH₂, CH₂CH₃), 51.5 [CH₂, br, NC(2')H₂ & NC(6')H₂], 66.5 [CH₂, OC(3')H₂ & OC(5')H₂], 104.2 [C, C(2)S], 125.2, 128.7, 129.6 (3 × CH, 3 × aromatic CH), 142.2 (C, aromatic C), 151.0 [CH, C(3)H=], 163.8 (C, CO).

23c-*Z*: δ_c (75.5 MHz, CDCl₃) 14.5 (CH₃, CH₂CH₃), 33.8 (CH₂, CH₂CH₃), 52.4 [CH₂, br, NC(2')H₂ & NC(6')H₂], 66.3 [CH₂, OC(3')H₂ & OC(5')H₂], 99.5 [C, C(2)S], 124.9, 129.0, 129.2 (3 × CH, 3 × aromatic CH), 143.5 (C, aromatic C), 152.2 [CH, C(3)H=], 166.2 (C, CO); MS *m/z* 290 (90%), 262 (70%), 218 (100%).

N-(4-Fluorophenyl)-*Z*-3-morpholino-2-(methylsulfinyl)propenamide 23b-*Z* and *N*-(4 -Fluorophenyl)-*E*-3-morpholino-2-(methylsulfinyl)propenamide 23b-*E*

This was prepared following the procedure described for **14a** using **18b** (0.15 g, 0.58 mmol) in CH₂Cl₂ (4 mL) and morpholine (0.15 mL, 1.40 mmol). Following purification by chromatography using hexane:ethyl acetate (40:60), the adduct (0.11 g, 65%) was obtained as a yellow sticky solid and an inseparable equimolar mixture of *E* and *Z* isomers, mp 58–62 °C; (Found C, 52.44; H, 5.45; N, 8.35. C₁₄H₁₇N₂O₃SF.H₂O requires C, 52.38; H, 5.60; N, 8.72%); v_{max}/cm^{-1} (KBr) 3336, 2927, 1651 (CO), 1532, 1028; δ_{H} (300 MHz, CDCl₃) 2.77 (1.5H, s, SCH₃ of *Z*), 2.89 (1.5H, s, SCH₃ of *E*), 3.39-3.83 [8H, m, N(CH₂CH₂)₂O of *E* and *Z*], 6.82 [0.5H, s, =C(3)*H*N-*E*], 6.91-7.09 (2H, m, Ar*H*), 7.51-7.69 [2.5H, m, Ar*H* and =C(3)*H*N-*Z*], 9.78 (0.5H, br s, N*H*-*Z*), 10.29 (0.5H, br s, N*H*-*E*);

23b-*E*: δ_{c} (75.5 MHz, CDCl₃) 39.2 (CH₃, SCH₃), 51.7 [CH₂, br, NC(2')H₂ & NC(6')H₂], 66.3 [CH₂, OC(3')H₂ & OC(5')H₂], 101.8 [C, C(2)S], 115.7 [CH, d, ²*J*_{CF} 22, aromatic *C*(3)H], 122.0 [CH, d, ³*J*_{CF} 8, aromatic *C*(2)H], 134.1 [C, d, ⁴*J*_{CF} 3, aromatic *C*(1)], 150.6 [CH, *C*(3)H=], 163.8 (C, CO).

23b-*Z*: δ_c (75.5 MHz, CDCl₃) 39.7 (CH₃, SCH₃), 51.4 [CH₂, br, NC(2')H₂ & NC(6')H₂], 66.2 [CH₂, OC(3')H₂ & OC(5')H₂], 98.1 [C, C(2)S], 115.4 [CH, d, ²*J*_{CF} 22, aromatic *C*(3)H], 121.9 [CH, d, ³*J*_{CF} 8, aromatic *C*(2)H], 134.1 [C, d, ⁴*J*_{CF} 3, aromatic *C*(1)], 150.1 [CH, *C*(3)H=], 166.3 (C, CO); MS *m*/*z* 328 (M⁺ + H₂O, 1%), 256 (100%).

N-(4-Fluorophenyl)-*Z*-3-morpholino-2-(benzylsulfinyl)propenamide 23d-*Z* and *N*-(4 -Fluorophenyl)-*E*-3-morpholino-2-(benzylsulfinyl)propenamide 23d-*E*

The title compound was prepared as described for **14a** using **18d** (0.16 g, 0.5 mmol) in CH_2Cl_2 (5 mL) and morpholine (0.10 mL, 1.2 mmol). The reaction mixture was stirred for 5 min and then checked for completion by TLC. Following the work-up, the adduct was obtained (0.16 g, 87%) as a white solid, mp 61–62 °C, which required no further purification and as an inseparable mixture of *E* and *Z* isomers in a ratio of 1:2.4 respectively; v_{max}/cm^{-1} (KBr) 3456 (NH), 3236 (NH), 3032 (CH), 2922 (CH), 1659 (CO), 1614, 1589 (NH bend), 1508, 1068 (SO);

Minor isomer **23d**-*E*; $\delta_{\rm H}$ (300 MHz, CDCl₃) 3.05-3.78 [8H, m, N(CH₂CH₂)₂O]*, 4.20 (2H, d, *J* 2.1, SCH₂), 6.45 [1H, s, C(3)*H*=], 6.98-7.65 (9H, m, Ar*H*)*, 9.99 (1H, br s, N*H*); $\delta_{\rm c}$ (75.5 MHz, CDCl₃) 52.1 [CH₂, br, NC(2")H₂ & NC(6")H₂], 59.0 (CH₂, SCH₂), 66.6 [CH₂,

 $OC(3'')H_2$ & $OC(5'')H_2$], 98.3 [C, C(2)S], 115.6 [CH, d, ${}^2J_{CF}$ 23, aromatic C(3')H], 121.9 [CH, d, ${}^3J_{CF}$ 8, aromatic C(2')H], 128.2, 128.8, 130.5 (3 × CH, 3 × aromatic CH), 134.3 (C, aromatic C), 149.8 [CH, C(3)H=], 159.2 [C, d, ${}^1J_{CF}$ 243, ArC(4')], 162.6 (C, CO).

Major isomer **23d**-*Z*; $\delta_{\rm H}$ (300 MHz, CDCl₃) 3.05-3.78 [8H, m, N(*CH*₂*CH*₂)₂O]*, 4.35 (1H, A of ABq, *J* 12.0, one of SC*H*₂), 4.44 (1H, B of ABq, *J* 11.7, one of SC*H*₂), 6.96-7.63 (9H, m, Ar*H*)*, 7.68 [1H, s, C(3)*H*=], 10.56 (1H, br s, N*H*); $\delta_{\rm c}$ (75.5 MHz, CDCl₃) 52.2 [CH₂, br, N*C*(2'')H₂ & N*C*(6'')H₂], 59.4 (CH₂, S*C*H₂), 65.9 [CH₂, O*C*(3'')H₂ & O*C*(5'')H₂], 93.1 [C, *C*(2)S], 115.5 [H, d, ²*J*_{CF} 22, aromatic *C*(3')H], 121.9 [CH, d, ³*J*_{CF} 8, aromatic *C*(2')H], 128.6, 128.9, 130.5 (3 × CH, 3 × aromatic CH), 134.9 (C, aromatic *C*), 152.1 [CH, *C*(3)H=], 158.9 [C, d, ¹*J*_{CF} 243, aromatic *C*(4')], 165.4 (C, *C*O).

*These signals for the two isomers could not be distinguished

HRMS (ES+): Exact mass calculated for $C_{20}H_{22}N_2O_3SF [M+H]^+$ 389.1335. Found 389.1337; *m/z* (ES+) 389.2 {[($C_{20}H_{21}N_2O_3SF$)+H⁺], 100%}.

N-n-Butyl-*Z*-3-morpholino-2-(benzylsulfinyl)propenamide 23e-*Z* and *N-n*-butyl-*E*-3-morpholino-2-(benzylsulfinyl)propenamide 23e-*E*

This was prepared as outlined for **14a** using **18e**-*E* (0.10 g, 0.32 mmol) in CH₂Cl₂ (5 mL) and morpholine (0.07 mL, 0.79 mmol). The reaction was complete by TLC analysis after 5 min and following the work-up, the sulfoxide adduct was obtained as a colourless oil and an inseparable mixture of *E* and *Z* isomers in a ratio of 1:1 respectively. Following purification using hexane-ethyl acetate (gradient elution 80-100% ethyl acetate) as eluent, the adduct was obtained as a colourless oil and as an inseperable mixture of *E* and *Z* isomers in a ratio 1:1.6 respectively (0.08 g, 67%); v_{max}/cm^{-1} (KBr) 3468 (NH), 3266 (NH), 3031 (CH), 2960 (CH), 1645 (CO), 1589, 1454 (CN stretch), 1069 (SO).

Minor isomer **23e**-*E*; $\delta_{\rm H}$ (300 MHz, CDCl₃) 0.96 [3H, t, *J* 7.2, C(4')*H*₃]*, 1.36-1.67 [4H, m, C(3')*H*₂ & C(2')*H*₂]*, 3.01-3.76 [8H, m, N(*CH*₂*CH*₂)₂O]*, 4.14 (2H, s, S*CH*₂), 6.37 [1H, s, C(3)*H*=], 7.21-7.39 (5H, m, Ar*H*)*, 7.83 (1H, br s, N*H*); $\delta_{\rm c}$ (75.5 MHz, CDCl₃) 14.2 [CH₃, *C*(4')H₃], 20.7 [CH₂, *C*(3')H₂], 32.2 [CH₂, *C*(2')H₂], 39.5 (CH₂, *C*H₂NH), 52.0 (CH₂, *SC*H₂), 58.9 [CH₂, N*C*(2'')H₂ & N*C*(6'')H₂], 67.0 [CH₂, O*C*(3'')H₂ & O*C*(5'')H₂], 100.1 [C, *C*(2)S], 128.4, 128.8, 129.1, 129.2 (4 × CH, 4 × aromatic *C*H)*, 130.6 (C, aromatic *C*)*, 130.9, 131.1 (2 × CH, 2 × aromatic *C*H)*, 131.3 (C, aromatic *C*)*, 149.2 [CH, *C*(3)H=], 164.8 (C, *C*O);

This journal is (c) The Royal Society of Chemistry 2010

Major isomer **23e**-*Z*; $\delta_{\rm H}$ (300 MHz, CDCl₃) 0.96 [3H, t, *J* 7.3, C(4')*H*₃]*, 1.36-1.67 [4H, m, C(3')*H*₂ and C(2')*H*₂]*, 3.01-3.76 [8H, m, N(C*H*₂C*H*₂)₂O]*, 4.27 (1H, A of ABq, *J* 11.7, one of SC*H*₂), 4.44 (1H, B of ABq, *J* 11.7, one of SC*H*₂), 7.21-7.39 (5H, m, Ar*H*)*, 7.61 [1H, s, C(3)*H*=], 8.39 (1H, br t, N*H*); $\delta_{\rm c}$ (75.5 MHz, CDCl₃) 14.2 [CH₃, *C*(4')H₃], 20.8 [CH₂, *C*(3')H₂], 32.3 [CH₂, *C*(2')H₂], 39.7 (CH₂, *C*H₂NH), 52.3 (CH₂, SCH₂), 59.1 [CH₂, N*C*(2'')H₂ & N*C*(6'')H₂], 66.3 [CH₂, O*C*(3'')H₂ & O*C*(5'')H₂], 94.0 [C, *C*(2)S], 128.4, 128.8, 129.1, 129.2 (4 × CH, 4 × aromatic *C*H)*, 130.6 (C, aromatic *C*)*, 130.9, 131.1 (2 × CH, 2 × aromatic *C*H)*, 131.3 (C, aromatic *C*)*, 152.1 [CH, *C*(3)H=], 167.5 (C, CO);

* The *n*-butyl and aromatic signals could not be distinguished for the two isomers.

HRMS (ES+): Exact mass calculated for $C_{18}H_{27}N_2O_3S$ [M+H]⁺ 351.1742. Found 351.1729; *m/z* (ES+) 351.1 {[($C_{18}H_{26}N_2O_3S$)+H⁺], 100%}.

This reaction was also conducted using **18e**-*Z* (0.12 g, 0.4 mmol) in CH₂Cl₂ (5 mL) and morpholine (0.08 mL, 1.0 mmol). The reaction was complete by TLC analysis after 5 min and following the work-up, the adduct (0.11 g, 80%) was obtained as a yellow oil and an inseparable mixture of *E* and *Z* isomers in a ratio of 1:1.6 respectively. Further purification was not required; v_{max}/cm^{-1} (KBr) 3468 (NH), 3266 (NH), 3031 (CH), 2960 (CH), 1645 (CO), 1589, 1454 (CN stretch), 1069 (SO).

Minor isomer **23e**-*E*; $\delta_{\rm H}$ (300 MHz, CDCl₃) 0.96 [3H, t, *J* 7.2, C(4')*H*₃]*, 1.36-1.67 [4H, m, C(3')*H*₂ & C(2')*H*₂]*, 3.01-3.76 [8H, m, N(C*H*₂C*H*₂)₂O]*, 4.14 (2H, s, SC*H*₂), 6.37 [1H, s, C(3)*H*=], 7.21-7.39 (5H, m, Ar*H*)*, 7.83 (1H, br s, N*H*);

Major isomer **23e**-*Z*; $\delta_{\rm H}$ (300 MHz, CDCl₃) 0.96 [3H, t, *J* 7.3, C(4')*H*₃]*, 1.36-1.67 [4H, m, C(3')*H*₂ & C(2')*H*₂]*, 3.01-3.76 [8H, m, N(C*H*₂C*H*₂)₂O]*, 4.27 (1H, A of ABq, *J* 11.7, one of SC*H*₂), 4.44 (1H, B of ABq, *J* 11.7, one of SC*H*₂), 7.21-7.39 (5H, m, Ar*H*)*, 7.61 [1H, s, C(3)*H*=], 8.39 (1H, br t, N*H*);

*The *n*-butyl and aromatic signals could not be distinguished for the two isomers.

N-(4-Methylphenyl)-*Z*-3-morpholino-2-(benzylsulfinyl)propenamide 23f-*Z* and *N*-(4-Methylphenyl)-*E*-3-morpholino-2-(benzylsulfinyl)propenamide 23f-*E*

This was prepared following the procedure described for **14a** using **18f** (0.10 g, 0.3 mmol) in dichloromethane (10 mL) and morpholine (0.06 mL, 0.7 mmol). TLC analysis indicated that the reaction was complete after 10 min and the adduct (0.09 g, 85%) was obtained as a brown solid and an inseparable mixture of *E* and *Z* isomers in a ratio of 1:1.9 respectively, mp 139–140 °C. Further purification was not required; v_{max}/cm^{-1} (KBr) 3266 (NH), 3214 (NH),

3030 (CH), 1656 (CO), 1603, 1544 (NH bend), 1513, 1444 (CN stretch), 1069 (SO); Minor isomer **23f**-*E*; $\delta_{\rm H}$ (300 MHz, CDCl₃) 2.33 (3H, s, ArCH₃)*, 3.04-3.77 [8H, m, (N(CH₂CH₂)₂O]*, 4.20 (2H, s, SCH₂), 6.45 [1H, s, C(3)*H*=], 7.11-7.59 (9H, m, Ar*H*)*, 9.88 (1H, br s, N*H*); $\delta_{\rm c}$ (75.5 MHz, CDCl₃) 21.3 (CH₃, ArCH₃), 52.3 [CH₂, br, NC(2')H₂ & NC(6')H₂], 59.2 (CH₂, SCH₂), 67.0 [CH₂, OC(3')H₂ & OC(5')H₂], 99.3 [C, C(2)S], 120.8, 128.5, 129.0, 129.1, 129.3, 129.8, 129.9 (7 × CH, 7 × aromatic CH)*, 130.4 (C, aromatic C)*, 130.9, (CH, aromatic CH)*, 131.0 (C, aromatic C)*, 131.1 (CH, aromatic CH)*, 134.2, 136.1 (2 × C, 2 × aromatic C), 150.2 [CH, C(3)H=], 162.9 (C, CO).

Major isomer **23f**-*Z*; $\delta_{\rm H}$ (300 MHz, CDCl₃) 2.33 (3H, s, ArC*H*₃)*, 3.04-3.779 [8H, m, N(*CH*₂*CH*₂)₂O]*, 4.35 (1H, A of ABq, *J* 12.0, one of SC*H*₂), 4.45 (1H, B of ABq, *J* 12.0, one of SC*H*₂), 7.11-7.59 (9H, m, Ar*H*)*, 7.67 [1H, s, C(3)*H*=], 10.49 (1H, br s, N*H*); $\delta_{\rm c}$ (75.5 MHz, CDCl₃) 21.3 (CH₃, ArCH₃), 52.5 [CH₂, br, N*C*(2')H₂ & N*C*(6')H₂], 59.6 (CH₂, S*C*H₂), 66.3 [CH₂, O*C*(3')H₂ & O*C*(5')H₂], 93.7 [C, *C*(2)S], 120.8, 128.5, 129.0, 129.1, 129.3, 129.8, 129.9 (7 × CH, 7 × aromatic *C*H)*, 130.4 (C, aromatic *C*)*, 130.9, (CH, aromatic *C*H)*, 131.0 (C, aromatic *C*)*, 131.1 (CH, aromatic *C*H)*, 133.5, 136.7 (2 × C, 2 × aromatic *C*), 152.5 [CH, *C*(3)H=], 165.7 (C, CO).

*These signals could not be distinguished for the two isomers.

HRMS (ES+): Exact mass calculated for $C_{21}H_{25}N_2O_3S$ [M+H]⁺ 385.1586. Found 385.1588; *m/z* (ES+) 385.2 {[($C_{21}H_{24}N_2O_3S$)+H⁺], 38%}.

N-Methyl-E-3-morpholino-2-(benzenesulfonyl)propenamide 24a

The stereochemistry was determined by single crystal X-ray diffraction on a crystalline sample of **24a** recrystallised from dichloromethane/hexane. Crystals of **24a** are triclinic, space group *P*-1, formula C₁₄H₁₈N₂O₄S, M = 310.36, a = 5.6949(16) Å, b = 9.6545(13) Å, c = 13.611(2) Å, $\alpha = 73.20(3)$ °, $\beta = 83.98(4)$ °, $\gamma = 80.88(4)$ °, U = 706.0(2) Å³, F(000) = 328, μ (Mo-K α) = 0.247 mm⁻¹, R(F₀) = 0.0683, for 2176 observed reflections with I>2 σ (I), wR₂(F²) = 0.1817 for all 2509 unique reflections. Data in the θ range 2.34-25.39 ° were collected at 125 K on a Rigaku Saturn 724 CCD diffractometer using Mo-K α graphite monochromated radiation, $\lambda = 0.7107$ Å, and corrected for Lorentz and polarization effects. The structure was solved by direct methods and refined by full-matrix least-squares using all F² data. The hydrogen atoms were placed in calculated positions and allowed to ride on the parent atom.

N-(4-Methylphenyl)-3-N'-methylamino-2-(phenylthio)propenamide 25a

Methylamine (12 M in water, 136 µl, 1.1 mmol) was added to a solution of 1a (150 mg, 0.5 mmol), in CH₂Cl₂ (3 mL) while stirring. The reaction was complete after 5 min by TLC analysis. CH₂Cl₂ (5 mL) and saturated aqueous ammonium chloride (2 mL) were added, the phases were separated and the aqueous layer was washed with CH_2Cl_2 (2 × 10 mL). The combined organic layers were washed with brine $(2 \times 10 \text{ mL})$, dried (ethanol was necessary to wash the compound from MgSO₄) and evaporated to give propenamides 25a-E/Z (170 mg) as a yellow, crystalline solid. The Z isomer interconverts slowly, on standing or on silica gel, with the E isomer (2D TLC analysis). Purification by chromatography using ethyl acetatehexane (20:80) elutes the less polar 25a-E [rf 0.6 using ethyl acetate-hexane (25:75)], (tentatively assigned) Note: The E and Z isomers interconvert on silica gel (2 D analysis) and slowly on standing at room temperature. Thus, a pure sample of one isomer could not be obtained; mp 135–138 °C; (Found C, 68.01; H, 6.08; N, 9.22; S, 10.65. C₁₇H₁₈N₂OS requires C, 68.43; H, 6.08; N, 9.39; S, 10.75); v_{max}/cm^{-1} (KBr) 3359 (sharp NH), 1651, 1586 (CO α , β unsaturated amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 2.27 (3H, s, ArCH₃), 3.02 (3H, d, J 5, CH₃N), 7.04-7.41 (10H, m, ArH, CH=), 8.34 (1H, br s NHTol), 9.03-9.20 (1H, br m, NHC=); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) (As a mixture of *E* and *Z* isomers. The signals corresponding to the major isomer are indicated by the symbol \diamond); 20.7 (ArCH₃), 35.4^{\diamond}, 35.6 (NCH₃), 82.8^{\diamond}, 86.0 (CS=), 119.7, 119.9°, 124.9°, 125.2 (aromatic CH), 125.6, 129.2, 129.7° (aromatic CH), 132.8, $133.0^{\circ}, 135.5, 135.8^{\circ}, 136.2, 139.8^{\circ}$ (aromatic C), 154.7, 160.9° (NCH=), 165.2, 168.5° (CO); MS m/z 298 (M⁺, 41 %), 254 (14), 192 (57), 149 (47), 107 (100), and neat ethanol elutes the more polar 25a-Z (rf 0.2) (tentatively assigned); $\delta_{\rm H}$ (270 MHz, CDCl₃) 2.28 (3H, s, ArCH₃), 3.06 (3H, d, J 5, CH₃N), 5.40-5.60 (1H, br m, NHC=), 7.05-7.41 (9H, m, ArH), 8.22 (1H, d, J 14, CH=), 8.39 (1H, br s, NH).

N-[(*S*)-1-Phenylethyl]-3-(1-phenylethylamino)-2-(phenylthio)propenamide 26b

This was prepared following the procedure described for **24a** using racemic (\pm)- α methylbenzylamine (0.16 mL, 1.26 mmol) and **1b** (0.20 g, 0.63 mmol) in CH₂Cl₂ (4 mL). The reaction was complete by TLC analysis after stirring at room temperature for 22 h and was quenched with water (10 mL). The crude ratio of *E* & *Z* isomers was 3:1 by integration of the 60 MHz ¹H NMR spectrum. Purification by chromatography using ethyl acetatehexane (10:90) eluted a fraction which was predominantly the *E* isomer with traces of the *Z* isomer [rf 0.6 using ethyl acetate-hexane (25:75) as eluent] (tentatively assigned) (120 mg,

47%) as a colourless oil and an equimolar mixture of diastereomers; v_{max}/cm^{-1} (film) 3391 (sharp NH), 3264 (br NH), 1627, 1583 (CO α , β -unsaturated amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.34, 1.35 [3H, d, J 7, C(2)H₃], 1.52, 1.53 [3H, d, J 7, C(2')H₃], 4.35-4.49 [1H, m, C(1')H], 5.06 [1H, m, C(1)H], 6.85 (1H, br d, J7, NHCO) 7.05-7.36 (16H, m, ArH, CH=), 9.43 (1H, dd, J 13, 7, NHC=); δ_{C} (67.8 MHz, CDCl₃) 22.7, 23.5 [C(2)H₃ and C(2')H₃], 48.3 [C(1)H], 55.4, 57.5 [C(1')H], 84.0 (SC=), 125.1, 125.1, 125.6, 126.0, 126.7, 127.5, 128.3, 128.7 (aromatic CH), 139.7, 143.3, 143.4 (aromatic C), 157.2 (CH=), 168.9 (CO); MS m/z 402 (M⁺, 3 %), 105 (100, $[CH_3CHPh]^+$), 77 (23), and CH_2Cl_2 eluted a fraction which was predominantly the Z isomer (rf 0.1) with traces of the E isomer (tentatively assigned) (24 mg, 10 %) as a yellow oil and an equimolar mixture of diastereomers; v_{max}/cm^{-1} (film) 3391 (sharp NH), 3272 (br NH), 1629, 1582 (CO α , β -unsaturated amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.38, 1.39 [3H, d, J 7, C(2)H₃], 1.48, 1.49 [3H, d, J 8, C(2')H₃], 4.49-4.57 [1H, dq, J 7, 7, C(2')H], 5.04-5.24 [1H, dq, J7, 8, C(2)H], 5.68 (1H, dd, J15, 6, NHC=), 6.83 (1H, br d, J7, NHCO) 7.05-7.28 (16H, m, ArH, NHCO), 8.18 (1H, d, J 14, CH=); δ_C (67.8 MHz, CDCl₃) (as a mixture with E isomer) 22.4, 23.3 [C(2)H₃ and C(2')H₃], 48.7 [C(1)H], 56.7 [C(1')H], 87.7 (SC=), 124.98-129.29 (aromatic CH indistinguishable), 135.7, 143.2, 144.1 (aromatic C), 151.4 (CH=), 166.1 (CO); MS m/z 402 (M⁺, 17 %), 370 (2), 120 (26), 105 (100), 77 (38); Found (HRMS, EI) M⁺ 402.17841 C₂₅H₂₆NOS requires *m/z* 402.17659.

N-(4-Methylphenyl)-*E*-methylamino-2-(benzenesulfinyl)propenamide 27a

The title compound was prepared according to the procedure outlined for **24a** using **18a** (0.25 g, 0.78 mmol), methylamine (12 M in water, 0.16 mL, 1.95 mmol) and CH₂Cl₂ (8 mL). The crude product was purified on silica gel using hexane:ethyl acetate (40:60) to give **27a** as a white crystalline solid (0.15 g, 60%), mp 124–126 °C; (Found C, 64.39; H, 5.76; N, 9.19; S, 10.24. C₁₇H₁₈N₂O₂S requires C, 64.90; H, 5.77; N, 8.90; S, 10.20%); v_{max}/cm^{-1} (KBr) 3288, 1651; $\delta_{\rm H}$ (270 MHz, CDCl₃) 2.25 (3H, s, ArCH₃), 3.10 (3H, d, *J* 5.0, NCH₃), 7.04 (2H, d, *J* 7.0, Ar*H*), 7.13-7.53 [6H, m, C(3)*H*N= and Ar*H*], 7.61 (2H, d, *J* 7.0, Ar*H*), 8.77 (1H, br d, *J* 7.9, N*H*CH₃), 9.30 (1H, br s, N*H*); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 20.8 (CH₃, ArCH₃), 35.6 (CH₃, NCH₃), 99.2 (C, S*C*=), 120.3, 124.7, 129.0, 129.2, 130.0 (CH, aromatic *C*H), 133.3, 135.3, 144.7 (C, aromatic *C*), 155.2 [CH, *C*(3)HN=], 165.5 (C, *C*O); MS *m*/*z* 314 (M⁺, 2%), 298 (100%).

N-Ethyl-*E*-methylamino-2-(benzenesulfinyl)propenamide 27c

The title compound was prepared according to the procedure outlined for **24a** using **18c** (0.30 g, 1.17 mmol), methylamine (12 M in water, 0.24 mL, 2.92 mmol) and CH₂Cl₂ (9 mL). The crude product was purified by trituration to give **27c** as a white crystalline solid (0.27 g, 93%), mp 139–141 °C; (Found C, 56.70; H, 6.40; N, 10.93; S, 12.42. C₁₂H₁₆N₂O₂S requires C, 56.12; H, 6.39; N, 11.10; S, 12.71%); v_{max} /cm⁻¹ (KBr) 3304, 1643, 1546, 1011; $\delta_{\rm H}$ (270 MHz, CDCl₃) 0.82 (3H, t, *J* 7.3, CH₂CH₃), 2.91-3.36 (5H, m, NHCH₂CH₃ and NCH₃), 7.05-7.21 [2H, m, C(3)*H*N= and N*H*CH₃], 7.32-7.62 (5H, m, Ar*H*), 8.60 (1H, br s, N*H*CH₂CH₃); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 14.6 (CH₃, CH₂CH₃), 33.1 (CH₂, NCH₂), 35.4 (CH₃, NCH₃), 99.5 (C, SC=), 124.9, 128.7, 129.8 (CH, aromatic CH), 144.9 (C, aromatic *C*), 154.9 [CH, *C*(3)HN=], 166.9 (C, CO); MS *m*/z 252 (M⁺, 2%), 44 (100%).

N-(4-Methylphenyl)-E-isopropylamino-2-(benzenesulfinyl)propenamide 28a

The title compound was prepared according to the procedure outlined for **24a** using **18a** (0.25 g, 0.82 mmol), isopropylamine (0.21 mL, 2.06 mmol) and CH₂Cl₂ (8 mL). The crude product was purified on silica gel using hexane:ethyl acetate (40:60) to give **28a** as a white crystalline solid (0.22 g, 81%), mp 115–117 °C; (Found C, 66.82; H, 6.49; N, 8.30; S, 11.35. C₁₉H₂₂N₂O₂S requires C, 66.83; H, 6.20; N, 8.20; S, 11.44%); v_{max}/cm^{-1} (KBr) 1648, 1613, 1545, 1253, 1008; δ_{H} (270 MHz, CDCl₃) 1.21-1.41 [6H, m, (CH₃)₂CH], 2.25 (3H, s, ArCH₃), 3.49-3.69 [1H, m, (CH₃)₂CH], 7.01 (2H, d, *J* 8.2, Ar*H*), 7.12-7.50 [6H, m, C(3)*H*N= and Ar*H*], 7.59 (2H, d, *J* 8.2, Ar*H*), 8.75-8.99 [H, br m, N*H*(CH₃)₂CH], 9.25 (1H, br s, N*H*Tol); δ_{C} (67.8 MHz, CDCl₃) 20.8 (CH₃, ArCH₃), 23.5 [CH₃, (CH₃)₂CH], 23.9 [CH₃, (CH₃)₂CH], 50.8 [CH, (CH₃)₂CH], 98.7 (C, S*C*=), 120.4, 124.7, 129.0, 129.3, 130.0 (CH, aromatic CH), 133.4, 135.2, 144.7 (C, aromatic C), 155.2 [CH, *C*(3)HN=], 165.6 (C, CO); MS *m/z* 342 (M⁺, 15%), 107 (100%).

Addition of ammonia

N-Ethyl-E-3-amino-2-(benzenesulfinyl)propenamide 32c

This was prepared following the procedure outlined for **24a** using **18c** (0.20 g, 0.78 mmol), aqueous ammonia (20.5 M, 0.1 mL, 1.94 mmol) and acetone (5 mL). After stirring at room temperature for 16 hours, the reaction was complete by TLC analysis. The crude product was purified by chromatography on silica gel using hexane:ethyl acetate (60:40) as eluent to give **31c** as a white crystalline solid (96 mg, 52%); mp 86–88 °C; (Found C, 54.80; H, 5.85; N, 11.60. $C_{19}H_{22}N_2O_2S$ requires C, 55.44; H, 5.92; N, 11.76%); v_{max}/cm^{-1} (KBr) 3396, 1656,

This journal is (c) The Royal Society of Chemistry 2010

1613, 1508; $\delta_{\rm H}$ (270 MHz, CDCl₃) 0.85 (3H, t, *J* 7.3, CH₂CH₃), 2.91-3.32 (2H, sym m, CH₂CH₃), 5.38 (1H, br s, one of NH₂), 7.27 (1H, br s, NHEt), 7.29-7.62 (6H, m, ArH, C(3)HN=), 8.45 (1H, br s, one of NH₂); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 14.5 (CH₃, CH₂CH₃), 33.1 (CH₂, CH₂CH₃), 102.4 (C, SC=), 124.8, 128.8, 130.0 (CH, aromatic CH), 144.3 (C, aromatic C), 151.2 [CH, *C*(3)HN=], 166.4 (C, CO).

Oxygen Nucleophiles

Reaction with lithium methoxide

N-4-Benzyl-3,3-dimethoxy-2-(benzylthio)propanamide 34v and *N*-4-Benzyl-*Z*-3methoxy-2-(benzylthio)propenamide 33v

From a solution of sodium (50 mg, 2.17 mmol) in methanol (10 mL), a 6.4 mL portion was added to a solution of the sulfide 1v (0.210 g, 0.66 mmol) in methanol (2 mL). After stirring for 1 h the reaction was complete by TLC analysis. Saturated aqueous ammonium chloride (10 mL) and ether (15 mL) were added and the phases were separated, the aqueous layer was extracted with ether (2 × 10 ml) and the combined organic layers were washed with brine (2 × 10 mL), dried and concentrated *in vacuo* to give the crude product (146 mg) as a white solid which was a mixture of mono- and di-substituted products **33v** and **34v** in a ratio of 1:1.8. These were separated by column chromatography on silica gel using hexane:ethyl acetate (60:40) as eluent to give **34v** (36 mg, 16 %) as a white solid, and **33v** (80 mg, 39 %) as a white solid.

34v: v_{max}/cm^{-1} (KBr) 3282 (br NH), 1644 (CO amide); δ_{H} (400 MHz, CDCl₃) 3.36 [3H, s, one of (CH₃O)₂], 3.38 [3H, s, one of (CH₃O)₂], 3.41 (1H, d, *J* 4.2, CHS) 3.77 (2H, s, SCH₂Bn), 4.39 (1H, A of ABX, *J*_{AB} 15.0, *J*_{AX} 6.0, one of NCH₂Bn), 4.46 (1H, B of ABX, *J*_{AB} 15.0, *J*_{BX} 6.0, one of NCH₂Bn), 4.59 [1H, d, *J* 4.2, C(3)H], 6.93 (1H, br t, *J* 5.2, NH), 7.17-7.40 (10H, m, ArH); δ_{C} (75.5 MHz, CDCl₃) 36.5, 43.5 (2 × CH₂, SCH₂ and CH₂NH), 52.4 (CH, CHS), 56.1, 56.6 (2 × CH₃, 2 × OCH₃), 105.4 [CH, *C*(3)H], 127.35, 127.38, 127.5, 128.62, 128.63, 129.2 (CH, aromatic CH), 137.4, 138.2 (C, aromatic C), 168.9 (C, CO); HRMS (ESI+): Exact mass calculated for C₁₉H₂₄NO₃S (M+H⁺) 346.1477. Found 346.1466 (M+H⁺); m/z (ESI⁻) 344.1 (M-H⁺).

33v: ν_{max}/cm⁻¹ (KBr) 3379 (br NH), 1648 (CO amide); δ_H (400 MHz, CDCl₃) 3.74 (2H, s, SCH₂Bn), 3.89 (3H, s, OCH₃), 4.31 (2H, d, *J* 5.9, NCH₂Bn), 7.00-7.42 (11H, m, Ar*H*, N*H*),

7.89 (1H, s, CHOMe); δ_C (75.5 MHz, CDCl₃) 38.9, 43.7 (2 × CH₂, SCH₂ and CH₂NH), 62.2 (CH₃, OCH₃), 102.7 [C, C(2)S], 127.24, 127.28, 127.5, 128.5, 128.6, 128.8 (6 × CH, aromatic CH), 138.0, 138.3 (C, aromatic C), 164.2 (CH, CHOCH₃) 165.8 (C, CO); HRMS (ESI+): Exact mass calculated for C₁₈H₂₀NO₂S (M+H⁺) 314.1215. Found 314.1214 (M+H⁺); m/z (ESI⁺) 314.1 (M+H⁺).

Formation of β , β -dimethoxyamide

N-i-Propyl-3,3-dimethoxy-2-(phenylthio)propanamide 34f

This was prepared following the procedure described for 3,3-dimethoxypropanamide **34a** using **1f** (0.20 g, 0.78 mmol), sodium (38 mg, 1.65 mmol) and methanol (4 and 2 mL). The reaction was complete by TLC analysis after 1 h giving **34f** (0.19 g, 86 %) as a white, crystalline solid which did not require further purification; mp 94–96 °C; (Found C, 58.90; H, 7.68; N, 5.10; S, 11.61. C₁₄H₂₁NO₃S requires C, 59.34; H, 7.47; N, 4.94; S, 11.31%); v_{max}/cm^{-1} (KBr) 3278 (br NH), 1637 (CO amide); δ_{H} (270 MHz, CDCl₃) 1.06 [3H, d, *J* 7, C(2')H₃], 1.10 [3H, d, *J* 7, C(2')H₃], 3.47 (3H, s, OCH₃), 3.50 (3H, s, OCH₃), 3.88 (1H, d, *J* 4, CHS), 4.04 (1H, sept, *J* 7, NCH), 4.75 [1H, d, *J* 4, C(3)H], 6.56 (1H, br d, *J* 7, NH), 7.19-7.46 (5H, m, ArH); δ_{C} (67.8 MHz, CDCl₃) 22.3 [*C*(2')H₃], 41.6 (NCH), 56.1, 56.4 (OCH₃), 57.1 (CHS), 105.1 [*C*(3)H], 127.2, 129.2, 130.8 (aromatic CH), 134.2 (aromatic C), 167.3 (CO); MS *m/z* 283 (M⁺, 10 %), 223 (18, M⁺-2 x CH₃), 75 (100, [CH(OMe)₂]⁺).

N-(4-Methylphenyl)-3,3-dimethoxy-2-(n-butylthio)propanamide 34r

This was prepared following the procedure described for 3,3-dimethoxypropanamide **34a** using **1r** (0.24 g, 0.86 mmol), sodium (41 mg, 1.81 mmol) and methanol (3 and 3 mL). The reaction was complete after 1 h by TLC analysis. Purification by chromatography using ethyl acetate-hexane (10:90) as eluent gave **34r** (0.20 g, 82%) as a white, crystalline solid; mp 62–64 °C; (Found C, 61.98; H, 8.40; N, 4.80; S, 10.24. C₁₆H₂₅NO₃S requires C, 61.70; H, 8.09; N, 4.50; S, 10.30%); v_{max}/cm^{-1} (KBr) 3300 (br NH), 1660, 1611 (CO amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 0.89 [3H, t, *J* 7, C(4')*H*₃], 1.39-1.44 [2H, m, C(3')*H*₂], 1.54-1.62 [2H, m, C(2')*H*₂], 2.31 (3H, s, ArC*H*₃), 2.65 (2H, t, *J* 8, SC*H*₂), 3.47 (3H, s, OC*H*₃), 3.53 (3H, s, OC*H*₃), 3.60 (1H, d, *J* 4, CHS), 4.70 [1H, d, *J* 4, C(3)*H*], 7.11-7.45 (4H, ABq, *J* 8, Ar*H*), 8.61 (1H, br s, N*H*); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 13.5 [*C*(4')H₃], 20.8 (ArCH₃), 21.6 [*C*(3')H₂], 31.3, 32.1 [*C*(2')H₂, *C*(1')H₂], 54.8 (CHS), 56.1, 56.8 (2 × OCH₃), 105.4 [*C*(3)H], 119.8, 129.4

This journal is (c) The Royal Society of Chemistry 2010

(aromatic *C*H), 133.9, 135.2 (aromatic *C*), 167.3 (*C*O); MS *m*/*z* 311 (M⁺, 5 %), 251 (8%), 146 (10%), 75 {100%, [CH(OMe)₂]⁺}.

(1'S)-N-(1-Phenylethyl)-3,3-dimethoxy-2-(phenylthio)propanamide 34b

This was prepared following the procedure described for **34a** using **1b** (0.15 g, 0.47 mmol), sodium (23 mg, 0.99 mmol) and methanol (4 mL). After stirring for 2 h the reaction was complete by TLC analysis. Purification by chromatography using ethyl acetate-hexane (25:75) as eluent gave both diastereomers (55:45) of **34b** (145 mg, 89%) as a white, crystalline solid; mp 79–81 °C; $[\alpha]_{20}^{D}$ –57.9 (*c* 4 in ethanol); (Found C, 66.50; H, 6.62; N, 4.40; S, 9.07. C₁₉H₂₃NO₃S requires C, 66.06; H, 6.71; N, 4.06; S, 9.28%); v_{max}/cm⁻¹ (KBr) 3274 (br NH), 1647 (CO amide); δ_{H} (270 MHz, CDCl₃) 1.40, 1.44° [3H, d, *J* 7, C(2')H₃], 3.40, 3.50° (6H, s, OCH₃), 3.93°, 3.95 (1H, d, *J* 2, CHS), 4.58, 4.72° [1H, d, *J* 2, C(3)H], 5.02-5.13 (1H, m, NCH), 7.13-7.42 (10H, m, ArH); δ_{C} (67.8 MHz, CDCl₃) 21.6 [C(2')H₃], 48.9 (NCH), 56.1 (CHS), 56.5, 57.1 (OCH₃), 105.1 [C(3)H], 125.8, 127.2, 128.5, 129.1, 130.9 (aromatic CH), 134.0°, 134.1, 142.8, 142.9° (aromatic C), 167.4 (CO); MS *m/z* 345 (M⁺, 3%), 225 (18%, M⁺-CONHCHCH₃Ph), 107 (43%), 75 {100%, [CH(OMe)₂]⁺}.

3,3-Dimethoxy-2-(phenylthio)propanamide 34k

This was prepared following the procedure described for **34a** using **1k** (0.15 g, 0.7 mmol), sodium (34 mg, 1.47 mmol) and methanol (4 mL) with a reaction time of 16 h, to give **34k** (145 mg, 86%) as a white, crystalline solid which did not require further purification; mp 94–96 °C; v_{max}/cm^{-1} (KBr) 3375 (br NH), 1655 (CO amide); δ_{H} (270 MHz, CDCl₃) 3.47 (3H, s, OCH₃), 3.52 (3H, s, OCH₃), 3.87 (1H, d, *J* 4, *CHS*), 4.71 [1H, d, *J* 4, C(3)*H*], 5.99 (1H, br s, N*H*), 6.67 (1H, br s, N*H*), 7.14-7.47 (5H, m, Ar*H*); δ_{C} (67.8 MHz, CDCl₃) 56.0 (OCH₃), 56.4 (*C*HS), 56.9 (OCH₃), 105.0 [*C*(3)H], 127.5, 129.2, 131.0 (aromatic *C*H), 134.1 (aromatic *C*), 171.4 (*C*O); MS *m*/z 241 (M⁺, 3%), 209 (M⁺-CH₃OH), 110 (47%, PhSH), 75 {100%, [CH(OMe)₂]⁺}.

N,N-Diphenyl-3,3-dimethoxy-2-(phenylthio)propanamide 34n

This was prepared following the procedure described for 34a using a mixture of *E* and *Z* isomers (*ca.* 1:1) of 1n (0.10 g, 0.27 mmol), sodium (13 mg, 0.58 mmol) and methanol (3 mL). The reaction was complete by TLC analysis after 19 h to give pure 34n (99 mg, 92%) as

a light yellow oil which did not require further purification; (Found C, 69.90; H, 6.07; N, 3.80; S, 8.61. $C_{23}H_{23}NO_3S$ requires C, 70.20; H, 5.89; N, 3.56; S, 8.15%); v_{max}/cm^{-1} (film) 1668, 1593 (CO amide); δ_H (270 MHz, CDCl₃) 3.35 (3H, s, OCH₃), 3.48 (3H, s, OCH₃), 4.05 (1H, d, *J* 8, CHS), 4.80 [1H, d, *J* 8, C(3)*H*], 7.04-7.37 (15H, m, Ar*H*); δ_C (67.8 MHz, CDCl₃) 52.1, 54.9, 57.1 (CHS and 2 × OCH₃), 106.7 [*C*(3)H], 126.2, 126.4, 127.9, 128.2, 128.7, 128.8, 129.4 (aromatic *C*H, 8 signals for 9 carbons), 131.6 (aromatic *C*), 133.4 (aromatic *C*H), 142.1, 142.5 (aromatic *C*), 169.2 (*C*O); MS *m*/*z* 393 (M⁺, 3 %), 333 (18%), 75 {100%, [CH(OMe)₂]⁺}.

N-(4-Methylphenyl)-3,3-dimethoxy-2-(phenylthio)butanamide 34g

This was prepared following the procedure described for **34a** using **1g** (0.13 g, 0.41 mmol), sodium (20 mg, 0.86 mmol) and methanol (6 mL) with a reaction time of 22 h, to give **34g** (128 mg, 91%) as a white, crystalline solid which did not require further purification; mp 97–99 °C; (Found C, 65.64; H, 6.80; N, 4.15. $C_{19}H_{23}NO_3S$ requires C, 66.06; H, 6.71; N, 4.05%); v_{max}/cm^{-1} (KBr) 3296 (br NH), 1664, 1608 (CO amide); δ_H (270 MHz, CDCl₃) 1.71 [3H, s, C(4)*H*₃], 2.43 (3H, s, ArC*H*₃), 3.44 (3H, s, OC*H*₃), 3.50 (3H, s, OC*H*₃), 4.22 (1H, s, CHS), 7.21-7.61 (9H, m, Ar*H*), 8.43 (1H, br s, N*H*); δ_C (67.8 MHz, CDCl₃) 19.4 [*C*(4)H₃], 20.8 (ArCH₃), 49.4 (CHS), 49.9, 60.7 (2 × OCH₃), 102.0 [*C*(3)], 119.9, 127.4, 129.1, 129.4, 131.1 (aromatic *C*H), 133.9, 134.1, 135.2 (aromatic *C*), 167.1 (*C*O); MS *m*/z 345 (M⁺, 5%), 299 (6%, M⁺-CH₃, -OCH₃), 89 {79%, [CCH₃(OMe)₂]⁺}.

Reaction with lithium methoxide

N-(2-Propenyl)-3-methoxy-2-(phenylthio)propenamide 33h

This was prepared following the procedure described for **33a** using **1h** (0.20 g, 0.79 mmol), methanol (42 µl, 1.03 mmol), *n*-butyllithium (0.69 mL, 1.6 M in hexane, 1.1 mmol) and THF (4 mL). The reaction was conducted initially at –25 °C, was allowed to warm slowly to room temperature and was complete after a reaction time of 2 h at 0 °C by TLC analysis. Purification by chromatography using ethyl acetate-hexane (30:70) as eluent gave **33h** (135 mg, 69%) as a colourless oil [with < 5% *N*-(2-propenyl)-3,3-dimethoxy-2-(phenylthio)propanamide (estimated by ¹H NMR spectroscopic integration)]; v_{max}/cm⁻¹ (film) 3392 (br NH), 1655, 1600; $\delta_{\rm H}$ (270 MHz, CDCl₃) 3.85-3.96 (2H, m, NCH₂), 3.98 (3H, s, OCH₃), 4.93-5.04 (2H, m, CH₂=), 5.68-5.82 (1H, m, CH=), 7.00 (1H, br s, NH), 7.11-7.29 (5H, m, ArH), 8.11 (1H, s, CH=); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 41.9 (NCH₂), 62.4 (CH₃O), 101.2

This journal is (c) The Royal Society of Chemistry 2010

(SC=), 115.7 (CH₂=), 125.8, 126.3, 128.8, (aromatic CH), 133.8 (CH=), 135.4 (aromatic C), 165.2 (CO), 165.6 (=CHO); MS *m*/*z* 249 (M⁺, 100 %), 234 (2%, M⁺-CH₃), 218 (8%, M⁺-OCH₃), 193 (21%, M⁺-NHCH₂CH=CH₂), 165 (18%, M⁺-CONHCH₂CH=CH₂).

N,N-Diphenyl-3-methoxy-2-(phenylthio)propenamide 33n

This was prepared following the procedure described for **33a** using an *E* and *Z* mixture (*ca*. 1:1) of isomers of **1n** (0.20 g, 0.55 mmol), methanol (29 µl, 0.72 mmol), *n*-butyllithium (0.48 mL, 1.6 M in hexane, 0.77 mmol) and THF (4 mL) with a reaction time of 18 h while warming slowly from -78 °C to room temperature to give a brown oil (0.23 g) which was a mixture of compounds. Purification by chromatography using ethyl acetate-hexane (25:75) as eluent gave **34n** (62 mg, 31%) and **33n** (22 mg, 11%, containing **34n** in ratio of 4:1) as a yellow oil; v_{max}/cm^{-1} (film) 1670, 1593 (CO amide); δ_{H} (270 MHz, CDCl₃) 3.74 (3H, s, OCH₃), 6.51 (1H, s, CH=), 6.86-7.46 (15H, m, Ar*H*); δ_{C} (67.8 MHz, CDCl₃) 61.3 (OCH₃), 105.8 (SC=), 125.8, 126.5, 127.8, 127.2, 128.7, 127.9, 128.6, 128.8, 129.0 (aromatic *C*H), 133.4, 136.9, 142.7 (aromatic *C*), 158.1 (CH=), 166.7 (CO); MS *m/z* (as a mixture with acetal **33n**) 361 (M⁺, 30%), 333 (20%), 252 (27%, M⁺-SPh), 193 (54%, M⁺-NPh₂).

N-(4-Methylphenyl)-3-methoxy-2-(n-butylthio)propenamide 33r

This was prepared following the procedure described for **33a** using **1r** (0.20 g, 0.71 mmol), methanol (37 µl, 0.92 mmol), *n*-butyllithium (0.62 mL, 1.6 M in hexane, 0.99 mmol) and THF (4 mL). Addition of the methoxide solution was conducted when both solutions were at -23 °C. After stirring for 4 h, allowing the reaction to warm slowly to 10 °C, the reaction was complete by TLC analysis. Purification by chromatography using ethyl acetate-hexane (25:75) as eluent gave **34r** (12 mg, 5%) and **33r** (58 mg, 30%) (as a mixture with < 30% **34r**) as a yellow oil. v_{max}/cm^{-1} (film) 3331 (br NH), 1666, 1603 (CO amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 0.90 [3H, t, *J* 7, C(4')*H*₃], 1.34-1.51 [2H, m, C(3')*H*₂], 1.52-1.68 [2H, m, C(2')*H*₂], 2.32 (3H, s, ArC*H*₃), 2.64 (2H, t, *J* 7, SC*H*₂), 3.95 (3H, s, OC*H*₃), 7.13-7.50 (4H, ABq, *J* 8, Ar*H*), 7.94 (1H, s, C*H*=), 9.03 (1H, br s, N*H*); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 13.6 [*C*(4')*H*₃], 20.8 (ArCH₃), 21.9 [*C*(3')H₃], 31.5 [*C*(2')H₂], 34.7 [*C*(1')H₂], 62.2 (OCH₃), 104.0 (SC=), 119.7, 129.4 (aromatic CH), 133.6, 135.6 (aromatic C), 163.0 (CO), 164.1 (CH=); MS *m/z* 279 (M⁺, 73%), 173 (37%, M⁺-NH^pTol), 107 (57%), 75 (100%).

N-(4-Methylphenyl)-3-methoxy-2-(phenylthio)-2-butenamide 33g

This was prepared following the procedure described for **33a** using an *E* and *Z* mixture (*ca*.1:1) of isomers of **1g** (0.20 g, 0.63 mmol), methanol (33 µl, 0.82 mmol), *n*-butyllithium (0.55 mL, 1.6 M in hexane, 0.88 mmol) and THF (5 mL) with a reaction time of 18 h while warming slowly from -78 °C to room temperature. Purification by chromatography using ethyl acetate-hexane (20:80) as eluent gave unreacted **1g** (35 mg, 18 %) (spectroscopic characteristics as described above) and a fraction containing the *E* and *Z* isomers of **33g** (ratio 1:5) as an inseparable mixture with **34g** (ratio 50:50) (104 mg); v_{max}/cm^{-1} (film) 3345 (br NH), 1651, 1592 (CO α , β -unsaturated amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) signals assigned to *E/Z* isomers at 2.46, 2.73 [C(4)*H*₃], 3.82, 3.94 (OC*H*₃) others are indistinguishable.

Reaction with sodium ethoxide

N-(4-Benzyl)-*Z*-3-ethoxy-2(benzylthio)propenamide 35v and *N*-(4-Benzyl)-3,3-diethoxy-2(benzylthio)propenamide 36v

1v (0.30 g, 0.94 mmol) was added in one portion to a freshly prepared solution of sodium ethoxide [sodium (44 mg, 1.88 mmol) in ethanol (12 mL)] at 0°C and left to stir for 1 h. The reaction mixture was quenched with saturated aqueous ammonium chloride (15 mL) and ether (15 mL). The phases were separated and the aqueous layer was extracted with ether (2 × 10 mL). The combined organic layers were then washed with brine (2 × 10 ml), dried and evaporated to give the crude product (302 mg) as an off white solid which was a mixture of mono- and di-substituted products **35v** and **36v** in a ratio of 1:1.2. These were separated by column chromatography on silica gel using hexane:ethyl acetate (60:40) as eluent to give the disubstituted product **36v** (0.12 g, 34%) as a white solid, and the monosubstituted **35v** (0.101 g, 32%) as a yellow oil.

35v: v_{max}/cm^{-1} (KBr) 3389 (br NH), 1648 (CO amide); δ_{H} (400 MHz, CDCl₃) 1.33 (3H, t, *J* 7.1, CH₃CH₂O), 3.74 (2H, s, SCH₂Bn), 4.13 (2H, q, *J* 7.1, CH₃CH₂O), 4.32 (2H, d, *J* 5.9, NCH₂Bn), 7.05-7.39 (11H, m, Ar*H*, N*H*), 7.97 (1H, s, CHOEt); δ_{C} (75.5 MHz, CDCl₃) 15.5 (CH₃, OCH₂CH₃), 38.8, 43.6 (2 × CH₂, SCH₂ and CH₂NH), 71.1 (CH₂, OCH₂CH₃), 102.3 [C, *C*(2)S], 127.2, 127.3, 127.5, 128.5, 128.6, 128.8 (6 × CH, aromatic *C*H), 138.1, 138.4 (2 × C, aromatic *C*), 163.0 (CH, CHOCH₂CH₃) 166.0 (C, CO); HRMS (ESI+): Exact mass calculated for C₁₉H₂₂NO₂S (M+H⁺) 328.1371. Found 328.1356 (M+H⁺); m/z (ESI⁺) 328.1 (M+H⁺). **36v:** v_{max}/cm^{-1} (KBr) 3282 (br NH), 1644 (CO amide); δ_{H} (400 MHz, CDCl₃) 1.14 [3H, t, *J* 5.1, one of (CH₃CH₂O)₂], 3.37 (1H, d, *J* 4.1, CHS),

3.38-3.53 (2H, m, one of CH_2CH_3O), 3.60-3.72 (2H, m, one of CH_2CH_3O), 3.77 (1H, A of

AB system, J_{AB} 13.6, one of SC H_2 Bn), 3.81 (1H, B of AB system, J_{AB} 13.6, one of SC H_2 Bn), 4.38 (1H, A of ABX, J_{AB} 15.2, J_{AX} 5.6, one of NC H_2 Bn), 4.49 (1H, B of ABX, J_{AB} 15.2, J_{BX} 5.6, one of NC H_2 Bn), 4.73 [1H, d, J 4.1, C(3)H], 7.00 (1H, br t, J 5.2, NH), 7.19-7.37 (10H, m, ArH); δ_C (75.5 MHz, CDCl₃) 15.1 (CH₃, 2 × OCH₂CH₃), 36.5 (2 × CH₂, SCH₂ and CH₂NH), 52.9 (CH, CHS), 64.2, 64.7 (2 × CH₂, OCH₂CH₃), 103.0 [CH, C(3)H], 127.3, 127.4, 128.6, 129.2 (4 × CH, aromatic CH), 137.6, 138.2 (2 × C, aromatic C), 169.3 (C, CO); HRMS (ESI+): Exact mass calculated for C₂₁H₂₈NO₃S (M+H⁺) 374.1790. Found 374.1783 (M+H⁺); m/z (ESI⁺) 374.2 (M+H⁺).

Reaction of alkoxides with sulfoxides

N-(4-Methylphenyl)-3,3-dimethoxy-2-(phenylsulfinyl)propanamide 37a

From a solution of sodium (50 mg, 2.17 mmol) in methanol (10 mL), a 6.4 mL portion was added to a solution of **18a** (0.21 g, 0.66 mmol) in methanol (4 mL). After stirring for 1 h the reaction was complete (by TLC analysis). Saturated aqueous ammonium chloride (10 mL) and ether (15 mL) were added and the phases were separated, the aqueous layer was extracted with ether (2×10 mL) and the combined organic layers were washed with brine (2×10 mL), dried and evaporated to give the crude product **37a** (194 mg, 85%) as a white solid which was a 1.8:1 mixture of diastereomers. These diastereomers were separated by column chromatography on silica gel using hexane:ethyl acetate (60:40) as eluent.

Major diastereomer: (129 mg, 56%); v_{max}/cm^{-1} (KBr) 3301 (br NH), 1677 (CO amide), 1072 (SO); δ_{H} (400 MHz, CDCl₃) 2.29 (3H, s, ArCH₃), 3.46 (3H, s, one of OCH₃), 3.60 [1H, d, *J* 8.0, CHS(O)], 3.61 (3H, s, one of OCH₃), 5.08 [1H, d, *J* 8.0, C(3)H], 7.08 (2H, d, *J* 8.4, ArH), 7.28 (2H, d, *J* 8.4, ArH), 7.39-7.48 (3H, m, ArH), 7.52-7.61 (2H, m, ArH), 8.97 (1H, br s, NH); δ_{C} (75.5 MHz, CDCl₃) 20.9 (CH₃, ArCH₃), 53.3, 55.7 (2 × CH₃, 2 × OCH₃), 69.7 (CH, CHS), 101.2 [CH, *C*(3)H], 120.5, 124.1, 129.4, 131.6 (4 × CH, aromatic *C*H), 134.2, 134.8, 139.4 (3 × C, aromatic *C*), 161.4 (C, *C*O) HRMS (ESI+): Exact mass calculated for C₁₇H₁₈NO₃S (M-CH₃O⁻) 316.1007. Found 316.1014 (M-CH₃O⁻); m/z (ESI⁺) 348.1 (M+H⁺), 316.0 (M-CH₃O⁻).

Minor diastereomer: (62 mg, 27%); v_{max}/cm^{-1} (KBr) 3282 (br NH), 1681, 1599 (CO amide), 1070 (SO); $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.31 (3H, s, ArCH₃), 3.50 (3H, s, one of OCH₃), 3.59 (3H, s, one of OCH₃), 4.01 [1H, d, *J* 6.0, CHS(O)], 4.78 [1H, d, *J* 6.0, C(3)*H*], 7.10 (2H, d, *J* 8.4, Ar*H*), 7.31 (2H, d, *J* 8.4, Ar*H*), 7.43-7.54 (3H, m, Ar*H*), 7.62-7.68 (2H, m, Ar*H*), 8.45 (1H, br s, N*H*); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 20.9 (CH₃, ArCH₃), 54.3, 57.2 (2 × CH₃, OCH₃),

This journal is (c) The Royal Society of Chemistry 2010

71.6 (CH, CHS), 101.5 [CH, C(3)H], 120.2, 125.2, 129.2, 129.4, 132.1 (5 × CH, aromatic CH), 134.2, 134.8, 140.1 (3 × C, aromatic C), 161.0 (C, CO); HRMS (ESI+): Exact mass calculated for $C_{17}H_{18}NO_3S$ (M-CH₃O⁻) 316.1007. Found 316.1006 (M-CH₃O⁻); m/z (ESI⁺) 348.0 (M+H⁺), 316.0 (M-CH₃O⁻).

N-4-Benzyl-3,3-dimethoxy-2-(benzylsulfinyl)propanamide 37g

From a solution of sodium (50 mg, 2.17 mmol) in methanol (10 mL) a 6.4 ml portion was added to a solution of **18g** (0.22 g, 0.66 mmol) in methanol (4 mL). After stirring for 1 h the reaction was complete by TLC analysis. Saturated aqueous ammonium chloride (10 mL) and ether (15 mL) were added and the phases were separated, the aqueous layer was extracted with ether (2×10 mL) and the combined organic layers were washed with brine (2×10 mL), dried and concentrated *in vacuo* to give the crude product (130 mg) as a white solid. Purification by column chromatography on silica gel using hexane:ethyl acetate (40-60 % ethyl acetate gradient) as eluent gave the pure major diastereomer as a white solid (99 mg, 42%). A second fraction was isolated containing a 1.72:1 diastereomeric mixture of the major and minor diastereomers, white solid (26 mg).

Major diastereomer: v_{max}/cm^{-1} (KBr) 3297 (br NH), 1656, 1535 (CO amide), 1071 (SO); δ_{H} (400 MHz, CDCl₃) 3.37 (3H, s, one of OC*H*₃), 3.40 (3H, s, one of OC*H*₃), 3.47 [1H, d, *J* 7.8, C*H*S(O)], 3.99 (1H, A of ABq, *J* 12.8, one of SCH₂), 4.05 (1H, B of AB system, *J* 12.8, one of SCH₂), 4.57 (2H, d, *J* 6.0, NC*H*₂Bn), 4.91 [1H, d, *J* 7.8, C(3)*H*], 7.22-7.42 (10H, m, Ar*H*), 7.55 (1H, br t, *J* 5.6, N*H*); δ_{C} (75.5 MHz, CDCl₃) 43.6 (CH₂, CH₂NH), 53.6 (CH₃, one of OCH₃), 55.3 (CH₃, one of OCH₃), 56.4 (CH₂, SCH₂), 63.3 (CH, CHS), 101.3 [CH, *C*(3)H], 127.5, 127.9, 128.66, 128.72, 129.1, 130.4 (CH, aromatic CH), 129.0, 138.0 (C, aromatic *C*), 164.3 (C, *CO*); HRMS (ESI+): Exact mass calculated for C₁₉H₂₄NO₄S (M+H⁺) 362.1426. Found 362.1419 (M+H⁺); m/z (ESI⁺) 362.1 (M+H⁺).

Characteristic signals for the **minor diastereomer:** $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.42 (1H,s, one of OCH₃), 3.57 (1H, s, one of OCH₃), 3.77 (1H, d, *J* 4.0, *CH*S), 3.98 (1H, A of ABq, *J* 12.9, one of SCH₂), 4.25 (1H, B of AB system, *J* 12.9, one of SCH₂), 4.52 [2H, d, *J* 5.9, C(3)*H*], 4.80 [1H, d, *J* 4.0, CH(OMe)₂]; $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 43.5 (CH₂, *C*H₂NH), 56.3, 56.7 (2 × CH₃, 2 × OCH₃), 57.6 (CH₂, SCH₂) 66.7 (CH, *C*HS), 102.4 [CH, *C*(3)H], 127.5, 128.4, 128.8, 130.7 (CH, aromatic *C*H), 129.8, 137.8 (C, aromatic *C*), 164.4 (C, *C*O); HRMS (ESI+): Exact mass calculated for C₁₉H₂₄NO₄S (M+H⁺) 362.1426. Found 362.1429 (M+H⁺); m/z (ESI⁺) 362.1 (M+H⁺).

N-(4-Methylphenyl)-3,3-diethoxy-2-(phenylsulfinyl)propanamide 38a

From a solution of sodium (100 mg, 4.34 mmol) in ethanol (20 mL), a 12.8 mL portion was added to a solution of **18a** (0.421 g, 1.32 mmol) in ethanol (8 mL). After stirring for 1 h the reaction was complete (by TLC analysis). Saturated aqueous ammonium chloride (10 mL) and ether (15 mL) were added and the phases were separated, the aqueous layer was extracted with ether (2×10 mL) and the combined organic layers were washed with brine (2×10 mL), dried and evaporated to give the crude product **38a** (327 mg, 66%) as a white solid which was a 2:1 mixture of diastereomers. Following purification by column chromatography on silica gel using hexane:ethyl acetate (60:40) as eluent, the major diastereomer was obtained as a white solid (218 mg, 44%). A second fraction was isolated containing a 1:1.4 diastereomeric mixture of the major and minor diastereomers, white solid (99 mg).

Major diastereomer: v_{max}/cm^{-1} (KBr) 3308 (NH), 1666 (CO amide), 1514, 1059 (S-O); δ_{H} (400 MHz, CDCl₃) 1.20 (3H, t, *J* 7.0, OCH₂CH₃), 1.35 (3H, t, *J* 7.0, OCH₂CH₃), 2.30 (3H, s, ArCH₃), 3.59 [1H, d, *J* 7.8, CHS(O)], 3.62-3.98 (4H, m, 2 × OCH₂CH₃), 5.19 [1H, d, *J* 7.8, C(3)*H*], 7.08 (2H, d, *J* 8.4, Ar*H*), 7.27 (2H, d, *J* 8.4, Ar*H*), 7.41-7.49 (3H, m, Ar*H*), 7.53-7.61 (2H, m, Ar*H*), 8.96 (1H, bs, N*H*); δ_{C} (75.5 MHz, CDCl₃) 15.1 (CH₃, 2 × OCH₂CH₃), 20.9 (CH₃, ArCH₃), 62.1, 64.3 (2 × CH₂, OCH₂CH₃), 70.5 (CH, CHS), 99.5 [CH, *C*(3)H], 120.5, 124.1, 129.4, 131.5 (4 × CH, aromatic *C*H), 134.1, 134.9, 139.6 (3 × C, aromatic C), 161.6 (C, *CO*); HRMS (ESI+): Exact mass calculated for C₁₈H₂₀NO₃S (M-CH₃CH₂O⁻) 330.1164. Found 330.1172 (M-CH₃CH₂O⁻); m/z (ESI⁺) 374.1 (M+H⁺), 330.0 (M-CH₃CH₂O⁻).

The stereochemistry was determined by single crystal X-ray diffraction on a crystalline sample of **38a** recrystallised from acetonitrile/acetone. Crystals of **38a** are orthorhombic, space group *P*-2₁2₁2₁, formula C₂₀H₂₅NO₄S, M = 375.47, a = 5.3188(18) Å, b = 12.594(4) Å, c = 29.209(10) Å, U = 1956.6(12) Å³, F(000) = 800, μ (Mo-K α) = 0.190 mm⁻¹, R(F_o) = 0.0738, for 3455 observed reflections with I>2 σ (I), wR₂(F²) = 0.1344 for all 1716 unique reflections. Data in the θ range 1.39-25.03 ° were collected at 150 K on a Bruker Apex II Duo diffractometer using Mo-K α graphite monochromated radiation, λ = 0.7107 Å, and corrected for Lorentz and polarization effects. The structure was solved by direct methods and refined by full-matrix least-squares using all F² data. The hydrogen atoms were placed in calculated positions and allowed to ride on the parent atom.

Characteristic signals for the **minor diastereomer:** Characteristic signals due to the minor diastereomer: v_{max}/cm^{-1} (KBr) 3308 (NH), 1666 (CO amide), 1514, 1059 (SO); δ_{H} (400 MHz, CDCl₃) 1.26 (3H, t, *J* 7.0, OCH₂CH₃), 1.30 (3H, t, *J* 7.0, OCH₂CH₃), 2.30 (3H, s, ArCH₃), 3.98 [1H, d, *J* 5.4, CHS(O)], 4.98 [1H, d, *J* 5.4, C(3)*H*], 8.63 (1H, bs, N*H*).

N-Benzyl-3-3-diethoxy-2-(benzylsulfinyl)propenamide 38g

18g (0.30 g, 0.94 mmol) was added in one portion to a freshly prepared solution of sodium ethoxide [sodium (41 mg, 1.8 mmol) in ethanol (12 mL)] at 0°C and stirred for 1 hour. The reaction mixture was then quenched with saturated aqueous ammonium chloride (15 mL) and ether (15 ml). The phases were separated and the aqueous layer extracted with ether (2 × 10 mL). The combined organic layers were washed with brine (2 × 10 mL), dried and evaporated to give the crude product (0.38 g) as a yellow solid and a 1.1:1 mixture of diastereomers. This was purified by column chromatography on silica gel using hexane:ethyl acetate as eluent (20-40% ethyl acetate gradient elution) to give the pure product as an off-white solid (0.32 g, 90%), as a 2.9:1 diastereomeric mixture; v_{max}/cm^{-1} (KBr) 3415 (NH), 1655 (CO amide), 1064 (SO);

Major diastereomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.16 (3H, t, *J* 6.8, one of OCH₂CH₃), 1.19 (3H, t, *J* 6.8, one of OCH₂CH₃), 3.46-3.77 [5H, m, 2 × OCH₂CH₃ and CHS(O); CHS(O) could be seen as a doublet at 3.49, *J* 7.6], 3.99 (1H, A of AB system, *J* 12.8, one of SCH₂), 4.07 (1H, B of AB system, *J* 12.8, one of SCH₂), 4.49-4.64 (2H, m, NCH₂Bn), 5.03 [1H, d, *J* 7.6, C(3)*H*], 7.22-7.41(10H, m, Ar*H*), 7.48 (1H, br t, N*H*); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 15.0, 15.1 (2 × CH₃, 2 × OCH₂CH₃), 43.5 (CH₂, CH₂NH), 56.5 (CH₂, SCH₂), 62.3, 64.0 (2 × CH₂, 2 × OCH₂CH₃), 64.4 (CH, CHS), 99.6 [CH, *C*(3)H], 127.5, 127.9, 128.6, 128.7, 129.1, 130.4 (6 × CH, aromatic *C*H), 136.8, 138.5 (2 × C, aromatic *C*), 164.5 (C, *C*O); HRMS (ESI+): Exact mass calculated for C₂₁H₂₈NO₄S (M+H⁺) 390.1739. Found 390.1732 (M+H⁺).

Characteristic signals due to the **minor diastereomer**: $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.18 (3H, t, *J* 6.8, one of OCH₂CH₃), 1.21 (3H, t, *J* 6.8, one of OCH₂CH₃), 3.99 (1H, A of AB system, *J* 13.2, one of SCH₂), 4.30 (1H, B of AB system, *J* 13.2, one of SCH₂), 4.96 [1H, d, *J* 3.7, C(3)*H*].

Addition of ethylene glycol

2-[N-Benzyl-(2-phenylthio)-acetamide]-1,3-dioxolane 39c

Ethylene glycol (0.1 mL, 2.07 mmol) was dissolved in THF (7 mL) and cooled to 0 °C. *n*-Butyllithium (1.6 M solution in hexanes, 1.2 mL, 1.98 mmol) was added, and the solution stirred

at 0 °C for 10 min, and subsequently warmed to room temperature. A solution of **1c** (0.30 g, 0.99 mmol) in THF (7 mL) was added and the reaction mixture stirred for 18 h, at which point TLC showed the reaction to be complete. A saturated aqueous ammonium chloride solution (40 mL) and CH₂Cl₂ (40 mL) were added and the layers separated. The aqueous layer was washed with CH₂Cl₂ (2 × 40 mL) and the combined organic layers were washed with brine (40 mL). The solution was then dried over MgSO₄ and the solvent evaporated at reduced pressure to give the crude product. This was purified by column chromatography on silica gel using ethyl acetate/hexane (30:70) as eluent, to give **36c** as a white crystalline solid (0.16 g, 50%); mp 86–88 °C; (Found C, 65.52; H, 5.82; N, 4.16; S, 9.95; C₁₈H₁₉NO₃S requires C, 65.63; H, 5.81; N, 4.25; S, 9.73%); v_{max}/cm⁻¹ (KBr) 3314 (NH), 2923 (CH), 1655 (CO), 1522 (C=C); δ_{H} (270 MHz, CDCl₃) 3.85-4.01 [5H, m, C(4)*H*₂, C(5)*H*₂, C*H*SPh], 4.36-4.55 (2H, sym m, NC*H*₂Ph), 5.45 (1H, d, *J* 2.7, O₂C*H*), 7.14-7.43 (11H, m, N*H*, A*rH*); δ_{C} (67.8 MHz, CDCl₃) 43.8 (NCH₂Ph), 58.0 (CHSPh), 65.8, 66.0 [OC(4)H₂ and OC(5)H₂], 103.1 (O₂CH), 127.2, 127.6, 128.6, 129.2, 130.9 (aromatic CH), 134.0, 138.0 (aromatic C), 167.8 (CO); MS *m*/z 329 (M⁺, 9%), 91 [84%, (CH₂Ph)⁺], 73 [100%, (CHO₂C₂H₄)⁺].

2-[N-(4-Methylphenyl)-(2-phenylsulfinyl)acetamide]-1,3-dioxolane 40a

n-Butyllithium (0.99 mL, 1.56 mmol) was added to a solution of ethylene glycol (102 μ L, 1.65 mmol) in anhydrous THF at 0°C. The solution was left stir for 20 min, removed from the ice bath and left warm to room temperature over ten minutes. A solution of **18a** (0.25 g, 0.78 mmol) in anhydrous THF (6 mL) was added rapidly to the reaction mixture. After stirring for 16 h the reaction was complete (by TLC analysis) and saturated aqueous ammonium chloride (30 mL) and dichloromethane (30 mL) were added. The phases were separated, the aqueous phase extracted with dichloromethane (2 × 30 mL), the combined organic layers were then washed with brine (2 × 60 mL) dried and concentrated *in vacuo* to give the crude acetal 1.2:1 diastereomeric mixture. This was purified by column chromatography on silica gel using hexane:ethyl acetate (60:40) as eluent to give the pure acetal **40a** as a yellow solid (180 mg, 67%), and as a 3.1:1 diastereomeric mixture.

 v_{max}/cm^{-1} (KBr) 3298 (NH), 1670 (CO amide), 1035 (SO); HRMS (ESI+): Exact mass calculated for $C_{18}H_{20}NO_4S$ (M+H⁺) 346.4136. Found 346.1101 (M+H⁺); m/z (ESI⁺) 346.1 (M+H⁺).

Major diastereomer: δ_H (400 MHz, CDCl₃) 2.30 (3H, s, ArCH₃), 3.48 [1H, d, J 4.6, CHS(O)], 4.05-4.15 (2H, m, OCH₂), 3.98-4.27 (2H, m, OCH₂), 5.62 [1H, d, J 4.6, C(3)H],

7.06-7.79 (9H, m, Ar*H*), 9.23 (1H, br s, N*H*); δ_C (75.5 MHz, CDCl₃) 20.9 (CH₃, Ar*C*H₃), 65.9 (CH₂, 2 × *C*H₂O), 70.4 (CH, *C*HS), 101.5 [CH, *C*(3)H], 120.5, 124.1, 129.4, 129.5, 131.7 (5 × CH, aromatic *C*H), 134.4, 134.8, 139.8 (3 × C, aromatic *C*), 161.0 (C, *C*O);

Minor diastereomer: Characteristic signals due to the minor diastereomer: δ_H (400 MHz, CDCl₃) 3.95 [1H, d, *J* 5.27, C*H*S(O)], 5.30 [1H, d, *J* 5.27, C(3)*H*], 8.41 (1H, br s, N*H*).

Addition of chiral diols

(4S.5S)-4.5-Dimethyl-2-[N-(4-methylphenyl)-(2-phenylthio)acetamide]-1.3-dioxolane 43a This was prepared following the procedure described for 42a using 1a (0.15 g, 0.5 mmol), (2S, 3S)-2,3-butanediol **41b** (94 mg, 1.04 mmol), *n*-butyllithium (0.62 mL, 1.6 M in hexane, 0.99 mmol) and THF (6 mL). The reaction was complete by TLC analysis after stirring at room temperature for 1.5 h. Purification by chromatography using ethyl acetate-hexane (25:75) as eluent gave 43a (75 mg, 43%) (as a 53:47 mixture of diastereomers) as a white, crystalline solid; mp 74–76 °C; $[\alpha]_{20}^{D}$ +15.4 (c 7 in ethanol); (Found C, 67.08; H, 6.50; N, 3.80; S, 9.22. C₂₀H₂₃NO₃S requires C, 67.20; H, 6.49; N, 3.92; S, 9.87%); v_{max}/cm⁻¹ (film) 3311 (NH), 1660, 1604 (CO amide); δ_H (270 MHz, CDCl₃) 1.26, 1.29 [3H, d, J 6, CH₃C(4) or CH₃C(5)], 1.34, 1.38 [3H, d, J 6, CH₃C(4) or CH₃C(5)], 2.32 (3H, s, ArCH₃), 3.69-3.90 [2H, m, C(4)H and C(5)H], 4.08, 4.09 (1H, d, J 2, CHS), 5.50, 5.65 [1H, d, J 2, C(2)H], 7.11-7.49 (9H, m, Ar*H*), 8.57, 8.64 (1H, br s, N*H*); δ_C (67.8 MHz, CDCl₃) 16.2, 16.4, 16.88, 16.91 [CH₃C(4) and CH₃C(5)], 20.8 (ArCH₃), 58.5, 59.3 (CHS), 79.4, 79.7, 80.3, 80.5 [C(4)H and C(5)H], 101.7, 101.9 [C(2)H], 119.6, 119.7, 127.4, 127.5, 129.20, 129.24, 130.7, 131.0 (aromatic CH), 133.6, 133.8, 134.0, 134.1, 135.0, 135.1 (aromatic C), 166.0, 166.1 (CO); MS m/z 357 (M⁺, 10%), 317 (2%), 101 [100%, (C₅H₉O₂)⁺], 73 (50%).

(4R,6R)-4,6-Dimethyl-2-[N-(4-phenylmethyl)-2-(phenylthio)acetamide]-1,3-dioxane 44a

This was prepared following the procedure described for the preparation of **42a** using **1a** (0.20 g, 0.66 mmol), (2*R*, 4*R*)-2,4-pentanediol **41c** (144 mg, 1.39 mmol), *n*-butyllithium (0.83 mL, 1.6 M in hexane, 1.32 mmol) and THF (6 mL). The reaction was complete by TLC analysis after stirring at room temperature for 5 min. Purification by chromatography using ethyl acetate-hexane (15:85) as eluent gave **44a** (128 mg, 52%) (as a 1:1 mixture of diastereomers) as a colourless oil; $[\alpha]_{20}^{D}$ –7.7 (*c* 10 in ethanol); v_{max}/cm^{-1} (film) 3332 (br NH), 1686, 1602 (CO amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.21, 1.28 [3H, d, *J* 7, CH₃C(4) or CH₃C(6)], 1.31, 1.38 [3H, d, *J* 7, CH₃C(4) or CH₃C(6)], 1.77 [1H, br s, C(5)H₄H_B], 1.82-1.96

[1H, ddd, *J* 25, 13, 3, C(5)H_A*H_B*], 2.30 (3H, s, ArC*H*₃), 3.92, 3.95 (1H, d, *J* 3, C*H*S), 3.93-4.17, 4.34-4.52 [2H, m, C(4)*H* and C(6)*H*], 5.40 [1H, d, *J* 3, C(2)*H*], 7.03-7.49 (9H, m, Ar*H*), 8.64, 8.69 (1H, br s, N*H*); δ_{C} (67.8 MHz, CDCl₃) 16.9, 20.8, 21.5, 21.7 [*C*H₃C(4), *C*H₃C(6) and Ar*C*H₃], 36.4, 36.6 [*C*(5)H₂], 57.9, 58.2 (*C*HS), 68.2, 68.7, 69.0 [*C*(4)H and *C*(6)H], 93.1, 93.3 [*C*(2)H], 119.8, 120.0 (aromatic *C*H), 125.5 (aromatic *C*), 127.2, 128.8, 129.3, 130.8, (aromatic *C*H), 130.9, 133.8, 134.1, 134.3, 135.2, 138.0 (aromatic *C*), 166.5, 166.6 (*C*O); MS *m*/*z* 371 (M⁺, 50%), 263 (15%), 177 (13%), 115 [100%, (C₆H₁₁O₂)⁺], 91 (35%); Found (HRMS, EI) M⁺ 371.15052 C₂₁H₂₅NO₃S *m*/*z* 371.15552.

(4*R*,5*R*)-4,5-Di(ethoxycarbonyl)-2-[*N*-(4-phenylmethyl)-2-(phenylthio)acetamide]-1,3dioxolane 45a

n-Butyllithium (0.83 mL, 1.6 M in hexane, 1.32 mL) was added to a solution of DIPA (188 µl, 1.35 mmol) in THF (3 mL) at 0 °C. After stirring for 15 min, (2R, 3R)-diethyl tartrate 41d (0.29 g, 1.39 mmol) was added and stirring was continued at 0 °C for a further 10 min. A solution of **1a** (0.20 g, 0.66 mmol) in THF (3 mL) at 0 °C was added dropwise. After stirring for 1 h the reaction was complete by TLC analysis and saturated aqueous ammonium chloride (10 mL) and ether (20 mL) were added. The phases were separated, ether (2 \times 10 mL) was used to extract the aqueous phase and the combined organic layers were washed with brine (3 \times 10 mL), dried and evaporated to give the crude dioxolane 45a (0.26 g, 82%). Purification by chromatography using ethyl acetate-hexane (50:50) as eluent gave 45a (0.21 g, 66%) (as a 58:42 mixture of diastereomers) as an off-white, crystalline solid; mp 85–87 °C; $[\alpha]_{20}^{D}$ –10.1 (c 10 in CH₂Cl₂); v_{max}/cm^{-1} (KBr) 3476 (NH), 1746 (CO ester), 1668 (CO amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.20-1.45 (6H, 2 × m, 2 × CH₃CH₂O), 2.30 (3H, s, ArCH₃), 4.05 (ca. 0.5H, d, J 5, CHS for one diasteromer), 4.18-4.32 (4.5H, m, OCH₂ and CHS of other diastereomer), 4.75-5.05 [2H, m, C(4)H and C(5)H], 5.77^{\circ}, 5.87 [1H, d, J 4, C(2)H], 7.09-7.56 (9H, m, ArH), 8.59 (1H, br s, NH); δ_C (67.8 MHz, CDCl₃) 14.0 (CH₃CH₂O), 20.8 (ArCH₃), 57.3[◊], 58.1 (CHS), 62.1° , 62.4 (OCH₂), signals for C(4)H and C(5)H were obscured by CDCl₃ at 76-78 ppm, 105.5, 106.0° [C(2)H], 119.7, 127.5, 129.3, 131.8, 132.4 (aromatic CH), 132.8, 133.1, 133.9, 134.2, 134.8, 135.1 (aromatic C), 164.9, 165.4, 168.2, 168.64 168.9, 169.1 (CO amide and ester); MS m/z 473 (M⁺, 1 %), 216 (100), 106 (47); Found (HRMS, EI) M⁺ 473.14898 C₂₄H₂₇NO₇S requires *m/z* 473.15083.

⁶ Major isomer.

(4*R*,5*R*)-4,5-Dimethyl-2-[(S)-*N*-(1-phenylethyl)-2-(phenylthio)acetamide]-1,3-dioxolane 42b

This was prepared following the procedure described for **42a** using **1b** (0.20 g, 0.63 mmol), (2*R*, 3*R*)-2,3-butanediol **41a** (119 mg, 1.32 mmol), *n*-butyllithium (0.79 mL, 1.6 M in hexane, 1.26 mmol) and THF (6 mL). The reaction was complete by TLC analysis after stirring at room temperature for 30 min. Purification by chromatography using ethyl acetate-hexane (25:75) as eluent gave **42b** (159 mg, 68%) (as a 53:47 mixture of diastereomers) as a white, crystalline solid; mp 104–106 °C; $[\alpha]_{20}^{D}$ –35.8 (*c* 4 in ethanol); (Found C, 68.00; H, 6.71. C₂₁H₂₅NO₃S requires C, 67.90; H, 6.78%); v_{max}/cm⁻¹ (KBr) 3337 (br NH), 1645 (CO amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.19, 1.26, 1.32, 1.39, 1.47 [2 × 3H, 2 × d, *J* 7, 7, CH₃C(4), CH₃C(5) and C(2)H₃], 3.55-3.86 [2H, m, C(4)H and C(5)H], 4.01, 4.02 (1H, d, *J* 2, CHS), 5.01-5.14 (1H, m, NC*H*), 5.46, 5.58 [1H, d, *J* 2, C(2)*H*], 7.12-7.42 (11H, m Ar*H* and N*H*); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 16.0, 16.3, 16.9, 21.5, 21.6 [CH₃C(4), CH₃C(5), C(2)H₃], 48.95 (NCH), 57.4, 58.4 (CHS), 79.4, 79.6, 80.2, 80.4 [C(4)H and C(5)H], 101.5, 101.9 [C(2)H], 126.0, 126.4, 127.2, 127.5, 128.5, 128.9, 130.4, 130.7 (aromatic CH), 134.0, 142.8 (aromatic C), 166.9, 167.0 (CO); MS *m/z* 371 (M⁺, 25%), 262 (14%), 101 [100%, (C₅H₉O₂)⁺], 91 (53%), 78 (84%).

(4*S*,5*S*)-4,5-Dimethyl-2-[(*S*)-*N*-(1-phenylethyl)-2-(phenylthio)acetamide]-1,3-dioxolane 43b

This was prepared following the procedure described for **42a** using **1b** (0.20 mg, 0.63 mmol), **41b** (119 mg, 1.32 mmol), *n*-butyllithium (0.79 mL, 1.6 M in hexane, 1.26 mmol) and THF (3 and 3 mL). The reaction was complete (by TLC analysis) after stirring at room temperature for 30 min. Purification by chromatography using ethyl acetate-hexane (25:75) as eluent gave **43b** (174 mg, 75%) (as a 51:49 mixture of diastereomers) as a white, crystalline solid; mp 106-108 °C; $[\alpha]$ –19.4 (*c* 6 in ethanol); (Found C, 68.00; H, 7.00; N, 3.61; S, 8.85. C₂₁H₂₅NO₃S requires C, 67.90; H, 6.78; N, 3.77; S, 8.63%); v_{max}/cm⁻¹ (KBr) 3259 (NH), 1647 (CO amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.25, 1.21, 1.34, 1.40, 1.47 [2 × 3H, 2 × d, *J* 7, 7, *CH*₃C(4), *CH*₃C(5) and C(2)*H*₃], 3.63-3.77 [2H, m, C(4)*H* and C(5)*H*], 4.00, 4.02 (1H, d, *J* 3, *CHS*), 5.02-5.15 (1H, m, NC*H*), 5.53 [1H, d, *J* 2, C(2)*H*], 7.04-7.43 (11H, m, Ar*H*, N*H*); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 16.1, 16.3, 16.9, 17.0, 21.7, 21.8 [*C*H₃C(4), *C*H₃C(5) and *C*H₃CHPh], 48.85, 48.90 (NCH), 57.7, 58.3 (*C*HS), 79.3, 79.6, 80.26, 80.33 [*C*(4)H and C(5)H], 101.76,

This journal is (c) The Royal Society of Chemistry 2010

101.80 [*C*(2)H], 126.0, 126.1, 127.0, 127.2, 128.5, 128.6, 129.1, 129.2, 130.5, 130.6 (aromatic *C*H), 133.9, 134.1, 142.9 (aromatic *C*, 3 signals for 4 carbons), 166.9, 167.1 (*C*O); MS m/z 371 (M⁺, 33 %), 262 (14), 101 (100, [C₅H₉O₂]⁺).

(4R, 5R)-4,5-Dimethyl-2-[N-benzyl-2-(phenylthio)-acetamide]-1,3-dioxolane 42c

This was prepared following the procedure described above for **42a** using **1c** (0.30 g, 1.00 mmol), **41a** (0.2 mL, 2.07 mmol) and *n*-butyllithium (91.2 mL, 1.97 mmol) in THF (12 mL), at room temperature over 2 h. Purification by chromatography on silica gel using ethyl acetate/hexane (20:80) as eluent gave **42c** as a white crystalline solid (0.23 g, 64%); mp 76-77 °C; $[\alpha]_{20}^{D}$ –15.0 (*c* 1.4 in CH₂Cl₂); (Found C, 67.10; H, 6.36; N, 4.10; S, 8.86; C₂₀H₂₃NO₃S requires C, 67.20; H, 6.48; N, 3.92; S, 8.97%); v_{max}/cm⁻¹ (film) 3290 (NH), 2930 (CH), 1637 (C=O), 1560 (C=C); δ_{H} (270 MHz, CDCl₃) 1.20-1.35 (6H, m, 2 × CH₃), 3.64-3.85 [2H, m, 2 × OCH(CH₃)], 4.05-4.07 (1H, 2 × overlapping d appears as m, CHSPh), 4.37-4.56 (2H, m, NCH₂Ph), 5.54, 5.60 (1H, 2 × d, 47:53, *J* 2.4, 2.4, O₂CH), 7.12-7.43 (11H, m, ArH, NH); δ_{C} (67.8 MHz, CDCl₃) 16.1, 16.2, 16.8, 16.9 (2 × CH₃), 43.7 (NCH₂Ph), 57.7, 58.5 (CHSPh), 79.3, 79.5, 80.2, 80.4 [2 × OCH(CH₃)], 101.7, 101.9 (O₂CH), 127.1, 127.3, 127.6, 128.7, 129.1, 130.4, 130.6 (aromatic CH, 7 signals seen), 134.0, 137.9 (aromatic C), 167.9 (CO); M.S. m/z 357 (M⁺, 12%), 248 (5, [M⁺-PhS]⁺), 101 (100, [C₅H₉O₂]⁺), 91 (74, [CH₂Ph]⁺), 73 (68, [SCHCO]⁺).

(4*S*,5*S*)-4,5-Dimethyl-2-[*N*-benzyl-2-(phenylthio)-acetamide]-1,3-dioxolane 43c

This was prepared following the procedure described above for **42a** using **1c** (0.30 g, 1.00 mmol), **41b** (0.2 mL, 2.07 mmol) and *n*-butyllithium (1.6 M solution in hexanes, 91.2 mL, 1.97 mmol) in THF (2 × 6mL). The reaction was complete after 2 h at room temperature. Purification by chromatography on silica gel using ethyl acetate/hexane (20:80) as eluent gave **43c** as a white crystalline solid (0.18g, 51%); mp 76-77 °C; $[\alpha]_{20}^{D}$ +15.7 (*c* 1 in CH₂Cl₂); v_{max} /cm⁻¹ (KBr) 3292 (NH), 2971 (CH), 1637 (C=O), 1560 (C=C); δ_{H} (270 MHz, CDCl₃) 1.18-1.35 (6H, m, 2 × CH₃), 3.62-3.84 [2H, m, 2 × OCH(CH₃)], 4.05-4.08 (1H, 2 × overlapping d appears as m, CHSPh), 4.36-4.56 (2H, m, NCH₂Ph), 5.54, 5.60 (1H, 2 × d, 48:52, *J* 2.4, 2.4, O₂CH), 7.12-7.44 (11H, m, Ar*H*, N*H*); δ_{C} (67.8 MHz, CDCl₃) 16.1, 16.3, 16.9, 17.0 (2 × CH₃), 43.7 (NCH₂Ph), 57.8, 58.6 (CHSPh), 79.3, 79.6, 80.3, 80.4 [2 × OCH(CH₃)], 101.8, 101.9 (O₂CH), 127.1, 127.4, 127.6, 128.3, 129.2, 130.4, 130.6 (aromatic CH, 7 signals seen), 134.2, 137.9 (aromatic C), 168.0 (CO).

(4R,6R)-4,6-Dimethyl-2-[N-benzyl-2-(phenylthio)-acetamide]-1,3-dioxolane 44c

This was prepared following the procedure described for **42a** using **1c** (0.08 g, 0.25 mmol), **41c** (0.06 g, 0.53 mmol) and *n*-butyllithium (1.6 M in hexanes, 0.3 mL, 0.51 mmol) in THF (4 mL), at room temperature for 2 h. Purification by chromatography on silica gel using ethyl acetate/hexane (25:75) as eluent gave the product **44c** as an oil (0.60 g, 61%) as an essentially equimolar mixture of diastereomers; (Found C, 68.00; H, 7.00; N, 3.97; S, 8.77; C₂₁H₂₃NO₃S requires C, 67.89; H, 6.78; N, 3.77; S, 8.63%); v_{max}/cm^{-1} (film) 3316 (NH), 2927 (CH), 1651 (CO), 1538 (C=C); $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.17-1.25 (3H, m, *CH*₃), 1.29-1.45 [4H, m, *CH*₃, C(5)H_aH_b], 1.75-1.90 [1H, m, C(5)H_aH_b], 3.95-4.11 [2H, m, *CHSPh*, OC(4)*H*(CH₃) or OC(6)*H*(CH₃)], 4.30-4.64 [3H, m, NCH₂Ph, OC(4)*H*(CH₃) or OC(6)*H*(CH₃)], 5.36-5.39 (1H, 2 × overlapping d appears as t, *J* 2.9, 3.4, O₂C*H*), 7.11-7.44 (11H, m, Ar*H*, N*H*); M.S. m/z 371 (M⁺, 52%), 262 (63, [M-PhS]⁺), 115 (100, [C₆H₁₁O₂]⁺).

(4R,5R)-4,5-Diethoxycarbonyl-2-[N-benzyl-2-(phenylthio)acetamide]-1,3-dioxolane 45c

Diisopropylamine (0.2 mL, 1.35 mmol) was dissolved in THF (3 mL) at 0 °C, and *n*-butyllithium (1.6 M solution in hexanes, 0.8 mL, 1.32 mmol) was added. This was stirred for 15 min under nitrogen, and (-)-D-diethyl tartrate 41d (0.2 mL, 1.39 mmol) was added. After stirring for a further 10 min, a solution of 1c (0.20 g, 0.66 mmol) in THF (3 mL) was added. This reaction mixture was stirred under nitrogen for 19 h. The reaction was guenched with a saturated aqueous solution of ammonium chloride (10 mL), and ether (20 mL) was added. The layers were separated and the aqueous layer washed with ether $(2 \times 10 \text{ mL})$. The combined organic layers were washed with brine (15 mL), dried, and the solvent evaporated at reduced pressure to give the crude product mixture as an oil. ¹H NMR spectroscopic analysis showed that there was no trace of starting material 1c remaining. However, there appeared to be a lot of diethyl tartrate remaining in the crude product mixture. A number of attempts were made to separate the product 45c from the diethyl tartrate, including chromatography on silica gel using ethyl acetate/hexane (20:80) as eluent, and distillation, but were unsuccessful. The product contained a mixture of $\sim 2:1$ diethyl tartrate (DET) to product 45c (as a mixture of two diastereomers in a ratio of 57:43), giving 4% recovery of the product; $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.23-1.42 (~18H, m, 6H due to CH₃CH₂O, 12H due to DET), 3.23 (~4H, br d, OH of DET), 4.02* (0.6H, d, J 4.6, CHS), 4.18-4.34 (4.4H, m, 2 × CH₃CH₂O, CHS), 4.43-4.49 (2H, m, NCH₂Ph), 4.54 (~4H, br d, DET), 4.73 [0.4H, d, J 4.0, C(4)H], 4.74-4.83* [1.2H, ABq, J 3.8, C(4)H, C(5)H], 4.93 [0.4H, d, J 4.3, C(5)H], 5.75*, 5.83 (1H, 2×d, J 4.6, 4.6, O₂CH), 7.15-7.52 (11H, m, ArH, NH).

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010 *Major diastereomer.

(4*R*,5*R*)-4,5-Dimethyl-2-[*N*-(2-propenyl)-2-(phenylthio)acetamide]-1,3-dioxolane 42h

This was prepared following the procedure described for **42a** using **1h** (0.20 g, 0.79 mmol), **41a** (0.15 g, 1.66 mmol), *n*-butyllithium (0.98 mL, 1.6 M in hexane, 1.58 mmol) and THF (3 mL and 3 mL). The reaction was complete (by TLC analysis) after stirring at room temperature for 2 h. Purification by chromatography using ethyl acetate-hexane (25:75) as eluent gave **42h** (180 mg, 83%) (as a 52:48 mixture of diastereomers) as a white, crystalline solid; mp 58-60 °C; $[\alpha]_{20}^{D}$ –15.3 (*c* 6 in ethanol); (Found C, 62.14; H, 6.06; N, 4.51; S, 10.25. C₁₆H₂₁NO₃S requires C, 62.51; H, 6.89; N, 4.56; S, 10.43%); v_{max}/cm⁻¹ (film) 3292 (NH), 1659 (CO amide); δ_{H} (270 MHz, CDCl₃) 1.25, 1.27 [3 H, d, *J* 6, CH₃C(4) or CH₃C(5)], 1.32, 1.34 [3 H, d, *J* 6, CH₃C(4) or CH₃C(5)], 3.63-3.78 [2 H, m, C(4)*H* and C(5)*H*], 3.83-3.97 (2 H, m, NCH₂), 4.01, 4.02 (1 H, d, *J* 2, CHS), 5.05-5.18 (2 H, m, =CH₂), 5.54, 5.60 [1 H, d, *J* 2, C(2)*H*], 5.72-5.88 (1 H, m, CH=), 6.95, 7.05 (1 H, br s, NH), 7.22-7.43 (5 H, m, ArH); δ_{C} (67.8 MHz, CDCl₃) 16.1, 16.3, 16.8, 16.9 [CH₃C(4) and CH₃C(5)], 41.9 (NCH₂), 57.9, 58.7 (CHS), 79.3, 79.6, 80.2, 80.4 [*C*(4)H and C(5)H], 101.7, 101.9 [*C*(2)H], 116.1, 116.2 (=CH₂), 127.0, 127.1, 129.1, 129.4, 130.3, 130.5, 133.7 (aromatic CH and CH=), 134.2, 134.3 (aromatic C), 167.8, 167.9 (CO); MS *m*/*z* 307 (M⁺, 3 %), 262 (52), 101 (88, [C₅H₉O₂]⁺).

(4R,6R)-4,6-Dimethyl-2-[N-(2-propenyl)-2-(phenylthio)acetamide]-1,3-dioxane 44h

This was prepared following the procedure described for the preparation of **42a** using **1h** (0.20 g, 0.79 mmol), **41c** (0.17 g, 1.66 mmol), *n*-butyllithium (0.99 mL, 1.6 M in hexane, 1.58 mmol) and THF (3 mL and 3 mL). The reaction was conducted at 0 °C and was complete (by TLC analysis) after stirring for 5 min. Purification by chromatography using ethyl acetate-hexane (25:75) as eluent gave **44h** (135 mg, 53%) (as a 51:49 mixture of diastereomers) as a white, crystalline solid; mp 47-49 °C; $[\alpha]_{20}^{D}$ –7.7 (*c* 11 in ethanol); (Found C, 63.82; H, 7.36; N, 4.40; S, 9.95. C₁₇H₂₃NO₃S requires C, 63.52; H, 7.21; N, 4.36%); S, 9.98; v_{max}/cm⁻¹ (KBr) 3309 (NH), 1655 (CO amide); δ_{H} (270 MHz, CDCl₃) 1.20, 1.24 [3H, d, *J* 6, *CH*₃C(4) or *CH*₃C(6)], 1.35, 1.39 [3H, d, *J* 7, *CH*₃C(4) or *CH*₃C(6) and C(5)*H*₄H_B], 1.82-1.93 [1H, ddd, *J* 25, 13, 6, C(5)H_AH_B], 3.73-3.91 (2H, m, NCH₂), 3.90, 3.91 (1H, d, *J* 3, *CHS*), 3.95-4.18 [1H, m, C(4)*H* or C(6)*H*], 4.31-4.49 [1H, m, C(4)*H* or C(6)*H*], 5.07 (1H, dd, *J* 11, 1, =*CH*₄H_B), 5.17 (1H, dd, *J* 19, 1, =*CH*_AH_B), 5.35, 5.36 [1H, d, *J* 3, C(2)*H*], 5.70-5.87 (1H, m, *CH*=), 6.94, 7.06 (1H, br s, N*H*), 7.17-7.43 (5H, m, Ar*H*); δ_{C} (67.8

MHz, CDCl₃) 16.9, 21.5, 21.6 [*C*H₃C(4) and *C*H₃C(6)], 36.4 [*C*(5)H₂], 41.69, 41.72 (N*C*H₂), 57.2, 57.3 (*C*HS), 68.07, 68.14, 68.7, 68.8 [*C*(4)H and *C*(6)H], 93.1, 93.3 [*C*(2)H], 115.5, 115.7 (*C*H₂=), 126.8, 128.9, 130.2 (aromatic *C*H), 133.8 (*C*H=), 134.4 (aromatic *C*), 168.2, 168.3 (*C*O); MS m/z 321 (M⁺, 1%), 115 (90, [C₆H₁₁O₂]⁺), 69 (100).

(4*R*,5*R*)-4,5-Dimethyl-2-[2-(phenylthio)acetamide]-1,3-dioxolane 42k

This was prepared following the procedure described for 42a using 1k (0.20 g, 0.94 mmol), 41a (167 mg, 1.86 mmol), *n*-butyllithium (1.18 mL, 1.6 M in hexane, 1.88 mmol) and THF (3 mL and 3 mL). The reaction was complete (by TLC analysis) after stirring at room temperature for 0.5 h. Purification by chromatography using ethyl acetate-hexane (50:50) as eluent gave 42k (143 mg, 80%) (as a 53:47 mixture of diastereomers) as a grey solid which did not require further purification; mp 98-100 °C; $[\alpha]_{20}^{D}$ -16.1 (*c* 6 in ethanol); (Found C, 58.06; H, 6.00; N, 5.60; S, 11.54. C₁₃H₁₇NO₃S requires C, 58.41; H, 6.41; N, 5.29; S, 11.99%); v_{max}/cm^{-1} (KBr) 3386 (NH), 1654, 1578 (CO amide); δ_{H} (270 MHz, CDCl₃) 1.25, 1.27 [3H, d, J 6, CH₃C(4) or CH₃C(5)], 1.34, 1.35 [3H, d, J 6, CH₃C(4) or CH₃C(5)], 3.55-3.87 [2H, m, C(4)H and C(5)H], 3.92, 3.93 (1H, d, J 2, CHS), 5.52, 5.56 [1H, d, J 3, C(2)H], 5.89 (1H, br s, NH), 6.71 (1H, br s, NH), 7.18-7.46 (5H, m, ArH), additional signals at 1.17-1.23 (m), 4.05-4.08 (2d or dd), 5.43-5.48 (m), 8.75-8.83 (dd or 2d), 9.55-9.70 (br s) due possibly to a rotamer; δ_{C} (67.8 MHz, CDCl₃) 16.1, 16.4, 16.9, 17.0 [CH₃C(4) and CH₃C(5)], 57.6, 58.2 (CHS), 79.4, 79.7, 80.4, 80.5 [C(4)H and C(5)H], 101.6, 101.8 [C(2)H], 126.4, 126.6 (aromatic C), 127.3, 127.4, 129.2, 129.4, 130.7, 130.9 (aromatic CH), 170.9 (CO); MS m/z 267 (M⁺, 1%), 238 (1), 109 (20, [PhS]⁺), 101 (100, [C₅H₉O₂]⁺).

(4*R*,6*R*)-4,6-Dimethyl-2-[2-(phenylthio)acetamide]-1,3-dioxane 44k

This was prepared following the procedure described for the preparation of **42a** using **1k** (0.20 g, 0.94 mmol), **41c** (0.21 g, 1.97 mmol), *n*-butyllithium (1.18 mL, 1.6 M in hexane, 1.88 mmol) and THF (3 mL and 3 mL). The reaction was conducted at 0 °C and was complete (by TLC analysis) after stirring for 5 min. Purification by chromatography using ethyl acetate-hexane (50:50) as eluent gave **44k** (166 mg, 63 %) (as a 1:1 mixture of diastereomers) as a white, crystalline solid; mp 103-105 °C; $[\alpha]_{20}^{D}$ +15.5 (*c* 6 in ethanol); (Found C, 59.52; H, 6.99; N, 4.99; S, 10.95. C₁₄H₁₉NO₃S requires C, 59.76; H, 6.81; N, 4.98; S, 11.40%); v_{max}/cm⁻¹ (film) 3444 (NH), 1682, 1582 (CO amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.21, 1.24 [3H, d, *J* 6, CH₃C(4) or CH₃C(6)], 1.33, 1.38 [3H, d, *J* 7, CH₃C(4) or CH₃C(6)],

1.35-1.52 [1H, m, C(5) H_A H_B], 1.82-1.94 [1H, ddd, *J* 25, 13, 6, C(5)H_AH_B], 3.81, 3.82 (1H, d, *J* 4, CHS), 3.94-4.14 [1H, m, C(4)*H* or C(6)*H*], 4.32-4.50 [1H, m, C(4)*H* or C(6)*H*], 5.31, 5.32 [1H, d, *J* 4, C(2)*H*], 5.97 (1H, br s, N*H*), 6.74, 6.79 (1H, br s, N*H*), 7.18-7.50 (5H, m, Ar*H*) additional signals due possibly to a rotamer also seen; δ_C (67.8 MHz, CDCl₃) 17.2, 22.0 [CH₃C(4) and CH₃C(6)], 36.7 [C(5)H₂], 57.1, 57.3 (CHS), 68.5, 68.6, 69.2, 69.3 [C(4)H and C(6)H], 93.49, 93.5 [C(2)H], 126.5, 129.5, 131.0 (aromatic CH), 134.6, 134.7 (aromatic C), 171.6, 171.7 (CO); MS *m/z* 281 (M⁺, 2 %), 123 (22), 115 (95, [C₆H₁₁O₂]⁺).

(4R,5R)-4,5-Dimethyl-2-[N,N-diphenyl-2-(phenylthio)acetamide]-1,3-dioxolane 42n

This was prepared following the procedure described for **42a** using a mixture of *E* and *Z* isomers (*ca.* 1:1) of **1n** (0.20 g, 0.55 mmol), **41a** (104 mg, 1.16 mmol), *n*-butyllithium (0.69 mL, 1.6 M in hexane, 1.1 mmol) and THF (3 mL and 3 mL). After stirring for 16 h at room temperature the reaction was complete (by TLC analysis). Purification by chromatography using ethyl acetate-hexane (20:80) as eluent gave **42n** (0.17 g, 75%) (as a 56:44 mixture of diastereomers) as a white, crystalline solid which did not require further purification; mp 99-100 °C; $[\alpha]_{20}^{D}$ –16.3 (*c* 8 in ethanol); (Found C, 71.88; H, 6.18; N, 3.30; S, 7.25. C₂₅H₂₅NO₃S requires C, 71.57; H, 6.01; N, 3.34; S, 7.64%); v_{max}/cm⁻¹ (KBr) 1669, 1596 (CO amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.14, 1.19 [3H, d, *J* 6, CH₃C(4) or CH₃C(5)], 1.25, 1.27 [3H, d, *J* 6, CH₃C(4) or CH₃C(5)], 3.43-3.50, 3.50-3.62, 3.64-3.83 [2H, 0.5:0.5:1, m, C(4)*H* and C(5)*H*], 3.85, 3.86 (1H, d, *J* 7, CHS), 5.54, 5.55 [1H, d, *J* 7, C(2)*H*], 6.99-7.44 (15H, m, Ar*H*); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 16.5, 16.7, 16.87, 16.94 [CH₃C(4) and CH₃C(5)], 53.2, 53.7 (CHS), 78.4, 78.6, 80.0, 80.1 [*C*(4)H and *C*(5)H], 103.6, 103.8 [*C*(2)H], 126.11-129.65 (complex mixture of signals), 133.3, 133.8 (aromatic CH), 142.4 (broad quaternary aromatic *C*), 168.97, 169.02 (CO); MS *m*/z 419 (M⁺, 1 %), 167 (17), 101 (100, [C₅H₉O₂]⁺), 73 (68).

(4R,6R)-4,6-Dimethyl-2-[N,N-diphenyl-2-(phenylthio)acetamide]-1,3-dioxane 44n

This was prepared following the procedure described for the preparation of **42a** using a mixture of *E* and *Z* isomers (*ca.* 1:1) of **1n** (0.20 g, 0.55 mmol), **41c** (0.12 g, 1.16 mmol). *n*-butyllithium (0.69 mL, 1.6 M in hexane, 1.1 mmol) and THF (3 mL and 3 mL). The addition was conducted at 0 °C, then the reaction mixture was allowed to warm slowly to room temperature. The reaction was complete (by TLC analysis) after stirring at room temperature for 16 h. Purification by chromatography using ethyl acetate-hexane (15:85) as eluent gave **44n** (0.17 g, 71%) (as a 51:49 mixture of diastereomers) as a viscous oil; $[\alpha]_{20}^{D}$ +4.1 (*c* 7 in

This journal is (c) The Royal Society of Chemistry 2010

ethanol); v_{max}/cm^{-1} (KBr) 1668, 1593 (CO amide); δ_{H} (270 MHz, CDCl₃) 1.17, 1.25 [3H, d, *J* 6, *CH*₃C(4) or *CH*₃C(6)], 1.36 [3H, d, *J* 7, *CH*₃C(4) or *CH*₃C(6)], 1.60 [1H, br s, C(5)*H*_AH_B], 1.75-1.88 [1H, ddd, *J* 25, 14, 6, C(5)H_AH_B], 3.95, 4.02 (1H, d, *J* 8, *CHS*), 3.94-4.09, 4.27-4.38 [2H, m, C(4)*H* and C(6)*H*], 5.26, 5.29 [1H, d, *J* 8, C(2)*H*], 6.95-7.77 (15H, m, Ar*H*); δ_{C} (67.8 MHz, CDCl₃) 17.0, 21.6, 21.8 [*C*H₃C(4) and *C*H₃C(6)], 36.68, 36.73 [*C*(5)H₂], 52.7, 52.9 (*C*HS), 67.9, 68.6 [*C*(4)H and *C*(6)H], 94.9, 95.23 [*C*(2)H], 125.9, 126.1, 126.4, 127.5, 127.9, 128.7, 129.7 (aromatic *C*H), 132.9, 133.3 (aromatic *C*), 134.2, 134.5 (aromatic *C*H), 142.2, 142.7 (aromatic *C*), 168.9, 169.5 (*CO*); MS *m/z* 433 (M⁺, 9 %), 238 (29), 115 (67, [C₆H₁₁O₂]⁺), 91 (100); Found (HRMS, EI) M⁺ 433.17400 C₂₆H₂₇NO₃S requires *m/z* 433.17117.

(4R, 5R)-4, 5-Di(ethoxy carbonyl)-2-[N, N-diphenyl-2-(phenylthio) acetamide]-1, 3-Di(ethoxy carbonyl carbonyl

dioxolane 45n

This was prepared following the procedure described for the preparation of 42a using a mixture of E and Z isomers (ca. 1:1) of **1n** (0.20 g, 0.55 mmol), **41d** (0.24 mg, 1.16 mmol), nbutyllithium (0.69 mL, 1.6 M in hexane, 1.1 mmol), DIPA (0.16 mL, 1.13 mmol) and THF (3 mL and 3 mL). The reaction was complete (by TLC analysis) after stirring at room temperature for 18 h. Purification by chromatography using ethyl acetate-hexane (30:70) as eluent gave 45n (0.14 g, 47%) (as a 59:41 mixture of diastereomers) as a colourless oil; $[\alpha]_{20}^{D}$ -48.9 (c 8 in ethanol); v_{max}/cm^{-1} (film) 1748 (CO ester), 1668, 1593 (CO amide); δ_{H} (270 MHz, CDCl₃) (The signals corresponding to the major isomer are indicated by \Diamond), 1.14 (1.5H, t, J 7, CH₃CH₂O of one diastereomer), 1.36-1.41 (4.5H, m, CH₃CH₂O), 4.02-4.33 (5H, m, OCH₂, CHS), 4.69-4.86 [2H, m, C(4)H and C(5)H], 5.78[°], 5.84 [1H, d, J 8, C(2)H], 7.12-7.46 (15H, m, ArH); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 14.07, 14.13 (CH₃CH₂O), 51.2^{\diamond}, 52.6 (CHS), 61.8^{\diamond}, 62.1 (OCH₂), 77.8[°], 78.2 [C(2)H], 107.4[°], 108.1 [C(4)H and C(5)H], 126.18-129.44 (complex series of signals, aromatic CH), 131.9, 132.7 (aromatic C), 133.7, 134.0 (aromatic CH), 142.1 (aromatic C), 168.1, 168.3, 168.8, 169.0 (CO amide and ester); MS m/z 535 (M⁺, 2 %), 388 (23, M⁺-2CO₂Et -H), 262 (50), 220 (64), 169 (100, [NHPh₂]⁺), 134 (59); Found (HRMS, EI) M^+ 535.16040 C₂₉H₂₉NO₇S requires *m/z* 535.16648.

(4*R*,5*R*)-4,5-Dimethyl-2-[*N*-(4-methylphenyl)-2-(*n*-butylthio)acetamide]-1,3-dioxolane 42r

This was prepared following the procedure described for 42a using 1r (0.20 g, 0.71 mmol), 41a (134 mg, 1.49 mmol), *n*-butyllithium (0.89 mL, 1.6 M in hexane, 1.42 mmol) and THF (3 mL and 3 mL). The reaction was complete (by TLC analysis) after stirring for 1.5 h at room temperature. Purification by chromatography using ethyl acetate-hexane (15:85) as eluent gave 42r (61 mg, 26 %) (as an ~ 1:1 mixture of diastereomers) as an off-white, crystalline solid which does not require further purification; 91-93 °C; $[\alpha]_{20}^{D}$ -12.3 (*c* 6 in ethanol); v_{max}/cm^{-1} (film) 3303 (NH), 1654, 1605 (CO amide); δ_{H} (270 MHz, CDCl₃) 0.89 [3H, t, J 7, C(4')H₃], 1.23-1.26 [3H, d, J 6, CH₃C(4) or CH₃C(5)], 1.29, 1.31 [3H, d, J 6, CH₃C(4) or CH₃C(5)], 1.32-1.49 [2H, m, C(3')H₂], 1.54-1.69 [2H, m, C(2')H₂], 2.32 (3H, s, ArCH₃), 2.59-2.73 (2H, m, SCH₂), 3.65 (1H, d, J 2, CHS), 3.66-3.84 [2H, m, C(4)H and C(5)H], 5.47, 5.51 [1H, d, J 2, C(2)H], 7.12-7.46 (4H, ABq, J 8, ArH), 8.58, 8.65 (1H, br s, NH); δ_C (67.8 MHz, CDCl₃) 13.5 [C(4')H₃], 16.3, 16.9 [CH₃C(4) and CH₃C(5)], 20.8 (ArCH₃), 21.8 [C(3')H₂], 31.4 [C(2')H₂], 32.24 [C(3')H₂], 55.4, 56.3 (CHS), 79.3, 79.4, 80.2, 80.3 [C(4)H and C(5)H], 101.85, 101.94 [C(2)H], 119.5, 119.7, 129.4 (aromatic CH), 133.8, 133.9, 135.2 (aromatic C), 166.8, 166.9 (CO); MS m/z 337 (M⁺, 55 %), 249 (20), 204 (18), 101 (100, [CH(OCHCH₃)₂]⁺); Found (HRMS, EI) M⁺ 337.17120 C₁₈H₂₇NO₃S requires *m/z* 337.17117.

(4R,6R)-4,6-Dimethyl-2-[N-(4-phenylmethyl)-2-(n-butylthio)acetamide]-1,3-dioxane 44r

This was prepared following the procedure described for the preparation of **42a** using **1r** (0.16 g, 0.56 mmol), **41c** (117 mg, 1.13 mmol), *n*-butyllithium (0.74 mL, 1.6 M in hexane, 1.18 mmol) and THF (3 mL and 3 mL) but at 0 °C. The reaction was complete (by TLC analysis) after stirring at room temperature for 1.5 h. Purification by chromatography using ethyl acetate-hexane (15:85) as eluent gave **44r** (50 mg, 25%) (as a 53:47 mixture of diastereomers) as a yellow oil; $[\alpha]_{20}^{D}$ –3.7 (*c* 3 in ethanol); v_{max}/cm^{-1} (film) 3320 (NH), 1663, 1603 (CO amide); δ_{H} (270 MHz, CDCl₃) 0.86 [3H, t, *J* 7, C(4')*H*₃], 1.17, 1.28 [3H, d, *J* 6, *CH*₃C(4) or *CH*₃C(6)], 1.36, 1.39 [3H, d, *J* 6, *CH*₃C(4) or *CH*₃C(6)], 1.36, 1.39 [3H, d, *J* 6, *CH*₃C(4) or *CH*₃C(6)], 1.36, 1.39 [3H, d, *J* 6, *CH*₃C(4) or *CH*₃C(5)H_A*H*_B], 2.32 (3H, s, ArC*H*₃), 2.62-2.74 (2H, m, SC*H*₂), 3.50, 3.52 (1H, d, *J* 3, *CH*S), 3.97-4.13 [1H, m, C(4)*H* or C(6)*H*], 4.36, 4.44 [1H, m, C(4)*H* or C(6)*H*], 5.28, 5.30 [1H, d, *J* 3, C(2)*H*], 7.12-7.47 (4H, ABq, *J* 8, Ar*H*), 8.70, 8.74 (1H, br s, N*H*); δ_{C} (67.8 MHz, CDCl₃) 13.6 [*C*(4')H₃], 16.9, 20.9, 21.8, 21.9 [*C*H₃C(4), *C*H₃C(6), Ar*C*H₃, *C*(3')H₂], 31.3 [*C*(2')H₂], 32.1 (SCH₂), 36.5, 36.6 [*C*(5)H₂], 55.1, 55.4 (*C*HS), 68.2, 68.3, 68.7, 69.0 [*C*(4)H and *C*(6)H],

93.35, 93.44 [*C*(2)H], 119.6, 119.7, 129.5 (aromatic *C*H), 133.8, 135.6 (aromatic *C*), 167.6 (*CO*); MS m/z 351 (M⁺, 29 %), 263 (32), 146 (32), 115 (100, [C₆H₁₁O₂]⁺); Found (HRMS, EI) M⁺ 351.18712 C₁₉H₂₉NO₃S m/z 351.18682.

(4*R*,5*R*)-4,5-Dimethyl-2-methyl-2-[*N*-(4-methylphenyl)-2-(phenylthio)acetamide]-1,3dioxolane 42g

This was prepared following the procedure described for **42a** using **1g** (0.25 g, 0.79 mmol) (*ca.* equimolar mixture), **41a** (0.15 g, 1.66 mmol), *n*-butyllithium (0.99 mL, 1.6 M in hexane, 1.58 mmol) and THF (3 mL and 3 mL). The reaction was complete (by TLC analysis) after stirring for 16 h at room temperature. Purification by chromatography using ethyl acetate-hexane (15:85) as eluent gave **42g** (132 mg, 45%) (as a 54:46 mixture of diastereomers) as a yellow oil; $[\alpha]_{20}^{D}$ +4.5 (*c* 7 in ethanol); v_{max}/cm^{-1} (film) 3330 (NH), 1615, 1600 (CO amide); δ_{H} (270 MHz, CDCl₃) 1.26, 1.28 [3H, d, *J* 6, CH₃C(4) or CH₃C(5)], 1.32, 1.35 [3H, d, *J* 6, CH₃C(4) or CH₃C(5)], 1.58, 1.60 [3H, s, C(2)H₃], 2.30 (3H, s, ArCH₃), 3.73-4.01 [2H, m, C(4)*H* and C(5)*H*], 4.02 (1H, s, CHS), 7.09-7.47 (9H, m, Ar*H*), 8.33, 8.41 (1H, br s, N*H*); δ_{C} (67.8 MHz, CDCl₃) 15.9, 17.4 [CH₃C(4) and CH₃C(5)], 20.9 (ArCH₃), 25.5, 25.9 [*C*(2)H₃], 63.4, 64.3 (CHS), 78.7, 79.2, 80.4, 80.7 [*C*(4)H and *C*(5)H], 108.0 [*C*(2)], 119.7, 119.9, 127.3, 127.4, 129.0, 129.1, 129.45, 129.49, 131.0, 131.2 (aromatic CH), 133.9, 134.1, 135.4 (aromatic *C*), 167.1, 167.4 (CO); MS *m/z* 371 (M⁺, 1%), 267 (3), 115 (100); Found (HRMS, EI) M⁺ 371.15480. C₂₁H₂₅NO₃S requires *m/z* 371.15552.

(4*R*,6*R*)-4,6-Dimethyl-2-methyl-2-[*N*-(4-phenylmethyl)-2-(phenylthio)acetamide]-1,3dioxane 44g

This was prepared following the procedure described for **42a** using **1g** (0.25 g, 0.79 mmol), **41c** (0.17 g, 1.66 mmol), *n*-butyllithium (0.99 mL, 1.6 M in hexane, 1.58 mmol) and THF (3 and 3 mL). The reaction was complete (by TLC analysis) after stirring at room temperature for 17 h. Purification by chromatography using ethyl acetate-hexane (20:80) as eluent gave **44g** (101 mg, 33%) (as a 73:27 mixture of diastereomers) as a colourless oil; $[\alpha]_{20}^{D}$ +2.9 (*c* 10 in ethanol); (Found C, 68.14; H, 7.48; N, 3.86; S, 8.46. C₂₂H₂₇NO₃S requires C, 68.54; H, 7.06; N, 3.63; S, 8.32%); ν_{max}/cm^{-1} (film) 3324 (NH), 1661, 1601 (CO amide); δ_{H} (270 MHz, CDCl₃) (The signals corresponding to the major isomer are indicated by \diamond) 1.14, 1.23, 1.28 [6H, d, *J* 7, CH₃C(4) and CH₃C(6), 3 signals for 4], 1.62, 1.65^{\diamond} [3H, s, C(2)H₃], 1.57-1.82 [2H, m, C(5)H₂], 2.30 (3H, s, ArCH₃), 3.95 (1H, s, CHS), 4.06-4.27, 4.45-4.57 [2H, m,

C(4)*H* and C(6)*H*], 7.06-7.50 (9H, m, Ar*H*), 8.43, 8.54 (1H, br s, N*H*); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 20.8, 21.5, 22.3, 23.35, 23.40, 23.8 [ArCH₃, CH₃C(4), CH₃C(6) and C(2)H₃], 38.7^o, 45.6 [*C*(5)H₂], 63.5^o, 65.9, 65.1, 65.4^o [*C*(4)H and *C*(6)H, CHS], 99.9, 100.7^o [*C*(2)], 119.5, 119.6, 125.1, 125.8, 127.0, 128.5, 129.0, 130.8 (aromatic *C*H), 133.55, 133.64, 134.3, 134.5, 134.8, 135.5 (aromatic *C*), 167.5^o, 170.4 (*C*O); MS *m*/*z* 385 (M⁺, 13%), 223 (57), 129 (100, [CHCH₃(OCHCH₃)₂CH₂]⁺).

(4R,5R)-4,5-Dimethyl-2-[N-benzyl-2-(n-butylthio)-acetamide]-1,3-dioxolane 42s

This was prepared following the procedure described for **42a** using **1s** (0.15 g, 0.53 mmol), **41a** (0.1 mL, 1.11 mmol) and *n*-butyllithium (1.6 M in hexanes, 0.7 mL, 1.06 mmol) in THF (6 mL) at room temperature for 2 h. Purification by chromatography on silica gel using ethyl acetate/hexane (20:80) as eluent gave the product **42s** as an oil (0.06 g, 39%); $[\alpha]_{20}^{D}$ –11.1 (*c* 0.1 in CH₂Cl₂); (Found C, 63.81; H, 8.19; N, 3.91; S, 9.43; C₁₈H₂₇NO₃S requires C, 64.06; H, 8.06; N, 4.15; S, 9.50%); v_{max}/cm⁻¹ (film) 3282 (NH), 2930 (CH), 1644 (CO), 1556 (C=C); $\delta_{\rm H}$ (270 MHz, CDCl₃) 0.83-0.97 [3H, m, C(4')H₃], 1.17-1.30 (6H, m, 2 × CH₃), 1.30-1.45 [2H, m, C(3')H₂], 1.48-1.62 [2H, m, C(2')H₂], 2.53-2.70 (2H, m, SCH₂), 3.58-3.74 [3H, m, SCH, 2 × OCH(CH₃)], 4.48 (2H, d, *J* 5.9, NCH₂Ph), 5.42, 5.47 (1H, 2 × d, 50:50, *J* 2.7, 2.7, O₂CH), 7.14 (1H, br s, NH), 7.18-7.40 (5H, m, ArH); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 13.5 [C(4')H₃], 16.09, 16.13, 16.8, 16.9 (2 × CH₃), 21.8 [C(3')H₂], 31.4, 32.2 [SCH₂ and C(2')H₂], 43.5 (NCH₂Ph), 54.5, 55.4 (SCH), 79.1, 79.2, 80.1, 80.2 [2 × OCH(CH₃)], 101.9, 102.0 (O₂CH), 127.3, 127.5, 127.6, 128.5 (aromatic CH), 138.2 (aromatic C), 168.7 (CO); M.S. m/z 337 (M⁺,11%), 248 (80, [M-BuS]⁺), 101 (100, [C₃H₉O₂]⁺), 73 (89, [SCHCO]⁺).

(4*S*,5*S*)-4,5-Dimethyl-2-[*N*-benzyl-2-(*n*-butylthio)-acetamide]-1,3-dioxolane 43s

This was prepared following the above procedure for **42a** using **1s** (0.15 g, 0.53 mmol), **41b** (0.1 mL, 1.11 mmol) and *n*-butyllithium (1.6 M in hexanes, 0.7 mL, 1.06 mmol) in THF (6 mL) at room temperature over 2 h. Purification by chromatography on silica gel using ethyl acetate/hexane (20:80) as eluent gave **43s** as an oil (0.04 g, 20%); $[\alpha]_{20}^{D}$ +11.9 (*c* 0.1 in CH₂Cl₂); v_{max}/cm^{-1} (film) 3288 (NH), 2928 (CH), 1644 (CO); δ_{H} (270 MHz, CDCl₃) 0.85-0.92 [3H, m, C(4')H₃], 1.19-1.28 (6H, m, 2 × CH₃), 1.30-1.44 [2H, m, C(3')H₂], 1.49-1.62 [2H, m, C(2')H₂], 2.56-2.68 (2H, m, SCH₂), 3.59-3.73 [3H, m, SCH, 2 × OCH(CH₃)], 4.49 (2H, d, *J* 6.2, NCH₂Ph), 5.43, 5.47 (1H, 2 × d, 50:50, *J* 2.7, 2.7, O₂CH), 7.15 (1H, br s, NH), 7.20-7.38 (5H, m, ArH); δ_{C}

(67.8 MHz, CDCl₃) 13.5 [CH₃, *C*(4')H₃], 16.16, 16.20, 16.86, 16.91 [CH₃, 2 × OCH(*C*H₃)], 21.9 [CH₂, *C*(3')H₂], 31.5, 32.3 [CH₂, SCH₂ and *C*(2')H₂], 43.7 (CH₂, NCH₂Ph), 54.7, 55.6 (CH, SCH), 79.2, 79.3, 80.2, 80.3 [CH, 2 × OCH(CH₃)], 102.0, 102.1 (CH, O₂CH), 127.4, 127.6, 128.6 (CH, aromatic *C*H), 138.3 (C, aromatic *C*), 168.8 (C, *C*O); M.S. m/z 337 (M⁺, 8%), 248 (10, [M-BuS]⁺), 101 (100, [C₅H₉O₂]⁺), 73 (90, [SCHCO]⁺), 43 (75, [CONH]⁺).

Intramolecular nucleophilic addition

Treatment of 1u-Z with LiHMDS

This was conducted following the procedure described for **46a** using **1u**-*Z* (105 mg, 0.39 mmol), *n*-butyllithium (0.27 mL, 0.43 mmol), HMDS (94 µl, 0.45 mmol), THF (4 and 4 mL) with a reaction time of 16 h to give a mixture of products. Purification by chromatography using ethyl acetate-hexane (25:75) as eluent gave pure carboxanilide **46b** (Rf 0.3, ethyl acetate-hexane (25:75) as eluent) (10 mg, 11%) as a white crystalline solid; mp 94-95 °C; v_{max}/cm^{-1} (film) 3300 (br NH), 1726, 1652 (CO α , β -unsaturated amide); $\delta_{\rm H}$ (270 MHz, CDCl₃) 2.27 [3H, s, C(4)*H*₃], 2.99 (2H, overlapping dd, *J* 5, 4, C*H*₂S), 4.41 (2H, overlapping dd, *J* 5, 4, C*H*₂O), 7.10 (1H, t, *J* 7, Ar*H*), 7.33 (2H, dd, *J* 7, 8, Ar*H*), 7.52 (2H, d, *J* 8, Ar*H*), 7.91 (1H, br s, N*H*); $\delta_{\rm C}$ (67.8 MHz, CDCl₃) 21.3 [*C*(4)H₃], 24.6 (CH₂S), 66.6 (CH₂O), 96.9 (SC=), 120.0, 124.2, 129.0 (aromatic CH), 138.1 (aromatic C), 156.7 (OC=), 164.2 (CO); MS *m/z* 235 (M⁺, 50 %), 143 (100, M⁺-NHPh), 103 (41), 93 (50); Found (HRMS, EI) *m/z* 235.06660 C₁₂H₁₃NO₂S requires M⁺ 235.06670.

Treatment of 1u-*E* with LiHMDS

The procedure used was as described for the reaction **1u**-*Z* with LiHMDS using **1u**-*E* (0.44 g, 1.62 mmol), *n*-butyllithium (1.11 mL, 1.78 mmol), HMDS (0.39 mL, 1.86 mmol) and THF (8 and 8 mL) to give a mixture of products. Purification by chromatography using ethyl acetate-CH₂Cl₂-hexane (25:5:75) as eluent gave carboxin **46b** (Rf 0.3 using ethyl acetate-hexane (25:75) as eluent) (27 mg, 7 %) as a white crystalline solid; v_{max}/cm^{-1} (KBr) 3363 (NH), 1686, 1597 (CO α , β -unsaturated enamine ester); $\delta_{\rm H}$ (270 MHz, CDCl₃) 2.50 (3H, s, CH₃C=), 3.12-3.19 (1H, m, CH₄H_BS), 3.34-3.40 (1H, m, CH₄H_BS), 4.25-4.33 (1H, m, CH₄H_BO), 4.80-4.88 (1H, m, CH₄H_BO), 7.16 (1H, t, *J* 8, Ar*H*), 7.58 (2H, overlapping dd, *J* 8, Ar*H*), 7.58 (2H, d, *J* 8, Ar*H*), 8.52 (1H, br s, N*H*).

Sulfur Nucleophiles

N-(4-Benzyl)-*Z*-3-phenylthio-2(benzylthio)propenamide 47v and *N*-(4-Benzyl)-3,3di(phenylthio)-2(benzylthio)propanamide 48v

n-Butyllithium (0.65 mL, 1.6 M in hexane, 1.05 mmol) was added to a stirring solution of thiophenol (117 μ L, 1.14 mmol) in THF (4 mL) at 0°C. After stirring for 10 min at 0°C and for 20 min at room temperature a solution of **1v** (0.30 g, 0.95 mmol) in THF (4 mL) was added dropwise. After 2 hours a further equivalent of lithium thiophenolate [from *n*-butyllithium (0.65 mL, 1.6 M in hexane, 1.05 mmol), thiophenol (117 μ L, 1.14 mmol)] was added. TLC analysis showed the reaction had reached completion after 6 h and saturated aqueous ammonium chloride (10 mL) and ether (20 mL) were added. The phases were separated, the aqueous layer was extracted with ether (2 × 10 mL). The combined organic layers were washed with brine (3 × 10 mL), dried and evaporated to give the crude product (0.65 g) a pale yellow oil, ratio of **47v**:**48v** 1:3.3. Purification by column chromatography on silica gel using hexane:ethyl acetate (60-40% gradient elution ethyl acetate) gave **47v** (0.33g, 54%) as a yellow oil, and **48v** (0.20g, 41%) as a white solid.

47v: v_{max}/cm^{-1} (film) 3282 (NH), 1644 (CO amide); δ_{H} (400 MHz, CDCl₃) 3.88 (2H, s, SCH₂Bn), 4.28 (2H, d, *J* 5.9, NHC*H*₂), 7.08-7.54 (15H, m, Ar*H*), 8.43 [1H, s, C(3)*H*]; δ_{C} (75.5 MHz, CDCl₃) 38.2 (CH₂, SCH₂), 44.1 (CH₂, CH₂NH), 119.8 (C, CS), 127.4, 127.5, 127.7, 128.5, 128.7, 129.0, 129.5 (7 × CH, aromatic *C*H), 131.2, 137.5, 138.1 (3 × C, aromatic *C*), 153.8 (CH, CHSPh), 163.4 (C, CO); HRMS (ESI+): Exact mass calculated for C₂₃H₂₂S₂NO (M+H⁺) 392.1143. Found 392.1161 (M+H⁺); m/z (ESI⁺) 392.1 (M+H⁺).

48v: v_{max}/cm^{-1} (KBr) 3306 (NH), 1656 (CO amide); δ_{H} (400 MHz, CDCl₃) 3.57 (1H, d, *J* 3.8, CHS), 3.76 (1H, A of AB system, *J*_{AB} 12.0, one of SC*H*₂Bn), 3.79 (1H, B of AB system, *J*_{AB} 12.0, one of SC*H*₂Bn), 4.24 (2H, d, *J* 5.81, NC*H*₂Bn), 5.17 [1H, d, *J* 3.8, C(3)*H*], 6.97-7.43 (21H, m, N*H* and Ar*H*); δ_{C} (75.5 MHz, CDCl₃) 38.0 (CH₂, SCH₂), 44.1 (CH₂, CH₂NH), 55.0 [CH, CH(SPh)₂], 61.6 (CH, CHS), 127.5, 127.7, 128.1, 128.7, 128.8, 129.0, 129.2, 131.7, 132.9 (9 × CH, aromatic CH), 133.6, 134.7, 136.9, 137.6 (4 × C, aromatic C), 168.3 (C, CO); HRMS (ESI+): Exact mass calculated for C₂₉H₂₈S₃NO (M+H⁺) 502.1333. Found 502.1311 (M+H⁺); m/z (ESI⁻) 500.2 (M-H⁺).

N-(4-Methylphenyl)-*Z*-3-phenylthio-2-(phenylsulfinyl)propenamide 49a-*Z* and *N*-(4-Methylphenyl)-*E*-3-phenylthio-2-(phenylsulfinyl)propenamide 49a-*E*

Thiophenol (148 μ L, 1.46 mmol) was added to a solution of **18a** (0.42 g, 1.32 mmol) in toluene (8 mL). The reaction mixture was stirred initially at room temperature for 2 h. Subsequent heating under reflux with stirring was necessary for the reaction to reach

This journal is (c) The Royal Society of Chemistry 2010

completion after 7 h (TLC analysis). Dichloromethane (10 mL) was then added and the phases were separated. The aqueous layer was extracted with dichloromethane (2×10 mL), the combined organic layers were washed with sodium hydroxide (1M, 2×15 mL), distilled water (1×30 mL) and brine (1×30 mL), dried and evaporated to give the crude product (0.47g) as a yellow oil. The ¹H NMR spectrum of the crude material showed that the desired product had formed as a 1.1:1 diastereomeric mixture, in addition to *approx*. 12% **47a**. Purification by column chromatography on silica gel using hexane:ethyl acetate (60:40) as eluent gave **49a-Z** and **49a-E** as an off-white solid (327 mg, 63%) in a 1.6 : 1 diastereomeric mixture and **47a** as a white solid (60 mg, 12%).

49a-Z: v_{max}/cm^{-1} (KBr) 3247 (br NH), 1668 (CO amide), 1024 (SO); δ_{H} (400 MHz, CDCl₃) 2.29 (3H, s, ArCH₃), 7.08-7.10 (2H, m, ArH), 7.37-7.54 (10H, m, ArH), 7.71-7.73 (2H, m, ArH), 8.35 [1H, s, C(3)H], 10.20 (1H, br s, NH); δ_{C} (75.5 MHz, CDCl₃) 20.9 (CH₃, ArCH₃), 120.5, 124.0, 129.5, 129.7, 129.8, 131.2, 131.3, 131.4, 131.5 (9 × CH, aromatic CH), 132.5, 134.1, 135.2, 141.5 [4 × C, aromatic C and C(2)S], 151.6 [CH, C(3)H], 159.2 (C, CO); HRMS (ESI+): Exact mass calculated for C₂₂H₂₀NO₂S₂ (M+H⁺) 394.0935. Found 394.0942 (M+H⁺); m/z (ESI⁺) 394.0 (M+H⁺).

49a-*E***:** v_{max}/cm^{-1} (KBr) 3433 (NH), 1663 (CO amide), 1020 (SO); δ_{H} (400 MHz, CDCl₃) 2.29 (3H, s, ArC*H*₃), 7.05-7.07 (2H, m, Ar*H*), 7.38-7.50 (8H, m, Ar*H*), 7.56-7.61 (4H, m, Ar*H*), 8.01 [1H, s, C(3)*H*], 9.83 (1H, br s, NH); δ_{C} (75.5 MHz, CDCl₃) 20.9 (CH₃, ArCH₃), 120.3, 124.3, 126.9, 129.3, 129.5, 129.7, 129.8, 131.1, 131.3, 131.4 (10 × CH, aromatic *C*H), 127.0, 134.4, 134.8, 135.5, 141.8 [5 × C, aromatic *C* and *C*(2)S], 154.0 [CH, *C*(3)H], 160.6 (C, *C*O); HRMS (ESI+): Exact mass calculated for C₂₂H₂₀NO₂S₂ (M+H⁺) 394.0935. Found 394.0933 (M+H⁺); m/z (ESI⁺) 394.1 (M+H⁺).