Enantioselective Organocatalytic Domino Michael–Acetalization–Henry Reactions of 2-Hydroxynitrostyrene and Aldehyde for the Synthesis of Tetrahydro-6*H*-benzo[*c*]chromenones

Bor-Cherng Hong,* Prakash Kotame, and Ju-Hsiou Liao

Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi, 621, Taiwan, R.O.C.

chebch@ccu.edu.tw

SUPPORTING INFORMATION:

Contents: (1) Experimental procedures and characterization data for compounds 3a-3o.

- (2) Spectra data for compounds **3a-3o**.
- (3) *Ee* analysis by HPLC with chiral column, in Table 2.

General Procedure. All solvents were reagent grade. L-proline (99+%) was purchased from Bachem. Other chemicals were purchased from Aldrich or Acros Chemical Co. Reactions were normally carried out under argon atmosphere in glassware. Merck silica gel 60 (particle size 0.04-0.063 mm) was employed for flash chromatography. Melting points are uncorrected. ¹H NMR spectra were obtained in CDCl₃ unless otherwise noted at 400 MHz (Bruker DPX-400) or 500 MHz (Varian-Unity INOVA-500). ¹³C NMR spectra were obtained at 100 MHz or 125 MHz. *E.e.* values were measured by HPLC on a chiral column (chiralpak IA or chiralcel OD-H, 0.46 cm ID x 25 cm, particle size 5 μ) by elution with IPA-hexane. The flow rate of the indicated elution solvent is maintained at 1 mL/min, and the retention time of a compound is recorded accordingly. HPLC was equipped with the ultraviolet and refractive index detectors. The melting point was recorded on a melting point apparatus (MPA100 – Automated melting point system, Stanford Research Systems, Inc.) and is uncorrected. The optical rotation values were recorded with a Jasco-P-2000 digital polarimeter.

Representative procedure for the preparation of compound 3a in 95% EtOH (Table 2, entry 1).

To a solution of *trans*-2-hydroxy-β-nitrostyrene (1a, 50 mg, 0.3 mmol), catalyst I (20 mg, 0.06 mmol) and benzoic acid (7.3 mg, 0.06 mmol) in 95% EtOH (1.5 mL) was added a solution of butyraldehyde (2a, 131 mg, 1.82 mmol) in 95% EtOH (1.5mL). The resulting solution was stirred at 15 °C for 48 h until the completion of reaction, monitored by TLC. The resulting mixture was extracted with EtOAc (20 mL), washed with brine (5 mL), dried over Na₂SO₄, and concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 12% EtOAc-hexane ($R_f = 0.35$ for the hemiacetal, in 20% EtOAc-hexane) to give the hemiacetal as a colorless oil (67 mg, 93% yield). A solution of the hemiacetal (55 mg, 0.23 mmol) in CH₂Cl₂ (5 mL) and PCC (150 mg, 0.69 mmol) was stirred at ambient temperature for 20h until the completion of reaction, monitored by TLC. The reaction mixture was diluted with EtOAc (25 mL), and filtered through Celite. The filtrate was concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 10% EtOAc-hexane ($R_f = 0.45$ for *cis*-3a, $R_f = 0.44$ for trans-3a in 20% EtOAc-hexane) to give 3a as a oil (cis-trans mixture 92:8, 45 mg, 82% yield). The pure cis-3a was obtained as a white solid (mp. 91-93 °C) by further purification. For cis-3a: $\left[\alpha\right]_{D}^{23}$ -80 (c 1.5 CHCl₃); IR (neat): 2969, 2880, 1767, 1554, 1378, 1151. 1095, 762 cm⁻¹; ¹H NMR $(CDCl_3, 500 \text{ MHz})$: δ 7.33 (d, J = 7.7 Hz, 1 H), 7.14 (d, J = 7.7 Hz, 1 H), 7.11-7.07 (m, 2 H), 4.57 (dd, J = 12.4, 4.7 Hz, 1 H), 4.24 (t, J = 10.5 Hz, 1 H), 3.88 (dt, J = 10.5, 5.1 Hz, 1 H), 2.81 (dd, J = 12.4, 4.7 Hz, 1 H), 2.12-2.04 (m, 1 H), 1.57-1.51 (m, 1 H), 1.12 (t, J = 7.5 Hz, 3 H); ¹³C NMR (CDCl₃, 125 MHz): 168.8 (C), 150.8 (C), 130.1 (CH), 128.1 (CH), 124.9 (CH), 122.6 (C), 117.3 (CH), 75.4 (CH₂), 43.3 (CH), 37.3 (CH), 19.9 (CH₂), 11.9 (CH₃); MS (*m/z*, relative intensity): 235 (M⁺, 23), 188 (100), 173 (39), 160 (66), 145 (44), 131 (63), 91 (64); exact mass calculate for $C_{12}H_{13}NO_4$ (M^+): 235.0845; found (M⁺): 235.0842. For *trans*-**3a**: $[\alpha]_D^{23}$ -44.4 (c 2 CHCl₃); ¹H NMR (CDCl₃, 500 MHz): δ 7.36 – 7.32 (m, 1 H), 7.21 (dd, J = 7.6, 1.0 Hz, 1 H), 7.14 (ddd, J = 7.5, 7.5, 1.0 Hz, 1 H), 7.07 (dd, J = 7.5, 1.0 Hz, 1H), 4.51-4.42 (m, 2 H), 3.73-3.70 (m, 1 H), 2.79-2.75 (m, 1 H), 1.63-1.49 (m, 2 H), 1.00 (t, J = 7.4 Hz, 3 H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.0 (C), 150.7 (C), 130.2 (CH), 129.2 (CH), 125.3 (CH), 118.7 (C), 117.2 (CH), 78.1 (CH₂), 44.3 (CH), 39.2 (CH), 23.6 (CH₂), 11.4 (CH₃).

This journal is (c) The Royal Society of Chemistry 2010

Representative procedure for the preparation of compound 3a on water (Table 2, entry 1).

To a solution of *trans*-2-hydroxy- β -nitrostyrene (**1a**, 50 mg, 0.3 mmol), catalyst **I** (20 mg, 0.06 mmol) and acetic acid (4 mg, 0.06 mmol) in H₂O (0.5 mL) was added a solution of butyraldehyde (**2a**, 131 mg, 1.82 mmol). The resulting solution was stirred at 30 °C for 1 h until the completion of reaction, monitored by TLC. The resulting mixture was extracted with EtOAc (20 mL), washed with brine (5 mL), dried over Na₂SO₄, and concentrated *in vacuo* to give the crude product. The residue was purified by flash column chromatography with 12% EtOAc-hexane (R_f = 0.35 for the hemiacetal, in 20% EtOAc-hexane) to give the hemiacetal as a colorless oil (63 mg, 88% yield). The subsequent oxidation and the purification procedure are the same as the above reaction in 95% EtOH.

Figure S1. ORTEP and Stereo plots for X-ray crystal structures of (-)-cis-3a.

CCDC 794373 contains the supplementary crystallographic data for (-)-*cis*-**3a**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

cis-**3b**: white solid; mp 123-126 °C, $R_f = 0.48$ for *cis*-**3b** in 20% EtOAc-hexane, $[\alpha]_D^{23}$ -42 (c 1.0 CHCl₃). IR (neat): 2962, 2926, 1771, 1555, 1413, 1378, 1147. 1096, 818 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.45 (dd, J = 8.7, 2.0 Hz, 1 H), 7.31 (d, J = 2.0 Hz, 1 H), 6.97 (d, J = 8.7 Hz, 1 H), 4.56 (dd, J = 12.8, 5.0 Hz, 1 H), 4.31-4.26 (m, 1 H), 3.85 (dt, J = 10.0, 5.0 Hz, 1 H), 2.78 (dd, J = 12.8, 10.0 Hz, 1 H), 2.09-2.06 (m, 1 H), 1.55-1.51 (m, 1 H), 1.12 (t, J = 7.5 Hz, 3 H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.0 (C), 150.0 (C), 133.2 (CH), 130.9 (CH), 124.7 (C), 119.1 (CH), 117.5 (C), 74.9 (CH₂), 43.0 (CH), 37.0 (CH), 19.9 (CH₂), 11.9 (CH₃); MS (*m*/*z*, relative intensity): 315 (M⁺+3, 55), 313 (M⁺+1, 56), 268 (100), 266 (99), 211 (33), 209 (32), 145 (41), 118 (42), 91 (15), 71 (50), 57 (70); exact mass calculate for C₁₂H₁₂BrNO₄ (M⁺): 312.9950; found (M⁺): 312.9947.

Figure S1. ORTEP and Stereo plots for X-ray crystal structures of (-)-cis-3b.

CCDC 794374 contains the supplementary crystallographic data for (-)-*cis*-**3b**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

This journal is (c) The Royal Society of Chemistry 2010

cis-**3c**: yellow solid; mp 85-87 °C, $R_f = 0.36$ for *cis*-**3c** in 20% EtOAc-hexane, $[\alpha]_D^{23}$ -45 (c 1.6 CHCl₃). IR (neat): 2964, 2929, 1764, 1555, 1379, 1208, 1034, 817 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.00 (d, J = 8.9 Hz, 1 H), 6.84 (dd, J = 8.9, 2.9 Hz, 1 H), 6.65 (d, J = 2.9 Hz, 1 H), 4.56 (dd, J = 12.5, 5.0 Hz, 1 H), 4.28 (dd, J = 12.5, 10.5 Hz, 1 H), 3.83 (dt, J = 10.5, 5.0 Hz, 1 H), 3.75 (s, 3 H), 2.78-2.76 (m, 1 H), 2.13-2.02 (m, 1 H), 1.57-1.50 (m, 1 H), 1.12 (t, J = 7.5 Hz, 3 H); ¹³C NMR (CDCl₃, 125 MHz): δ 169.0 (C), 156.3 (C), 144.6 (C), 123.5 (C), 118.2 (CH), 115.3 (CH), 113.0 (CH), 75.3 (CH₂), 55.7 (CH₃), 43.3 (CH), 37.5 (CH), 19.9 (CH₂), 11.9 (CH₃); MS (*m*/*z*, relative intensity): 265 (M⁺, 100), 218 (76), 204 (19), 189 (18), 175 (41), 161 (45), 149 (38), 121 (44), 91 (31), 77 (99), 55 (17); exact mass calculate for C₁₃H₁₅NO₅ (M⁺): 265.0950; found (M⁺): 265.0948.

cis-**3d**: white solid; mp 67-69 °C, $R_f = 0.50$ for *cis*-**3d** in 20% EtOAc-hexane, $[\alpha]_D^{24}$ -85 (c 1.5 CHCl₃). IR (neat): 2957, 2929, 2860, 1769, 1556, 1377, 1102. 762 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.34-7.31 (m, 1 H), 7.14-7.06 (m, 3 H), 4.58 (dd, J = 12.5, 5.0 Hz, 1 H), 4.28 (dd, J = 12.5, 10.0 Hz, 1 H), 3.85 (dt, J = 10.0, 5.0 Hz, 1 H), 2.88 (dd, J = 12.5, 6.8 Hz, 1 H), 2.04-2.00 (m, 1 H), 1.51-1.44 (m, 3 H), 1.43-1.34 (m, 4 H), 0.89 (t, J = 6.8 Hz, 3 H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.9 (C), 150.8 (C), 130.1 (CH), 128.0 (CH), 124.9 (CH), 122.6 (C), 117.3 (CH), 75.5 (CH₂), 41.6 (CH), 37.6 (CH), 31.4 (CH₂), 26.9 (CH₂), 26.5 (CH₂), 22.4 (CH₂), 13.9 (CH₃); MS (*m/z*, relative intensity): 277 (M⁺, 7), 161 (21), 160 (100), 131 (19), 107 (20), 91 (16), 77 (7), 55 (13); exact mass calculate for C₁₅H₁₉NO₄ (M⁺): 277.1314; found (M⁺): 277.1315.

This journal is (c) The Royal Society of Chemistry 2010

cis-**3e**: colorless oil; $R_f = 0.65$ for *cis*-**3e** in 20% EtOAc-hexane, $[\alpha]_D^{24}$ -31 (c 1.75 CHCl₃). IR (neat): 2956, 2927, 2859, 1773, 1556, 1377, 1105. 1072, 821 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.45 (dd, J = 8.7, 2.2 Hz, 1H), 7.30 (d, J = 2.2 Hz, 1H), 6.97 (d, J = 8.7 Hz, 1H), 4.57 (dd, J = 12.9, 5.0 Hz, 1H), 4.28 (dd, J = 12.9, 10.2 Hz, 1H), 3.82 (dt, J = 10.2, 5.0 Hz, 1H), 2.84 (dd, J = 12.9, 6.8 Hz, 1H), 2.02-2.00 (m, 1H), 1.55-1.42 (m, 3H), 1.33-1.32 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.2 (C), 150.0 (C), 133.2 (CH), 130.9 (CH), 124.7 (C), 119.1 (CH), 117.5 (C), 75.0 (CH₂), 41.4 (CH), 37.3 (CH), 31.4 (CH₂), 26.9 (CH₂), 26.5 (CH₂), 22.4 (CH₂), 13.9 (CH₃); MS (*m*/*z*, relative intensity): 357 (M⁺+2, 31), 355 (M⁺, 32), 297 (7), 295 (13), 254 (18), 252 (18), 240 (99), 238 (100), 175(22), 161 (22), 149 (20), 118 (22), 105 (23), 97 (20), 91 (24), 85 (27), 71 (43) 57 (51) 55 (46); exact mass calculate for C₁₅H₁₈BrNO₄ (M⁺): 355.0419; found (M⁺): 355.0416.

trans-**3e:** colorless oil; $R_f = 0.60$ for *trans*-**3e** in 20% EtOAc-hexane, $[\alpha]_D^{-24}$ -76.6 (c 1.5 CHCl₃). IR (neat): 2956, 2927, 2859, 1773, 1556, 1377, 1105. 1072, 821 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.46 (dd, J = 8.7, 2.2 Hz, 1 H), 7.37 (d, J = 2.2 Hz, 1 H), 6.97 (d, J = 8.7 Hz, 1 H), 4.56-4.43 (m, 2 H), 3.67 (t, J = 7.2 Hz, 1 H), 2.87-2.83 (m, 1 H), 1.54-1.33 (m, 4 H), 1.28-1.20 (m, 4 H), 0.89 (t, J = 6.9 Hz, 3 H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.4 (C), 149.9 (C), 133.3 (CH), 131.9 (CH), 120.9 (C), 119.0 (CH), 117.8 (C), 76.7 (CH₂), 42.4 (CH), 39.2 (CH), 31.0 (CH₂), 30.1 (CH₂), 26.4 (CH₂), 22.3 (CH₂), 13.9 (CH₃).

cis-**3f:** white solid; mp 96-98 °C, $R_f = 0.36$ for *cis*-**3f** in 20% EtOAc-hexane, $[\alpha]_D^{23}$ -35 (c 1.0 CHCl₃). IR (neat): 2962, 2925, 1769, 1555, 1379, 1119, 1099. 925, 798 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.33 (td, J = 8.1, 1.8 Hz, 1 H), 7.15-7.09 (m, 3 H), 5.85 (dddd, J = 17.0, 10.1, 8.8, 5.0, Hz, 1 H), 5.26 (s, 1H), 5.24-5.22 (m, 1 H), 4.62 (dd, J = 12.4, 4.6 Hz, 1 H), 4.28 (dd, J = 12.4, 10.6 Hz, 1 H), 3.85 (dt, J = 10.6, 5.0 Hz, 1 H), 3.02 (dt, J = 9.0, 5.0 Hz, 1 H), 2.88 (ddd, J = 10.1, 8.8, 4.6 Hz, 1 H), 2.26 (dt, J = 17.0, 9.0 Hz, 1 H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.3 (C), 150.8 (C), 133.3 (CH), 130.2 (CH), 128.2 (CH), 125.0 (CH), 122.4 (C), 119.0 (CH₂), 117.4 (CH), 75.1 (CH₂), 41.3 (CH), 36.8 (CH), 30.8 (CH₂); MS (*m*/*z*, relative intensity): 247 (M⁺, 6), 217 (42), 200 (90), 199 (28), 186 (32), 185 (55), 172 (34), 144 (41), 131 (100), 107 (52), 77 (29); exact mass calculate for C₁₃H₁₃NO₄ (M⁺): 247.0845; found (M⁺): 247.0845.

cis-**3g:** colorless oil; $R_f = 0.53$ for *cis*-**3g** in 20% EtOAc-hexane, $[\alpha]_D^{23}$ -51 (c 2.8 CHCl₃); IR (neat): 2961, 2925, 1766, 1555, 1377, 1017, 797 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.37-7.27 (m, 4 H), 7.23-7.03 (m, 5 H), 4.72 (dd, J = 12.4, 4.4, Hz, 1 H), 4.35 (dd, J = 12.4, 10.6 Hz, 1 H), 3.66-3.61 (m, 1 H), 3.52 (dd, J = 14.7, 5.7 Hz, 1 H), 3.26 (dt, J = 10.6, 4.4 Hz, 1 H), 2.75 (dd, J = 14.7, 5.7 Hz, 1 H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.4 (C), 150.8 (C), 136.9 (C), 130.2 (CH), 129.1 (2 CH), 128.6 (2 CH), 128.2 (CH), 127.3 (CH), 125.0 (CH), 122.6 (C), 117.4 (CH), 75.3 (CH₂), 43.5 (CH), 36.6 (CH), 32.4 (CH₂); MS (*m/z*, relative intensity): 297 (M⁺, 9), 250 (18), 161 (23), 131 (41), 107 (12), 91 (100), 71 (19), 57 (24); exact mass calculate for C₁₇H₁₅NO₄ (M⁺): 297.1001; found (M⁺): 297.1001.

cis-**3h**: white solid; $R_f = 0.30$ for *cis*-**3h** in 20% EtOAc-hexane, $[\alpha]_D^{23}$ -81.9 (c 2.0 CHCl₃); IR (neat): 2956, 2862, 1769, 1588, 1376, 1103. 1010, 762 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.03 (d, J = 8.3 Hz, 1 H), 6.63 (d, J = 2.5 Hz, 1 H), 6.61 (dd, J = 8.3, 2.5 Hz, 1 H), 4.54 (dd, J = 12.3, 5.1 Hz, 1 H), 4.23 (dd, J = 12.3, 10.6 Hz, 1 H), 3.83 (dt, J = 10.6, 5.1 Hz, 1 H), 3.77 (s, 3 H), 2.80 (td, J = 7.3, 5.1 Hz, 1 H), 2.10-2.05 (m, 1 H), 1.55-1.50 (m, 1 H), 1.12 (t, J = 7.5 Hz, 3 H); ¹³C NMR (CDCl₃, 125 MHz): δ 169.1 (C), 161.2 (C), 152.0 (C), 129.0 (CH), 114.6 (C), 111.0 (CH), 103.2 (CH), 76.0 (CH₂), 55.8 (CH₃), 43.8 (CH), 37.1 (CH), 20.3 (CH₂), 12.2 (CH₃); MS (*m/z*, relative intensity): 265 (M⁺, 32), 218 (44), 205 (33), 203 (40), 190 (100), 175 (22), 162 (17), 139 (19), 121 (26), 91 (21); exact mass calculate for C₁₃H₁₅NO₅ (M⁺): 265.0950; found (M⁺): 265.0951.

This journal is (c) The Royal Society of Chemistry 2010

cis-**3i**: white solid; mp 138-140 °C, $R_f = 0.46$ for *cis*-**3i** in 10% EtOAc-hexane, $[\alpha]_D^{24}$ -57 (c 1.0 CHCl₃); IR (neat): 2953, 2929, 2857, 1789, 1558, 1145, 1092, 840 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.35 (td, J = 8.2, 1.5 Hz, 1 H), 7.21 (dd, J = 7.5, 1.5 Hz, 1 H), 7.14 (td, J = 7.5, 1.5 Hz, 1 H), 7.07 (d, J = 8.2 Hz, 1 H), 4.83 (dd, J = 13.1, 5.3 Hz, 1 H), 4.70 (d, J = 5.3 Hz, 1 H), 4.33 (dd, J = 13.1, 5.3 Hz, 1 H), 4.70 (d, J = 5.3 Hz, 1 H), 4.33 (dd, J = 13.1, 5.3 Hz, 1 H), 4.01-3.98 (m, 1 H), 0.92 (s, 9 H), 0.22 (s, 3 H), 0.12 (s, 3 H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.1 (C), 150.2 (C), 130.5 (CH), 129.0 (CH), 125.3 (CH), 120.2 (C), 117.4 (CH), 75.1 (CH₂), 68.2 (CH), 41.8 (CH), 25.6 (3 CH₃), 18.3 (C), -4.9 (CH₃), -5.8 (CH₃); MS (*m/z*, relative intensity): 337 (M⁺, 2), 280 (24), 131 (13), 113 (13), 111 (10), 107 (25), 99 (19), 97 (21), 99 (19), 97 (21), 91 (15), 85 (57), 83 (24), 71 (77), 57 (100), 55 (23) ; exact mass calculate for C₁₆H₂₃NO₅Si (M⁺): 337.1345; found (M⁺): 337.1348.

trans-**3i**: colorless oil; $R_f = 0.34$ for *trans*-**3i** in 10% EtOAc-hexane, $[\alpha]_D^{24}$ -38 (c 1.0 CHCl₃). IR (neat): 2953, 2929, 2857, 1789, 1558, 1145, 1092, 840 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.32 (td, J = 8.4, 4.3 Hz, 1 H), 7.15 (d, J = 4.3 Hz, 2 H), 7.09 (d, J = 8.4 Hz, 1 H), 4.86 (dt, J = 10.4, 5.4 Hz, 2 H), 4.59 (d, J = 10.4 Hz, 1 H), 3.84 (dt, J = 10.4, 5.4 Hz, 1 H), 0.87 (s, 9 H), 0.21 (s, 3 H), 0.10 (s, 3 H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.2 (C), 150.2 (C), 129.8 (CH), 125.9 (CH), 125.2 (CH), 120.2 (C), 117.3 (CH), 72.6 (CH₂), 68.0 (CH), 41.1 (CH), 25.6 (3 CH₃), 18.2 (C), -4.6 (CH₃), -5.6 (CH₃).

3j: yellow solid; mp 61-63 °C, $R_f = 0.30$ for **3j** in 20% EtOAc-hexane, $[\alpha]_D^{23}$ -109 (c 1.3 CHCl₃); IR (neat): 2981, 2928, 1765, 1554, 1379, 1123. 1096, 763 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.33 (ddd, J = 8.0, 6.4, 2.7 Hz, 1 H), 7.13-7.11 (m, 2 H), 7.06 (d, J = 8.0 Hz, 1 H), 4.71 (dd, J = 12.5, 5.2 Hz, 1 H), 4.31 (dd, J = 12.5, 9.7 Hz, 1 H), 3.49 (dd, J = 9.7, 5.2 Hz, 1 H), 1.41 (s, 3 H), 1.24 (s, 3 H), ¹³C NMR (CDCl₃, 125 MHz): δ 171.5 (C), 150.5 (C), 130.1 (CH), 128.7 (CH), 125.2 (CH), 121.0 (C), 116.9 (CH), 77.0 (CH₂), 45.7 (CH), 39.8 (C), 25.5 (CH₃), 21.7 (CH₃); MS (*m/z*, relative intensity): 235 (M, 19), 188 (88), 160 (36), 145 (100), 107 (17), 91 (37), 65 (11); exact mass calculate for C₁₂H₁₃NO₄ (M⁺): 235.0845; found (M⁺): 235.0842.

3k: white solid; mp 111-113 °C, $R_f = 0.25$ for **3k** in 20% EtOAc-hexane, $[\alpha]_D^{24}$ -29 (c 1.3 CHCl₃); IR (neat): 2962, 1768, 1554, 1478, 1328, 1177. 1097, 814 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.44 (dd, J = 8.7, 2.3 Hz, 1 H), 7.28 (d, 2.3 Hz, 1 H), 6.95 (d, J = 8.7 Hz, 1 H), 4.69 (dd, J = 12.9, 5.2 Hz, 1 H), 4.32 (dd, J = 12.9, 9.3 Hz, 1 H), 3.46 (dd, J = 9.3, 5.2 Hz, 1 H), 1.40 (s, 3 H), 1.24 (s, 3 H), ¹³C NMR (CDCl₃, 125 MHz): δ 170.7 (C), 149.7 (C), 133.1 (CH), 131.5 (CH), 123.1 (C), 118.7 (CH), 117.6 (C), 76.5 (CH₂), 45.3 (CH), 39.6 (C), 25.5 (CH₃), 21.6 (CH₃); MS (*m/z*, relative intensity): 315 (M⁺+3, 59), 313 (M⁺+1, 59), 268 (98), 266 (100), 240 (56), 238 (58), 225 (93), 223 (90), 160 (96), 145 (64), 70 (53); exact mass calculate for C₁₂H₁₂BrNO₄ (M⁺): 312.9950; found (M⁺): 312.9948.

31: colorless oil; $R_f = 0.36$ for **3k** in 20% EtOAc-hexane, $[\alpha]_D^{23}$ -92 (c 1.5 CHCl₃); IR (neat): 2961, 1765, 1555, 1435, 1383, 1158. 1029, 809 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.00 (d, J = 8.4 Hz, 1 H), 6.64 (dd, 8.4, 2.5 Hz, 1 H), 6.59 (d, J = 2.5 Hz, 1 H), 4.68 (dd, J = 12.4, 5.2 Hz, 1 H), 4.27 (dd, J = 12.4, 9.8 Hz, 1 H), 3.77 (s, 3 H), 3.42 (dd, J = 9.8, 5.2 Hz, 1 H), 1.39 (s, 3 H), 1.24 (s, 3 H), ¹³C NMR (CDCl₃, 100 MHz): δ 171.6 (C), 160.9 (C), 151.4 (C), 129.4 (CH), 112.7 (C), 110.9 (CH), 102.5 (CH), 76.7 (CH₂), 55.5 (CH₃), 45.2 (CH), 39.9 (C), 25.6 (CH₃), 21.8 (CH₃); MS (*m/z*, relative intensity): 265 (M⁺, 50), 218 (100), 205 (38), 191 (26), 175 (94), 150 (31), 137 (28), 121 (29), 91 (23), 83 (40), 70 (33); exact mass calculate for C₁₃H₁₅NO₅ (M⁺): 265.0950; found (M⁺): 265.0950.

This journal is (c) The Royal Society of Chemistry 2010

Representative procedure for the preparation of compound 3a on water (Table 2, entry 13).

To a solution of *trans*-2-hydroxy- β -nitrostyrene (**1a**, 50 mg, 0.3 mmol), catalyst **I** (20 mg, 0.06 mmol) and acetic acid (4 mg, 0.06 mmol) in H₂O (0.5 mL) was added a solution of glutaraldehyde (61 mg, 0.60 mmol). The resulting solution was stirred at 30 °C for 24 h until the completion of reaction, monitored by TLC. The resulting mixture was extracted with EtOAc (20 mL), washed with brine (5 mL), dried over Na₂SO₄, and concentrated *in vacuo* to give the crude product. The residue was purified by flash column chromatography with 28% EtOAc-hexane (R_f = 0.25 for the hemiacetal, in 30% EtOAc-hexane) to give the hemiacetal as a colorless oil (40 mg, 50% yield). A solution of the hemiacetal (25 mg, 0.09 mmol) in CH₂Cl₂ (4 mL) and PCC (61 mg, 0.28 mmol) was stirred at ambient temperature for 12 h until the completion of reaction, monitored by TLC. The reaction mixture was diluted with EtOAc (25 mL), and filtered through Celite. The filtrate was concentrated *in vacuo* to give the crude product. The residue was purified by flash column chromatography with 22% EtOAc-hexane (R_f = 0.35 for **3m** in 30% EtOAc-hexane) to give the solid (18 mg, 76% yield).

3m: white solid; mp 197-199 °C, $R_f = 0.35$ for **3m** in 30% EtOAc-hexane, $[\alpha]_D^{23}$ -114 (c 0.2 CHCl₃); IR (neat): 3231, 2921, 2857, 1747, 1541, 1373, 1010, 764 cm⁻¹; ¹H NMR (acetone-d₆, 500 MHz): δ 7.38-7.33 (m, 2 H), 7.13 (td, J = 8.1, 1.2 Hz, 1 H), 7.04 (dd, J = 8.1, 1.2 Hz, 1 H), 4.79 (d, J = 4.2, Hz, 1 H), 4.70 (dd, J = 12.2, 2.6 Hz, 1 H), 4.55 (s, 1 H), 4.11 (dd, J = 12.2, 6.0 Hz, 1 H), 3.36-3.33 (m, 1 H), 2.19-2.14 (m, 2 H), 1.97-1.93 (m, 2 H); ¹³C NMR (acetone-d₆, 125 MHz): δ 169.3 (C), 152.7 (C), 131.1 (CH), 130.4 (CH), 125.1 (CH), 124.0 (C), 117.6 (CH), 90.1 (CH), 68.6 (CH), 39.4 (CH), 34.9 (CH), 29.2 (CH₂), 18.9 (CH₂); MS (*m/z*, relative intensity): 263 (M⁺, 41), 216 (100), 197 (31), 188 (43), 171 (29), 160 (33), 147 (43), 131 (30), 111 (27), 97 (38), 91 (26), 77 (24), 71 (41); exact mass calculate for C₁₃H₁₃NO₅ (M⁺): 263.0794; found (M⁺): 263.0797.

This journal is (c) The Royal Society of Chemistry 2010

Figure S1. ORTEP and Stereo plots for X-ray crystal structures of (-)-3m•H₂O

CCDC 794375 contains the supplementary crystallographic data for (-)- $3m \cdot H_2O$. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

3n: white solid; mp 191-193 °C, $R_f = 0.31$ for **3n** in 30% EtOAc-hexane, $[\alpha]_D^{23}$ -100 (c 0.25 CHCl₃); IR (neat): 3228, 2955, 2909, 1759, 1546, 1373, 1199, 1021, 804 cm⁻¹; ¹H NMR (acetone-d₆, 500 MHz): δ 7.25 (d, J = 8.5 Hz, 1 H), 6.70 (dd, J = 8.5, 2.6 Hz, 1 H), 6.0 (d, J = 2.6 Hz, 1 H), 4.75 (d, J = 4.1, Hz, 1 H), 4.64 (dd, J = 12.1, 2.6 Hz, 1 H), 4.53 (s, 1 H), 4.04 (dd, J = 12.1, 6.0 Hz, 1 H), 3.80 (s, 3 H), 3.33-3.30 (m, 1 H), 2.17-2.12 (m, 2 H), 2.04-1.91 (m, 2 H); ¹³C NMR (acetone-d₆, 125 MHz): δ 169.3 (C), 161.5 (C), 153.5 (C), 131.7 (CH), 115.7 (C), 111.0 (CH), 103.0 (CH), 90.5 (CH), 68.7 (CH), 55.9 (CH₃), 39.6 (CH), 34.3 (CH), 29.2 (CH₂), 18.8 (CH₂); MS (*m*/*z*, relative intensity): 293 (M⁺, 56), 246 (100), 229 (36), 218 (100), 189 (48), 177 (29), 161 (30), 91 (13), 77 (18), 55 (16); exact mass calculate for C₁₄H₁₅NO₆ (M⁺): 293.0899; found (M⁺): 293.0901.

3o: white solid; mp 159-161 °C, $R_f = 0.29$ for **3o** in 30% EtOAc-hexane, $[\alpha]_D^{23}$ -86 (c 0.22 CHCl₃); IR (neat): 3227, 2955, 2909, 1759, 1546, 1339, 1152, 1021, 804 cm⁻¹; ¹H NMR (acetone-d₆, 500 MHz): δ 6.99-6.97 (m, 1 H), 6.92-6.89 (m, 2 H), 4.82 (d, J = 4.4, Hz, 1 H), 4.69 (dd, J = 12.2, 2.6 Hz, 1 H), 4.55 (s, 1 H), 4.06 (dd, J = 12.2, 6.0 Hz, 1 H), 3.78 (s, 3 H), 3.32-3.29 (m, 1 H), 2.17-2.12 (m, 2 H), 1.94-1.91 (m, 2 H); ¹³C NMR (acetone-d₆, 125 MHz): δ 169.4 (C), 156.9 (C), 146.4 (C), 124.9 (C), 118.4 (CH), 116.1 (CH), 115.3 (CH), 90.1 (CH), 68.6 (CH), 55.9 (CH₃), 39.3 (CH), 35.2 (CH), 29.2 (CH₂), 18.9 (CH₂); MS (*m*/*z*, relative intensity): 293 (M⁺, 100), 246 (55), 229 (18), 227 (60), 189 (19), 174 (26), 161 (44), 105 (54), 91 (62), 77 (28), 57 (87), 55 (62); exact mass calculate for C₁₄H₁₅NO₆ (M⁺): 293.0899; found (M⁺): 293.0901.

Fig S13. 1H NMR (CDCI3, 500 MHz) of compound cis-3a

Fig S14. 13C NMR (CDCI3, 125 MHz) of compound cis-3a

Fig S15. DEPT of compound cis-3a

٠

PHK-02-334-F1 #Supplementary Material (ESI) for Organic & Biomolecular Chemistry

exp25	#This	iournal is (c) The	Roval	Society	of (Chemistry 2010	
			/ / / / / 0	I VOVUI				

SAMPLE date Mar 8 2010 solvent cdcl3	j1xh mult	DEPT 140.0 arrayed	ACQUISITIO array arraydim	N ARRAYS mult 3	andra an Angresia andra a Angresia andra a			
sample undefined ACQUISITION sw 31446.5 at 1.000 np 62894	temp gain spin	SPECIAL not used 24 PROCESSING	i 1 2 3	mult 0.5 1 1.5	i de la composition de la comp	1	-	
bs 18 ss -4 d1 1.000	fn	not used SPECTRUM						
nt 384 ct 384 TRANSMITTER	wp Sp rp	27649.1 -1257.4 131.0						
tn C13 tof 2512.2 towr 54	lp . ai	188.7 cdc ph Reference						
pw 11.500 DECOUPLER	rfl rfp	1269.9 0						
dof 0 dpwr 39	WC SC	210						
dam nny dam ccw dan 11905	vs hzmm th	77 131.67 68						
ppivi 51 pp 25.600								

F1 (ppm)

Fig S18. NOESY of compound cis-3a

 PMK-62-334#F3upplementary Material (ESI) for Organic & Biomolecular Chemistry

 exp28
 NOE\$VThis journal is (c) The Royal Society of Chemistry 2010

Fig S19. 1H NMR (CDCI3, 500 MHz) of compound trans-3a

PMK-02-336-f2

Fig S20. 13C NMR (CDCI3, 125 MHz) of compound trans-3a

•

Fig S21. DEPT of compound trans-3a

Supplementary Material (ESI) for Organic & Biomolecular Chemistry

exp35 DEPT

Fig S25. 1H NMR (CDCI3, 500 MHz) of compound 3b

.

460 455 445 442 442 443 314 314 310 240 281 964

Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010

PMK-02-364

exp3	s2pul		
	SAMPLE	DEC.	& VT
date	Apr 13 2010	dfrq	125.693
solver	nt cdc13	dn	C13
file	exp	dpwr	30
ACC	DUISITION	dof	0
sfra	499.830	dm	nnn
tn	H1	dmm	С
at	3.000	dmf	200
np	48000	dseq	
sw	8000.0	dres	1.0
fb	not used	homo	n
bs	4	PROC	ESSING
tpwr	58	wtfile	
p.v.	4.8	proc	ft
d1	1.000	fn	not used
tof	499.7	math	f
nt	4		
ct	4	werr	react
alock	У	wexp	procplot
gain	not used	wbs	
•	FLAGS	wnt	wft
i]	n		
in	n		
dp	y y		
hs	nn		
	DISPLAY		
sp	-250.1		
wp	5248.0		
vs	50		
SC	0		
wc	210		
hzmm	24.99		
is	274.81		
rfl 🛛	4637.9		
rfp	3618.7		
th	4		
ins	100.000		
nm c	dc ph		

.

Fig S26. 13C NMR (CDCl3, 125 MHz) of compound 3b

Fig S27. DEPT of compound 3b

.

PMK-02-364 # Supplementary Material (ESI) for Organic & Biomolecular Chemistry exp5 DEPT# This journal is (c) The Royal Society of Chemistry 2010 DEPT ACQUISITION ARRAYS SAMPLE date Apr 13 2010 j1xh 140.0 array mult cdcl3 mult arrayed arraydim solvent 3 SPECIAL sample undefined ACQUISITION temp not used mult i sw 31446.5 gain 34 1 0.5 0 1 at 1.000 špin 2 1.5 62894 PROCESSING 3 np bs 16 16 1.00 -4 fn not used SS SPECTRUM d1 1.000 nt 2048 wp 28906.3 2048 sp -1257.0 ct TRANSMITTER 48.6 rp tn C13 1p 170.9 tof 2512.2 ai cdc ph REFERENCE tpwr 54 рw 11.500 rf1 1303.1 DECOUPLER rfp 0 dn H1 PLOT 210 dof 0 wc 39 n dpwr SC dmi nny vs 500 dmm ccw hzmm 137.65 11905 th 68 dmf 51 pplvl 28.000 pp *********** **____** 1111 . . . | . . - - - -117 *********** 80 220 200 180 160 140 120 100 60 40 20 ppm .

Fig S32. 13C NMR (CDCI3, 125 MHz) of compound 3c

•

Рик-02-#85sipplementary Material (ESI) for Organic & Biomolecular Ghemistry DEPT of compound 3c #This journal is (c) The Royal Society of Chemistry 2010

•

Fig S37. 1H NMR (CDCI3, 500 MHz) of compound 3d

Fig S38. 13C NMR (CDCI3, 125 MHz) of compound 3d

Fig S39. DEPT of compound 3d

,

PMK-02-368 # Supplementary Material (ESI) for Organic & Biomolecular Chemistry exp5 DEP# This journal is (c) The Royal Society of Chemistry 2010

.

SAMPLE date Apr 28 2010 solvent cdc13 sample undefined ACQUISITION	DEPT j1xh 140.0 mult arrayed SPECIAL temp 20.0	ACQUISITION ARRAYS array mult arraydim 3 i mult			
sw 31446.5	gain 22 snin 0				
np 62894	PROCESSING	3 1.5			
bs 16	1b 1.00				
d1 1.000	SPECTRUM				
nt 1024	wp 28906.3				
CT 1024 TRANSMITTER	sp -1257.0 rn 46.8		· · · · · · · · · · · · · · · · · · ·		N .
tn C13	lp 187.2				
tof 2512.2 towr 54	al cdc ph REFERENCE				
pw 11.500	rfl 1306.9				
DECOUPLER	rfp 0				
dof 0	wc 210				
dpwr 39	SC 0				
dmm ccw	hzman 137.65				
dmf 11905	th 68				
pp 28.000				1	
			 	L	······································
dn H1 dof 0 dpwr 39 dm nny dmm ccw dmf 11905 pplvl 51 pp 28.000	PLOT wc 210 sc 0 vs 1000 hzmm 137.65 th 68				

•

Fig S40. HSQC of compound 3d

PMK-02 # Bupplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010

Fig S43. 1H NMR (CDCI3, 500 MHz) of compound cis-3e

PMK-02-371-f1		6 2 8 8 5 2 7 7 7 7 7 7 7 7 8 8 8 2 2 3 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8	
exp12 s2put This journal is (c) The Royal Society of Chemistry 2			9 9 9 9 0 5 5 5 8 M M H H H H H H H H H H H H H H H H H
SAMPLE DEC. & VT date May 7 2010 dfrq 125.693 solvent cdcl3 dn C13 file exp dpwr 30 ACQUISITION dof 0 sfrq 499.830 dm nnn			
tn H1 dmm C at 3.000 dmf 200 nn 48000 dseo			
sw 8000.0 dres 1.0 fb not used homo n)		
bs 4 PROCESSING tpwr 58 wtfile		I	
pw 4.8 proc TT d1 1.000 fn not used			
nt 4 ct 4 werr react			
alock y wexp procplot gain not used wbs			
FLAGS whit with			
in n dp y bc pn			
DISPLAY	·		
wp 5248.0 vs 75			
sc 0 wc 210			
hzmm 24.99 is 345.52			
гті 4637.9 rfp 3618.7 +b 2			
ins 100.000			

.

Fig S44. 13C NMR (CDCI3, 125 MHz) of compound cis-3e

•

.

Fig S45. DEPT of compound cis-3e ۲۹۳۲–۲۹۲۵ وFig S45. DEPT of compound cis-3e ۳ This journal is (c) The Royal Society of Chemistry 2010 ۲۹۳۹ و ۲۹۹۹ و

.

SAMPLE date May 7 2010 solvent cdc13 sample undefined ACQUISITION sw 31446.5 at ACQUISITION sw 31446.5 at https://docs.org/line 62894 bs 16 ss -4 1.000 nt 1024 TRANSMITTER 1024 TRANSMITTER 11.500 tn 2512.2 tpwr 54 pw 11.500 DECOUPLER dn dof 0 dpwr 39 dm nny	DEPT j1xh 140.0 mult arrayed SPECIAL temp not used gain 28 spin 0 PROCESSING lb 1.00 fn not used <u>SPECTRUM</u> wp 28906.3 sp -1257.0 rp 131.6 lp 1305.0 rfp 0 PLOT wc 210 sc 0 vs 150 hzmm 137.65	ACQUISITION ARRAYS array mult arraydim 3 i mult 1 0.5 2 1 3 1.5	<u> </u>	
dm nny dmm ccw dmf 11905 pplvl 51 pp 28.000	vs 150 hzmm 137.65 th 68			

Fig S46. HSQC of compound cis-3e

Fig S49. 1H NMR (CDCI3, 500 MHz) of compound trans-3e

	# Supplem	entary Ma	terial (ESI) for Orga	nic & Bion ជាដែលរដ្ឋ ដាំងស្តីនៅវិទ	9 4 4 9 4 4
exp43 s	# This iour	nal is (c) T	he Roval Society of	Chemistry 2010 N N N N 9 9	444
SA	MPLE	DEC	. & VT	· · · · · · · · · · · · · · · · · · ·	
date 🖡	ay 6 2010	dfrq	125.693		
solvent	cdc13	dn	C13		
file	exp	dpwr	30		
ACQUI	SITION	dof	0		
sfrq	499.830	dime	nnn		
tn	H1	daa	c		
at	3.000	dmf	200		
np	48000	dseq			
sw	8000.0	dres	1.0		
fb	not used	homo	n	P	
bs	4	PRC	DCESSING		
tpwr	58	wtfile			
pw	4.8	proc	ft		
d1	1.000	fn	not used		
tof	499.7	math	f		
nt	4				
ct	4	werr	react		
alock	У	wexp	procplot		
gain	not used	wbs			
FI	LAGS	wnt	wft		
i]	n				
in	n				
dp	У				
hs	nn				
DIS	SPLAY				
sp	-250.1				
wp	5248.0				
vs	75				
sc	0				
wc	210				
hzmm	24.99				
15	258.08				
rti	4637.9				
гтр	3618.7				
τn	3				
105	100.000				

,

Fig S50. 13C NMR (CDCl3, 125 MHz) of compound trans-3e

Fig S51. DEPT of compound trans-3e

•

Fig S55. 1H NMR (CDCI3, 500 MHz) of compound 3f

,

Fig S57. DEPT of compound 3f #This journal is (c) The Royal Society of Chemistry 2010 exp25

SAMPLE date May 11 2010 solvent cdcl3 sample undefined ACOUISITION	DEPT j1xh 140.0 mult arrayed SPECIAL temp not used	ACQUISITION ARRAYS array mult arraydim 3 i mult		
sw 31446.5	gain 28	1 0.5		
at 1.000	spin O	2 1		
np 62894	PROCESSING	3 1.5		
bs 16	1b 1.00			
ss -4	fn notused			
d1 1.000	SPECTRUM		······	
nt 1024	wp 28906.3			
CT 1024	sp -1257.0			
TRANSMITTER	rp 135.9			
	1p 204.1			
ton 2312.2				
nw 11 500	rfl 1305 0			
	rfn 0			
dn H1	РІОТ			
dof 0	wc 210			
dpwr 39	sc O			
dan nny	vs 100			
dmm ccw	hzmm 137.65			
dmf 11905	th 68			
pplvl 51				
pp 28.000				

.

Fig S61. 1H NMR (CDCI3, 500 MHz) of compound 3g

•

Fig S63. DEPT of compound 3g

PHK-92-37 Supplementary Material (ESI) for Organic & Biomolecular Chemistry exp5 **DEP#** This journal is (c) The Royal Society of Chemistry 2010

SAMPLE date May 22 2010 solvent cdc13	DEPT j1xh 140.0 mult arrayed Spectal	ACQUISITION ARRAYS array mult arraydim 3	an a	
ACQUISITION sw 31446.5 at 1.000	temp not used gain 28 spin 0 PROCESSING	i mult 1 0.5 2 1 3 1.5		
bs 16 ss -4 d1 1.000	1b 1.00 fn not used 			· · · · · · · · · · · · · · · · · · ·
ct 1024 TRANSMITTER tn C13	sp -1257.8 rp 127.5 lp 214.0 ai cdc ph			
tpwr 54 pw 11.500 DECOUPLER	REFERENCE rf] 1306.0 rfp 9 PLOT			
dof 0 dpwr 39 dm nny	wc 210 sc 0 vs 100 hzmm 137.65			
dmf 11905 pplvl 51 pp 28.000	th 68			

Fig S64. HSQC of compound 3g

PHK-02-3#Supplementary Material (ESI) for Organic & Biomolecular Chemistry #This.journal is (c) The Royal Society of Chemistry 2010 gHSQC

. - (ppm)

~

.

.

PMK-02-390

Fig S69. DEPT of compound 3h

exbro ne	P1												
SAM date Ju	# Supplen PL# This iou	nentary mal is	/ Material (ESI) fo (c) The Royal Soc	r Organic & Bi cie ty of Chemi s	omolecular	Chemistry							
solvent	cdc13	mult	arraved	arravdia	3								
cemple	undefined		SDECTAL	arrayara	Ŭ								
ampic	TTTON		SPECIAL										
ACQUIS	TITON	remp	not used	1	muit								
SW	31446.5	gain	20	1	0.5								
at	1.000	Spin	0	2	1								
np	62894	1	PROCESSING	3	1.5								
bs	16	16	1.00										
SS	-4	fn	not used				1	1 .					
d1	1.009		SPECTRUM										
nt	1024	wn	28906.3							· · · · · · · · · · · · · · · · · · ·			
ct	1024	sn	-1257 0										
TRANSM	TTTED	50	125 8						1	1			
+ n	C12	12	225.0										
111	013	i P	223.7										
LOT	2512.2	are	cac pn										
tpwr	54	· · · ·	REFERENCE			•							
pw	11.500	LT1	1306.0										
DECOU	PLER	rfp	0										
dn	H1		PLOT	•									
dof	0	wc	210										
dpwr	39	SC	0										
dina	nnv	VS	100										
dinin	ccw	hzma	137.65										
daf	11905	th	68										
	51												
PP''''	28 000												
PP -	20.000							1			l	1	
		_					1				ь. I	1	

SS d1

nt

ni

tn

tof

pw

dn

dof

dm

daa

pwx

date

sw

at

np fb

SS

d1

nt

SW1

n i

tn sfrq

tof

pw

dn

dm

tpwr

gt1 gstab

PMK-02-390# Supplementary Material (ESI) for Organic & Biomolecular Chemstry exp16 gcosyThis journal is (c) The Royal Society of Chemistry 2010

2

1

Fig S74. 13C NMR (CDCI3, 125 MHz) of compound cis-3i

Fig S75. DEPT of compound cis-3i

Supplementary Material (ESI) for Organic & Biomolecular Chemistry #This journal is (c) The Royal Society of Chemistry 2010

exp15 DEPT

	SAMPLE		DEPT	ACQUISITI	ON ARRAYS		· •
date	May 28 2818	jixh	140.8	AFFAY	mult		
solve	nt cdc13	mult	arraved	arravdim	3		And the second
samol	e undefined	S	PECIAL			1. 1. N. N. 1. N. 1.	
AC	DUISITION	teno	not used	1	mult		
SW	31446.5	gain	28	i '	0.5		
at	1.888	soin	· · · · · · · · · · · · · · · · · · ·	ž	1		
00	62894	PR	OCESSING	3	1.5		
he	16	16	1.88	•			
	-4	fn	hase ton				
41	1.888	s	PECTRIM				
at .	2848		28986.3				
C\$	2848	50	-1257.8				
TR	ANGHITTEP	C.D.	138.2				
+=	C13	16	191 8				
tof	2512 2		c nh				
town	54		FEDENCE				
- Chan	11 688	- #1	1284 8		in an ann an Anna an An		
PH D	11.300 EDMIDI ED		1304.0				
	LOUDFLER	110	DI OT				
dof.			FLUI 218				
dove	0	WL.	210				
upwr	33	50	100				
0.	nny	VS	107 00				
	CCW	nzam	137.85				
CHIT :	11202	LN	90	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			
ppIVI	51						
pp	28.000						
							11 1

.

(ppm)

Fig S79. 1H NMR (CDCI3, 500 MHz) of compound trans-3i

Fig S80. 13C NMR (CDCI3, 125 MHz) of compound trans-3i

Fig S81. DEPT of compound trans-3i

exp25 DEPT # Supplement SAMPTIFilis journa date Aug 4 2010 solvent cdcl3 sample undefined ACQUISITION Sw 31446.5 at 1.000 np 62894 bs 16 ss -4 d1 1.000	ntary Material (ESI) for O al is (c) TheOROTyal Society J1xh 140.0 mult arrayed SPECIAL temp 23.0 gain 54 spin 0 PROCESSING lb 1.00 fn not used <u>SPECTRUM</u>	rganic & Biomolecular Che y & COMESTISTON 2 (ARBAYS array mult arraydim 3 i mult 1 0.5 2 1 3 1.5	mistry	1			
nt 1024 ct 1024	wp 28906.3 sp -1257.0				 	~~~~	
TRANSMITTER tn C13	rp 129.7 lp 228.6						
tof 2512.2 tpwr 54	ali cdc ph REFERENCE						
PW 11.500 DECOUPLER	rfl 1303.1						
dn H1	PLOT						
dpwr - 39	sc 0						
dama nny dama ccw	vs 200 hzmm 137.65						
dmf 11905	th 68						
pp 28.000				1 .			

Fig S85. 1H NMR (CDCI3, 500 MHz) of compound 3j

Fig S86. 13C NMR (CDCI3, 125 MHz) of compound 3j

.

•

,

Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010

exp15 DEPT

•			
SAMPLE	DEPT	ACQUISITION ARRAYS	
date Apr 7 2010	j1xh 140.0	array mult	
solvent cdc13	mult arrayed	arraydim 3	
sample undefined	SPECIAL		
ACQUISITION	temp not used	1 MUIT	
SW 31446.5	gain 28	1 0.5	
at 1.000		2 1	
np 62094	IN I OD	5 1.5	
	fn not used		
d1 1.000	SPECTRUM		
nt 2048	wn 28906.3		
ct 2048	so -1257.0		
TRANSMITTER	rp 48.8		
tn C13	1p 201.1		
tof 2512.2	a'i cdc ph		
tpwr 54	REFERENCE		
pw 11.500	rfl 1306.9		
DECOUPLER	rfp 0		
dn H1	PLOT		
dof U	WC 210		
apwr 39	SC 0		
dan niy	vs 100		
dmf 11905	+b 7		
nnlvl 51			
nn 25.600			
PP 201000			

Fig S88. 13C of compound 3j (Extracted from DEPT)

· .

-130.068 -128.709 -125.159

116.859

Supplementary Material (ESI) for Organic & Biomolecular Chemistry $PMK-02-3\#_0$ This journal is (c) The Royal Society of Chemistry 2010

exp15 DEPT

SAMP	LE	DEPT		ACQUISITION	ARRAYS
date Apr	7 2010	_i1xh	140.0	array	mult
solvent	cdc13	mult	arrayed	arraydim	3
sample u	ndefined		SPECIAL	•	
ACQUISI	TION	temp	not used	i	mult
SW	31446.5	gair	ı 28	1	0.5
at	1.000	spir	n 0	2	1
np	62894	•	PROCESSING	3	1.5
bs	16	1b	1.00		
S S	-4	fn	not used		
d1	1.000		SPECTRUM		
nt	2048	wp	28906.3		
ct	2048	sp	-1257.0		
TRANSMITTER		rp	48.8		
tn	C13	lp	201.1		
tof	2512.2	ai	cdc ph		
tpwr	54		REFERENCE		
pw	11.500	rf1	1306.9		
DECOUP	LER	rfp	0		
dn	H1	•	PLOT		
dof	0	wc	210		
dpwr	39	SC	0		
dina	nny	vs	300		
daa	ccw	hzm	137.65		
dmf	11905	th	7		
pplvl	51				
pp	25.600				

45.648

,

-25.443 -21.702

Fig S89. 13C of compound 3j (Extracted from DEPT, Expand.) ial (ESI) for Organic & Biomolecular Chemistry Royal Society of Chemistry 2010

PMK-02-3# Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010 DEPT

SA	MPLE		DEPT	ACQUISITION	ARRAYS
date A	pr 7 2010	j1xh	140.0	array	mult
solvent	cdc13	mult	arraved	arraydim	3
sample	undefined		SPECIAL	•	
ACOUI	SITION	temp	not used	i	mult
SW	31446.5	gair	28	1	0.5
at	1.000	spir	0	2	1
np	62894	•	PROCESSING	3	1.5
bs	16	1b	1.00		
SS	-4	fn	not used		
d1	1.000		SPECTRUM		
nt	2048	WD	1759.1		
ct	2048	Sp	8797.5		
TRANS	MITTER	rp	48.8		
tn	C13	10	201.1		
tof	2512.2	a'i	cdc ph		
towr	54		REFERENCE		
nw.	11.500	rf]	1306.9		
DECO	UPLER	rfp	0		
dn	H1		PLOT		
dof	0	wc	210		
dowr	39	SC	0		
dm	nnv	vs	500		
daa	CCW	hzma	8.38		
daf	11905	th	7		
pplvl	51				
00	25.600				
F F					

Т Т T ppm

,

Supplementary Material (ESI) for Organic & Biomolecular Chemistry PMK-02-3f this journal is (c) The Royal Society of Chemistry 2010

exp18 gHSQC SAMPLE FLAGS ACQUISITION ARRAYS date Apr 7 2010 hs n array phase arraydim 256 cdcl3 sspul solvent У sample undefined PFGflg ACQUISITION hsglvľ 1003 phase SPECIAL sw 4490.3 1 not used 2 at 0.228 temp 2 np fb 20 2048 gain 0 not used spin GRADIENTS SS 32 d1 1.000 gzlvl1 1003 0.002000 nt 8 gt1 ğz1v13 2D ACQUISITION w1 21367.5 505 0.001000 sw1 gt3 gstab 0.000500 128 ni arrayed F2 PROCESSING phase gf TRANSMITTER 0.105 H1 not used tn gfs 499.829 2048 fn sfrq F1 PROCESSING tof -250.0 tpwr 58 gf1 0.006 F2 pw 11.100 gfs1 not used (ppm) DECOUPLER proc1 -10 C13 2048 dn fn1 -2515.2 DISPLAY dof dm nny sp 482.0 3455.5 dmm ccp wp 2dmf 32258 sp1 2085.5 36 wp1 14961.4 dpwr pwx1v1 52 rf1 716.8 14.300 rfp rfl1 pwx 703.3 HSQC 4002.6 j1xh 140.0 2728.5 rfp1 PLOT nullflg У 3mult ž wc 150.0 SC wc2 116.2 sc2 Ω vs 100 th 4 ai cdc ph 4-8 Ο 5-6-7-130 120 110 100 90 80 70 60 50 20 40 30 • F1 (ppm)

Fig S93. 1H NMR (CDCl3, 500 MHz) of compound 3k

SAMPLE date Aug 7 2010 solvent cdc13 sample undefined ACQUISITION sw 31446.5 at 1.000 np 62894 bs 16 ss -4 d1 1.000	DEPT j1xh 140.0 mult arrayed SPECIAL temp 23.0 gain 30 spin 0 PROCESSING lb 1.00 fn not used SPECTRUM	ACQUISITION ARRAYS array mult arraydim 3 i mult 1 0.5 2 1 3 1.5				
nt 2048 ct 2048 TRANSMITTER tn C13 tof 2512.2 tpwr 54 pw 11.500 DECOUPLER dn H1 dof 0 dpwr 39 dm nny dmm ccw dmf 11905 pplvl 51 pp 28.000	wp 28906.3 sp -1257.0 rp 129.3 lp 215.7 ai cdc REFERENCE rfl rfp 0 PLOT 0 vc 210 sc 0 vs 150 hzmm 137.65 th 68			· ·		
			 <u> </u>		LL L	

Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010

C13 spectrum of

Fig S101. DEPT of compound 3I

PMK-02-335 # Supplementary Material (ESI) for Organic & Biomolecular Chemistry e×p15 D∯This journal is (c) The Royal Society of Chemistry 2010

.

ACQUISITION temp 23.0 i ACQUISITION temp 23.0 i v 31446.5 gain 24 1 t 1.000 spin 0 2 b 62894 PROCESSING 3 t 1.00	0.5 1 1.5		
Si2 wp 28906.3 t Si2 sp -1257.0 TRANSMITTER rp 122.7 n C13 lp 233.3 of 2512.2 a1 cdc ph owr S4 REFERENCE w 11.500 rfl 1305.0 DECOUPLER rfp 0 H PLOT 0 off 0 wc 210 0 0 off 0 wc 200 0 0 137.65 off 11905 th 68 0 0 0 0			

Fig S105. 1H NMR (acetone-d6, 500 MHz) of compound 3m

. Fig S106. 13C NMR (acetone-d6, 125 MHz) of compound 3m

Fig S107. 1H NMR (acetone-d6, 500 MHz) of compound 3m

Fig S108. DEPT of compound 3m

Fig S109. Another DEPT of compound 3m

PMK-02-393-oxidized

.

exp35	#Rupplementa # This journal i	ary Ma s (c) T	terial (ESI) for Org The Royal Society	anic & Biomole of Chemistry 20	cular Chemistr 10 ARRAYS	у							
date solvent	Aug 10 2010 Acetone	j1xh mult	140.0 arrayed	array arraydim	mult 3								
ACQU	JISITION	temp	o not used	1	mult								
at	1.000	spir		2									
bs	16	1b	1.00	3	1.5								
d1	1.000		SPECTRUM				 l	L	l			.	
nt ct	1024	wp sp	31445.6 -1189.1										
tn TRAN	C13	rp 1p	-128.5										
tof tpwr	2512.2 54	ai	cdc ph REFERENCE										
pw DEC	11.500 COUPLER	rf) rfp	1190.0 0								c		
dn dof	H1 0	wc.	PLOT 210										
dpwr de	39 nnv	SC VS	0										
dam	CCW	hzman th	149.74										
pplvl	51 28 000		00										
44	28.000							1	I.	1		.1	

.

Fig S112. NOESY of compound 3m

Fig S114. 13C NMR (acetone-d6, 125 MHz) of compound 3n

.Fig S115. 13C NMR (acetone-d6, 125 MHz) of compound 3n (Expand).

•

Fig S120. 1H NMR (acetone-d6, 500 MHz) of compound 3o

Fig S121. 13C NMR (acetone-d6, 125 MHz) of compound 3o

Supplementary Material (ESI) for Organic & Biomolecular Chemistry PMK-# 2ាអន់ផ្លាះជាអន់រថ្ម(ជុះ ៥៣ Royal Society of Chemistry 2010

exp14 s2pul

C A	MDIF	DEC	A VT
date A	un 25 2010	dfra	499.829
solvent	cdc13	dn	HI
file	exp	dpwr	39
ACQUI	SITION	dof	0
strq	125.696	dan	УУУ
τn	C13		1100E
ai nn	1.000 62894	dsen	TTAN2
sw	31446.5	dres	1.0
fb	not used	homo	 n
bs	16	PROC	ESSING
SS	2	16	1.00
tpwr	54	wtfile	
pw	3.0	proc	ft
	2.000	TN Doth	not used
nt	2312.2	matn	r
ct	1024	werr	react
alock	1024 V	wexp	procolot
gain	not used	wbs	testsn
FL	AGS	wnt	
11	. n		
in	n		
dp	У		
ns	nn		
6D 012	3141 0		
wn	1256 2		
vs	750		
sc	Ŭ		
wc	210		
hzmm	5.98		
is	500.00		
rf1	5593.9		
гтр	3750.4		
ine	100 000		
nna chr	nh		
	P.1		

34

33

32

31

Fig S122. 13C NMR (acetone-d6, 125 MHz) of compound 3o (Expand).

29

28

27

30

1.....

ppm

26

Fig S125. COSY of compound 3o

Fig S127. HPLC analysis of racemic compound 3a. (For comparison, Table 2, entry 1)

Report produced on 2010/3/19 at 上午 11:00:51 by Put your name here

2010/3/19 ¤W¤È 10:27:29 Flow set to 1.00 at 0.00 minutes 2010/3/19 ¤W¤È 11:00:01 Run stopped by operator

PEAK REPORT

#	begin	end	area	percent	maximum	time	begins as	name
1	9.15	10.78	2146	49.9	111.14	9.60	Baseline	
2	11.34	13.03	2151	50.1	108.96	11.78	Baseline	

Fig S128. HPLC analysis of compound 3a obtained. (Table 2, entry 1)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010

Report produced on 2010/3/19 at 上午 11:44:07 by Put your name here

2010/3/19 ¤W¤È 11:03:54 Flow set to 1.00 at 0.00 minutes 2010/3/19 ¤W¤È 11:43:43 Run stopped by operator

PEAK REPORT

#	begin	end	area	percent	maximum	time	begins as	name
1	11.16	12.90	4041	100.0	172.09	11.60	Baseline	

Fig S129. HPLC analysis of the mixture of racemic and chiral compound 3a obtained.

(For comparison, Table 2, entry 1) # Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010

Report produced on 2010/3/19 at 下午 01:26:19 by Put your name here

Fig S130. HPLC analysis of racemic compound 3b. (For comparison, Table 2, entry 2) # Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010 Peak Report PMK-02-364-racemate-colm-OD-6%ipa/Hex Report produced on 2010/7/16 at 下午 05:44:16 by Put your name here 150 88.2 3708 Detector Reading 100

Peak #	Begin	End	Peak Area	Maximum	Time	Area %	Begins as	
1	26.55	31.12	5008	77.07	27.89	50.7	Baseline	
2	36.14	41.26	4874	68.42	37.08	49.3	Baseline	

10

20

Time in minutes

30

40

50

Fig S131. HPLC analysis of compound 3b obtained. (Table 2, entry 2)

Fig S132. HPLC analysis of the mixture of racemic and chiral compound 3b obtained. (For comparison, Table 2, entry 2) # Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This joycal is (c) The Royal Society of Chemistry 2010 Peak Report

PMK-02-364-Chiral+racemate-colm-OD-6%ipa/Hex

Report produced on 2010/7/16 at 下午 05:46:45 by Put your name here

Fig S133. HPLC analysis of racemic compound 3c.

Supplemental Materia (EST ablegatic & Bib Molecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-365-racemate-colm-OD-10%ipa/Hex

Report produced on 2010/7/17 at 下午 04:27:56 by Put your name here

Fig S134. HPLC analysis of compound 3c obtained. (Table 2, entry 3)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010 Peak Report

PMK-02-365-chiral-colm-OD-10%ipa/Hex

Report produced on 2010/7/17 at 下午 04:26:18 by Put your name here

Fig S135. HPLC analysis of the mixture of racemic and chiral compound 3c obtained.

(For comparison, Table 2, entry 3) # Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010

Chromatogram Report PMK-02-365-chiral+racemate-colm-OD-10%ipa/Hex

Report produced on 2010/7/17 at 下午 04:23:12 by Put your name here

2010/7/17 ¤U¤È 03:42:50 Flow set to 1.00 at 0.00 minutes 2010/7/17 ¤U¤È 04:22:05 Run stopped by operator

PEAK REPORT

#	begin	end	area	percent	maximum	time	begins as	name
1	20.00	24.72	17725	83.5	283.50	20.87	Baseline	
2	26.22	29.42	3404	16.0	72.23	27.48	Baseline	

Fig S137. HPLC analysis of compound 3d obtained. (Table 2, entry 4)

Time in minutes

Area %

Begins as

Time

1 14.45 16.32 6140 183.38 14.93 100.0 Baseline

Maximum

Peak Area

Peak #

Begin

End

Fig S138. HPLC analysis of the mixture of racemic and chiral compound 3d obtained.

(For companies and the second second

Fig S139. HPLC analysis of racemic compound cis-3e. (For comparison, Table 2, entry 5) # Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This joycal is (c) The Royal Society of Chemistry 2010 Peak Report PMK-02-371F1-racemate-colm-OD-6%ipa/Hex Report produced on 2010/7/16 at 下午 05:42:02 by Put your name here

Fig S140. HPLC analysis of compound cis-3e obtained. (Table 2, entry 5)

Fig S141. HPLC analysis of the mixture of racemic and chiral compound cis-3e obtained.

Fig S142. HPLC analysis of racemic compound trans-3e.

Peak Report

PMK-02-371F2-racemate-colm-IA-5%ipa/hex

Report produced on 2010/7/26 at 下午 06:40:23 by Put your name here

Fig S143. HPLC analysis of compound trans-3e obtained. (Table 2, entry 5)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010 Peak Report

PMK-02-371F2-chiral-colm-IA-5%ipa/hex

Report produced on 2010/7/26 at 下午 06:38:00 by Put your name here

Fig S144. HPLC analysis of the mixture of racemic and chiral compound trans-3e obtained. (For comparison, Table 2, entry 5) # Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010 Peak Report PMK-02-371F2-chiral+racemate-colm-IA-5%ipa/hex

Report produced on 2010/7/26 at 下午 06:33:44 by Put your name here

Fig S145. HPLC analysis of racemic compound 3f.(For comparison, Table 2, entry 6)

Fig S146. HPLC analysis of compound 3f obtained. (Table 2, entry 6)

Fig S147. HPLC analysis of the mixture of racemic and chiral compound 3f obtained.

(For comparison, Table 2, entry 6) # Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-375-chiral+racemate-colm-IA-6%ipa/Hex

Report produced on 2010/7/21 at 下午 03:31:34 by Put your name here

Fig S148. HPLC analysis of racemic compound 3g.

(For comparison, Table 2, entry 7) # Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010

Fig S149. HPLC analysis of compound 3g obtained. (Table 2, entry 7)

Report produced on 2010/7/21 at 下午 03:35:10 by Put your name here

Fig S150. HPLC analysis of the mixture of racemic and chiral compound 3g obtained.

Fig S151. HPLC analysis of racemic compound 3h.

Report produced on 2010/7/26 at 下午 03:19:53 by Put your name here

Fig S152. HPLC analysis of compound 3h obtained. (Table 2, entry 8)

Fig S153. HPLC analysis of the mixture of racemic and chiral compound 3h obtained.

	Degin	LIIG	I cult Alcu	Maximani	11110	Alcu /	Degino uo
1	16.57	18.87	2367	91.32	17.18	24.8	Baseline
2	25.51	29.25	7195	152.92	26.56	75.2	Baseline

Fig S154. HPLC analysis of racemic compound cis-3i.

Report produced on 2010/7/28 at 下午 01:23:34 by Put your name here

Fig S155. Fig S99. HPLC analysis of compound cis-3i obtained. (Table 2, entry 9)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010

Report produced on 2010/7/28 at 下午 01:21:49 by Put your name here

Fig S156. HPLC analysis of the mixture of racemic and chiral compound cis-3i obtained.

(For comparison, Table 2, entry 9) # Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010

This joycal is (c) The Royal Society of Chemistry 2010 Peak Report PMK-02-377-chiral+racemate-2%ipa/Hex

Report produced on 2010/7/28 at 下午 01:48:22 by Put your name here

Fig S157. HPLC analysis of the racemic compound trans-3i. (For comparison, Table 2, entry 9) # Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This is (c) The Royal Society of Chemistry 2010 Peak Report PMK-02-377-F2-racemate-colm-IB-3%ipa-hex Report produced on 2010/9/15 at 下午 06:29:08 by Put your name here

Fig S158. HPLC analysis of compound trans-3i obtained. (Table 2, entry 9)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010 Peak Report PMK-02-377-F2-chiral-colm-IB-3%ipa-hex

Report produced on 2010/9/15 at 下午 06:28:04 by Put your name here

Fig S159. HPLC analysis of the mixture of racemic and chiral compound trans-3i obtained.

Fig S160. HPLC analysis of racemic compound 3j.

Supplementation Estable Gailes Hive Jebular Chemistry # This joycal is (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-360-racemate-colm- OD-8%ipa/hex

Report produced on 2010/7/16 at 上午 10:57:18 by Put your name here

Fig S161. HPLC analysis of compound 3j obtained. (Table 2, entry 10)

Fig S162. HPLC analysis of the mixture of racemic and chiral compound 3j obtained.

(For comparison, Table 2, entry 10)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-360-Chiral+racemate-colm- OD-8%ipa/hex

Report produced on 2010/7/16 at 上午 10:58:42 by Put your name here

Fig S163. HPLC analysis of racemic compound 3k.

(For comparison, Table 2, entry 11) # Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010

Report produced on 2010/8/14 at 下午 03:54:07 by Put your name here

Fig S164. HPLC analysis of compound 3k obtained. (Table 2, entry 11)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010 Peak Report PMK-02-394-chiral-colm-IA-5%ipa/Hex

Report produced on 2010/8/14 at 下午 03:52:11 by Put your name here

Fig S165. HPLC analysis of the mixture of racemic and chiral compound 3k obtained.

Fig S166. HPLC analysis of racemic compound 3I. (For comparison, Table 2, entry 12)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This joined is (c) The Royal Society of Chemistry 2010 Peak Report PMK-02-395-racemate-colm-IA-5%ipa/Hex Report produced on 2010/8/14 at 下午 03:48:15 by Put your name here

Fig S167. HPLC analysis of compound 3I obtained. (Table 2, entry 12)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2010 Peak Report

PMK-02-395-chiral-colm-IA-5%ipa/Hex

Report produced on 2010/8/14 at 下午 03:45:14 by Put your name here

Fig S168. HPLC analysis of the mixture of racemic and chiral compound 3I obtained.

(For comparison, Table 2, entry 12)

Report produced on 2010/8/14 at 下午 03:42:40 by Put your name here

Fig S169. HPLC analysis of compound 3m obtained from cat (S)-I. (Table 2, entry 13)

Fig S170. HPLC analysis of compound 3m obtained from cat (R)-I.

 Fig S171. HPLC analysis of the mixture of (+)- and (-)-3m.

 (For comparison, Table 2, entry 13)

 # Supplementary Material (ESI) for Organic & Biomolecular Chemistry

 # This journal is (c) The Royal Society of Chemistry 2010

 Peak Report

 PMK-02-393+405-chiral-(S+R-Enatiomer)-colm-IA-8%ipa/Hex

 Report produced on 2010/9/7 at 下午 01:34:43 by Put your name here

Fig S172. HPLC analysis of compound 3n obtained from cat (S)-I. (Table 2, entry 14)

Fig S173. HPLC analysis of compound 3n obtained from cat (R)-I. (Table 2, entry 14)

 Fig S174. HPLC analysis of the mixture of (+)- and (-)-3n.

 (For comparison, Table 2, entry 14)

 # Supplementary Material (ESI) for Organic & Biomolecular Chemistry

 # This journal is (c) The Royal Society of Chemistry 2010

 Peak Report

 PMK-02-404+407-(S+R-enatiomer)chiral-colm-IA-15%ipa/Hex

 Report produced on 2010/9/8 at 下午 03:35:18 by Put your name here

Fig S175. HPLC analysis of compound 30 obtained from cat (S)-I. (Table 2, entry 15)

Fig S176. HPLC analysis of compound 30 obtained from cat (R)-I.

Fig S177. HPLC analysis of the mixture of (+)- and (-)-30. (For comparison, Table 2, entry 15) # Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This join al is (c) The Royal Society of Chemistry 2010 Peak Report PMK-02-406+408-(S+R-enatiomer)chiral-colm-IA-15%ipa/Hex Report produced on 2010/9/8 at 下午 12:11:30 by Put your name here

