Enantioselective Organocatalytic Domino Michael-Acetalization-Henry Reactions of 2-Hydroxynitrostyrene and Aldehyde for the Synthesis of Tetrahydro-6H-benzo[c]chromenones

Bor-Cherng Hong,* Prakash Kotame, and Ju-Hsiou Liao
Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi, 621, Taiwan, R.O.C.

chebch@ccu.edu.tw

SUPPORTING INFORMATION:

Contents: (1) Experimental procedures and characterization data for compounds 3a-30.
(2) Spectra data for compounds 3a-30.
(3) Ee analysis by HPLC with chiral column, in Table 2.

General Procedure. All solvents were reagent grade. L-proline ($99+\%$) was purchased from Bachem. Other chemicals were purchased from Aldrich or Acros Chemical Co. Reactions were normally carried out under argon atmosphere in glassware. Merck silica gel 60 (particle size $0.04-0.063 \mathrm{~mm}$) was employed for flash chromatography. Melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were obtained in CDCl_{3} unless otherwise noted at 400 MHz (Bruker DPX-400) or 500 MHz (Varian-Unity INOVA-500). ${ }^{13} \mathrm{C}$ NMR spectra were obtained at 100 MHz or 125 MHz . E.e. values were measured by HPLC on a chiral column (chiralpak IA or chiralcel OD-H, 0.46 cm ID x 25 cm , particle size 5μ) by elution with IPA-hexane. The flow rate of the indicated elution solvent is maintained at $1 \mathrm{~mL} / \mathrm{min}$, and the retention time of a compound is recorded accordingly. HPLC was equipped with the ultraviolet and refractive index detectors. The melting point was recorded on a melting point apparatus (MPA100 - Automated melting point system, Stanford Research Systems, Inc.) and is uncorrected. The optical rotation values were recorded with a Jasco-P-2000 digital polarimeter.

Representative procedure for the preparation of compound 3a in $\mathbf{9 5 \%}$ EtOH (Table 2, entry 1).

To a solution of trans-2-hydroxy- β-nitrostyrene ($\mathbf{1 a}, 50 \mathrm{mg}, 0.3 \mathrm{mmol}$), catalyst $\mathbf{I}(20 \mathrm{mg}, 0.06$ mmol) and benzoic acid ($7.3 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $95 \% \mathrm{EtOH}(1.5 \mathrm{~mL})$ was added a solution of butyraldehyde ($\mathbf{2 a}, 131 \mathrm{mg}, 1.82 \mathrm{mmol}$) in $95 \% \mathrm{EtOH}(1.5 \mathrm{~mL})$. The resulting solution was stirred at $15{ }^{\circ} \mathrm{C}$ for 48 h until the completion of reaction, monitored by TLC. The resulting mixture was extracted with EtOAc (20 mL), washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 12% EtOAc-hexane ($R_{f}=0.35$ for the hemiacetal, in 20% EtOAc-hexane) to give the hemiacetal as a colorless oil ($67 \mathrm{mg}, 93 \%$ yield). A solution of the hemiacetal ($55 \mathrm{mg}, 0.23 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$) and PCC ($150 \mathrm{mg}, 0.69 \mathrm{mmol}$) was stirred at ambient temperature for 20h until the completion of reaction, monitored by TLC. The reaction mixture was diluted with EtOAc (25 mL), and filtered through Celite. The filtrate was concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 10% EtOAc-hexane ($R_{f}=0.45$ for cis-3a, $R_{f}=0.44$ for trans-3a in 20\% EtOAc-hexane) to give 3a as a oil (cis-trans mixture $92: 8,45 \mathrm{mg}, 82 \%$ yield). The pure cis-3a was obtained as a white solid ($\mathrm{mp} .91-93{ }^{\circ} \mathrm{C}$) by further purification. For cis-3a: $[\alpha]_{\mathrm{D}}{ }^{23}-80\left(\mathrm{c} 1.5 \mathrm{CHCl}_{3}\right.$); IR (neat): 2969, 2880, 1767, 1554, 1378, 1151. 1095, $762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 2 \mathrm{H}), 4.57$ (dd, $J=12.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $4.24(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dt}, J=10.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=$ $12.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 168.8(\mathrm{C}), 150.8(\mathrm{C}), 130.1(\mathrm{CH}), 128.1(\mathrm{CH}), 124.9(\mathrm{CH}), 122.6(\mathrm{C}), 117.3(\mathrm{CH})$, $75.4\left(\mathrm{CH}_{2}\right), 43.3(\mathrm{CH}), 37.3(\mathrm{CH}), 19.9\left(\mathrm{CH}_{2}\right), 11.9\left(\mathrm{CH}_{3}\right)$; MS (m / z, relative intensity): $235\left(\mathrm{M}^{+}, 23\right)$, 188 (100), 173 (39), $160(66), 145(44), 131$ (63), 91 (64); exact mass calculate for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$: 235.0845; found (M^{+}): 235.0842. For trans-3a: $[\alpha]_{\mathrm{D}}{ }^{23}-44.4$ (c $2 \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ MHz): $\delta 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (ddd, $J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.07 (dd, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.51-4.42 (m, 2 H), 3.73-3.70 (m, 1 H), 2.79-2.75 (m, 1 H$), 1.63-1.49$ $(\mathrm{m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 168.0(\mathrm{C}), 150.7(\mathrm{C}), 130.2(\mathrm{CH})$, $129.2(\mathrm{CH}), 125.3(\mathrm{CH}), 118.7(\mathrm{C}), 117.2(\mathrm{CH}), 78.1\left(\mathrm{CH}_{2}\right), 44.3(\mathrm{CH}), 39.2(\mathrm{CH}), 23.6\left(\mathrm{CH}_{2}\right), 11.4$ $\left(\mathrm{CH}_{3}\right)$.

Representative procedure for the preparation of compound 3a on water (Table 2, entry 1).

To a solution of trans-2-hydroxy- β-nitrostyrene ($\mathbf{1 a}, 50 \mathrm{mg}, 0.3 \mathrm{mmol}$), catalyst $\mathbf{I}(20 \mathrm{mg}, 0.06$ $\mathrm{mmol})$ and acetic acid ($4 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added a solution of butyraldehyde ($\mathbf{2 a}, 131 \mathrm{mg}, 1.82 \mathrm{mmol}$). The resulting solution was stirred at $30^{\circ} \mathrm{C}$ for 1 h until the completion of reaction, monitored by TLC. The resulting mixture was extracted with EtOAc (20 mL), washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 12% EtOAc-hexane ($R_{f}=0.35$ for the hemiacetal, in 20% EtOAc-hexane) to give the hemiacetal as a colorless oil ($63 \mathrm{mg}, 88 \%$ yield). The subsequent oxidation and the purification procedure are the same as the above reaction in 95% EtOH.

Figure S1. ORTEP and Stereo plots for X-ray crystal structures of (-)-cis-3a.
CCDC 794373 contains the supplementary crystallographic data for (-)-cis-3a. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

3b

cis-3b: white solid; mp $123-126{ }^{\circ} \mathrm{C}, R_{f}=0.48$ for cis-3b in 20% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{23}-42$ (c $1.0 \mathrm{CHCl}_{3}$). IR (neat): 2962, 2926, 1771, 1555, 1413, 1378, 1147. 1096, $818 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 7.45(\mathrm{dd}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ (dd, $J=12.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.31-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dt}, J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=12.8$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 125 MHz): $\delta 168.0(\mathrm{C}), 150.0(\mathrm{C}), 133.2(\mathrm{CH}), 130.9(\mathrm{CH}), 124.7(\mathrm{C}), 119.1(\mathrm{CH}), 117.5(\mathrm{C}), 74.9$ $\left(\mathrm{CH}_{2}\right), 43.0(\mathrm{CH}), 37.0(\mathrm{CH}), 19.9\left(\mathrm{CH}_{2}\right), 11.9\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}\left(\mathrm{m} / \mathrm{z}\right.$, relative intensity): $315\left(\mathrm{M}^{+}+3,55\right)$, $313\left(\mathrm{M}^{+}+1,56\right), 268$ (100), 266 (99), 211 (33), 209 (32), 145 (41), 118 (42), 91 (15), 71 (50), 57 (70); exact mass calculate for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrNO}_{4}\left(\mathrm{M}^{+}\right): 312.9950$; found $\left(\mathrm{M}^{+}\right): 312.9947$.

Figure S1. ORTEP and Stereo plots for X-ray crystal structures of (-)-cis-3b.
CCDC 794374 contains the supplementary crystallographic data for (-)-cis-3b. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

cis-3c: yellow solid; mp $85-87^{\circ} \mathrm{C}, R_{f}=0.36$ for cis-3c in 20\% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{23}-45$ (c 1.6 CHCl_{3}). IR (neat): 2964, 2929, 1764, 1555, 1379, 1208, 1034, $817 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.00(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=$ $12.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=12.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dt}, J=10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 2.78-2.76 (m, 1 H$), 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 169.0(\mathrm{C}), 156.3(\mathrm{C}), 144.6(\mathrm{C}), 123.5(\mathrm{C}), 118.2(\mathrm{CH}), 115.3(\mathrm{CH}), 113.0$ $(\mathrm{CH}), 75.3\left(\mathrm{CH}_{2}\right), 55.7\left(\mathrm{CH}_{3}\right), 43.3(\mathrm{CH}), 37.5(\mathrm{CH}), 19.9\left(\mathrm{CH}_{2}\right), 11.9\left(\mathrm{CH}_{3}\right)$; MS (m / z, relative intensity): $265\left(\mathrm{M}^{+}, 100\right), 218$ (76), 204 (19), 189 (18), 175 (41), 161 (45), 149 (38), 121 (44), 91 (31), 77 (99), 55 (17); exact mass calculate for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right): 265.0950$; found $\left(\mathrm{M}^{+}\right): 265.0948$.

3d

cis-3d: white solid; mp $67-69^{\circ} \mathrm{C}, R_{f}=0.50$ for cis-3d in 20% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{24}-85$ (c 1.5 CHCl_{3}). IR (neat): 2957, 2929, 2860, 1769, 1556, 1377, $1102.762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 3 \mathrm{H}), 4.58(\mathrm{dd}, J=12.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=12.5,10.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.85(\mathrm{dt}, J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=12.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 1 \mathrm{H})$, 1.51-1.44 (m, 3 H), 1.43-1.34 (m, 4 H$), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ $168.9(\mathrm{C}), 150.8(\mathrm{C}), 130.1(\mathrm{CH}), 128.0(\mathrm{CH}), 124.9(\mathrm{CH}), 122.6(\mathrm{C}), 117.3(\mathrm{CH}), 75.5\left(\mathrm{CH}_{2}\right), 41.6$ $(\mathrm{CH}), 37.6(\mathrm{CH}), 31.4\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$; MS (m / z, relative intensity): $277\left(\mathrm{M}^{+}, 7\right), 161(21), 160(100), 131$ (19), 107 (20), 91 (16), 77 (7), 55 (13); exact mass calculate for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right): 277.1314$; found $\left(\mathrm{M}^{+}\right)$: 277.1315 .

cis-3e: colorless oil; $R_{f}=0.65$ for cis-3e in 20% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{24}-31$ (c $1.75 \mathrm{CHCl}_{3}$). IR (neat): 2956, 2927, 2859, 1773, 1556, 1377, 1105. 1072, $821 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ 7.45 (dd, $J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=12.9$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=12.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dt}, J=10.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=12.9,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.02-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 168.2(\mathrm{C}), 150.0(\mathrm{C}), 133.2(\mathrm{CH}), 130.9(\mathrm{CH}), 124.7(\mathrm{C}), 119.1(\mathrm{CH})$, $117.5(\mathrm{C}), 75.0\left(\mathrm{CH}_{2}\right), 41.4(\mathrm{CH}), 37.3(\mathrm{CH}), 31.4\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 13.9$ $\left(\mathrm{CH}_{3}\right)$; MS (m / z, relative intensity): $357\left(\mathrm{M}^{+}+2,31\right.$), $355\left(\mathrm{M}^{+}, 32\right), 297$ (7), 295 (13), 254 (18), 252 (18), 240 (99), 238 (100), 175(22), 161 (22), 149 (20), 118 (22), 105 (23), 97 (20), 91 (24), 85 (27), 71 (43) 57 (51) 55 (46); exact mass calculate for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrNO}_{4}\left(\mathrm{M}^{+}\right): 355.0419$; found (M^{+}): 355.0416.
trans-3e: colorless oil; $R_{f}=0.60$ for trans-3e in 20% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{24}-76.6\left(\mathrm{c} 1.5 \mathrm{CHCl}_{3}\right)$. IR (neat): $2956,2927,2859,1773,1556,1377,1105.1072,821 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $7.46(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.43(\mathrm{~m}, 2$ H), $3.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.83(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.20(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.4(\mathrm{C}), 149.9(\mathrm{C}), 133.3(\mathrm{CH}), 131.9(\mathrm{CH}), 120.9$ (C), $119.0(\mathrm{CH}), 117.8(\mathrm{C}), 76.7\left(\mathrm{CH}_{2}\right), 42.4(\mathrm{CH}), 39.2(\mathrm{CH}), 31.0\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right)$, $22.3\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$.

cis-3f: white solid; mp $96-98{ }^{\circ} \mathrm{C}, R_{f}=0.36$ for cis-3f in 20\% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{23}-35$ (c 1.0 CHCl_{3}). IR (neat): $2962,2925,1769,1555,1379,1119,1099.925,798 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ MHz): $\delta 7.33$ (td, $J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 3 \mathrm{H}), 5.85$ (dddd, $J=17.0,10.1,8.8,5.0, \mathrm{~Hz}, 1$ H), $5.26(\mathrm{~s}, 1 \mathrm{H}), 5.24-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=12.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=12.4,10.6 \mathrm{~Hz}, 1$ H), $3.85(\mathrm{dt}, J=10.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dt}, J=9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{ddd}, J=10.1,8.8,4.6 \mathrm{~Hz}, 1$ H), $2.26(\mathrm{dt}, J=17.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 168.3(\mathrm{C}), 150.8(\mathrm{C}), 133.3(\mathrm{CH})$, $130.2(\mathrm{CH}), 128.2(\mathrm{CH}), 125.0(\mathrm{CH}), 122.4(\mathrm{C}), 119.0\left(\mathrm{CH}_{2}\right), 117.4(\mathrm{CH}), 75.1\left(\mathrm{CH}_{2}\right), 41.3(\mathrm{CH})$, $36.8(\mathrm{CH}), 30.8\left(\mathrm{CH}_{2}\right)$; MS (m / z, relative intensity): $247\left(\mathrm{M}^{+}, 6\right), 217(42), 200(90), 199(28), 186$ (32), 185 (55), 172 (34), 144 (41), 131 (100), 107 (52), 77 (29); exact mass calculate for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}$ $\left(\mathrm{M}^{+}\right): 247.0845$; found $\left(\mathrm{M}^{+}\right): 247.0845$.

cis-3g: colorless oil; $R_{f}=0.53$ for cis-3g in 20\% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{23}-51$ (c $2.8 \mathrm{CHCl}_{3}$); IR (neat): 2961, 2925, 1766, 1555, 1377, 1017, $797 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.37-7.27(\mathrm{~m}$, 4 H), 7.23-7.03 (m, 5 H$), 4.72(\mathrm{dd}, ~ J=12.4,4.4, \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (dd, $J=12.4,10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=14.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dt}, J=10.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=$ $14.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 168.4$ (C), 150.8 (C), $136.9(\mathrm{C}), 130.2(\mathrm{CH})$, $129.1(2 \mathrm{CH}), 128.6(2 \mathrm{CH}), 128.2(\mathrm{CH}), 127.3(\mathrm{CH}), 125.0(\mathrm{CH}), 122.6(\mathrm{C}), 117.4(\mathrm{CH}), 75.3\left(\mathrm{CH}_{2}\right)$, $43.5(\mathrm{CH}), 36.6(\mathrm{CH}), 32.4\left(\mathrm{CH}_{2}\right)$; MS (m / z, relative intensity): $297\left(\mathrm{M}^{+}, 9\right), 250(18), 161(23), 131$ (41), 107 (12), 91 (100), 71 (19), 57 (24); exact mass calculate for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$: 297.1001; found $\left(\mathrm{M}^{+}\right): 297.1001$.

cis-3h: white solid; $R_{f}=0.30$ for cis-3h in 20% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{23}-81.9$ (c $2.0 \mathrm{CHCl}_{3}$); IR (neat): 2956, 2862, 1769, 1588, 1376, 1103. 1010, $762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.03$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=12.3,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23(\mathrm{dd}, J=12.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dt}, J=10.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{td}, J=7.3$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta 169.1(\mathrm{C}), 161.2(\mathrm{C}), 152.0(\mathrm{C}), 129.0(\mathrm{CH}), 114.6(\mathrm{C}), 111.0(\mathrm{CH}), 103.2(\mathrm{CH}), 76.0$ $\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{CH}_{3}\right), 43.8(\mathrm{CH}), 37.1(\mathrm{CH}), 20.3\left(\mathrm{CH}_{2}\right), 12.2\left(\mathrm{CH}_{3}\right) ;$ MS (m / z, relative intensity): 265 $\left(\mathrm{M}^{+}, 32\right), 218(44), 205(33), 203(40), 190(100), 175(22), 162(17), 139(19), 121(26), 91(21)$; exact mass calculate for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right)$: 265.0950 ; found $\left(\mathrm{M}^{+}\right)$: 265.0951 .

cis-3i

trans-3i
cis-3i: white solid; mp $138-140^{\circ} \mathrm{C}, R_{f}=0.46$ for cis-3i in 10% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{24}-57$ (c 1.0 CHCl_{3}); IR (neat): 2953, 2929, 2857, 1789, 1558, 1145, 1092, $840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right):$ $\delta 7.35(\mathrm{td}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.83(\mathrm{dd}, J=13.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=13.1$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.98(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): \delta 167.1(\mathrm{C}), 150.2(\mathrm{C}), 130.5(\mathrm{CH}), 129.0(\mathrm{CH}), 125.3(\mathrm{CH}), 120.2(\mathrm{C}), 117.4(\mathrm{CH}), 75.1$ $\left(\mathrm{CH}_{2}\right), 68.2(\mathrm{CH}), 41.8(\mathrm{CH}), 25.6\left(3 \mathrm{CH}_{3}\right), 18.3(\mathrm{C}),-4.9\left(\mathrm{CH}_{3}\right),-5.8\left(\mathrm{CH}_{3}\right)$; MS $(\mathrm{m} / \mathrm{z}$, relative intensity): 337 ($\mathrm{M}^{+}, 2$), 280 (24), 131 (13), 113 (13), 111 (10), 107 (25), 99 (19), 97 (21), 99 (19), 97 (21), 91 (15), $85(57), 83(24), 71(77), 57(100), 55(23)$; exact mass calculate for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Si}\left(\mathrm{M}^{+}\right)$: 337.1345; found $\left(\mathrm{M}^{+}\right)$: 337.1348 .
trans-3i: colorless oil; $R_{f}=0.34$ for trans-3i in 10% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{24}-38$ (c $1.0 \mathrm{CHCl}_{3}$). IR (neat): 2953, 2929, 2857, 1789, 1558, 1145, 1092, $840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.32$ (td, $J=8.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dt}, J=10.4,5.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dt}, J=10.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.10$ ($\mathrm{s}, 3 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.2(\mathrm{C}), 150.2(\mathrm{C}), 129.8(\mathrm{CH}), 125.9(\mathrm{CH}), 125.2(\mathrm{CH})$, $120.2(\mathrm{C}), 117.3(\mathrm{CH}), 72.6\left(\mathrm{CH}_{2}\right), 68.0(\mathrm{CH}), 41.1(\mathrm{CH}), 25.6\left(3 \mathrm{CH}_{3}\right), 18.2(\mathrm{C}),-4.6\left(\mathrm{CH}_{3}\right),-5.6$ $\left(\mathrm{CH}_{3}\right)$.

$\mathbf{3 j}$: yellow solid; $\mathrm{mp} 61-63{ }^{\circ} \mathrm{C}, R_{f}=0.30$ for $\mathbf{3 j}$ in 20% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{23}-109$ (c 1.3 CHCl_{3}); IR (neat): 2981, 2928, 1765, 1554, 1379, 1123. 1096, $763 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.33$ (ddd, $J=8.0,6.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=$ $12.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=12.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=9.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$, $1.24(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 171.5(\mathrm{C}), 150.5(\mathrm{C}), 130.1(\mathrm{CH}), 128.7(\mathrm{CH}), 125.2$ $(\mathrm{CH}), 121.0(\mathrm{C}), 116.9(\mathrm{CH}), 77.0\left(\mathrm{CH}_{2}\right), 45.7(\mathrm{CH}), 39.8(\mathrm{C}), 25.5\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}$, relative intensity): $235(\mathrm{M}, 19), 188(88), 160(36), 145(100), 107(17), 91(37), 65(11)$; exact mass calculate for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right): 235.0845$; found $\left(\mathrm{M}^{+}\right)$: 235.0842 .

$\mathbf{3 k}$: white solid; $\mathrm{mp} 111-113{ }^{\circ} \mathrm{C}, R_{f}=0.25$ for $\mathbf{3 k}$ in 20% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{24}-29$ (c 1.3 CHCl_{3}); IR (neat): 2962, 1768, 1554, 1478, 1328, 1177. 1097, $814 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.44(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, 2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=12.9$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=12.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=9.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3$ H), ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 170.7(\mathrm{C}), 149.7(\mathrm{C}), 133.1(\mathrm{CH}), 131.5(\mathrm{CH}), 123.1(\mathrm{C}), 118.7$ $(\mathrm{CH}), 117.6(\mathrm{C}), 76.5\left(\mathrm{CH}_{2}\right), 45.3(\mathrm{CH}), 39.6(\mathrm{C}), 25.5\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}$, relative intensity): $315\left(\mathrm{M}^{+}+3,59\right), 313\left(\mathrm{M}^{+}+1,59\right), 268(98), 266(100), 240(56), 238(58), 225(93), 223$ (90), 160 (96), 145 (64), 70 (53); exact mass calculate for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrNO}_{4}\left(\mathrm{M}^{+}\right)$: 312.9950 ; found $\left(\mathrm{M}^{+}\right)$: 312.9948.

31: colorless oil; $R_{f}=0.36$ for $\mathbf{3 k}$ in 20% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{23}-92$ (c $1.5 \mathrm{CHCl}_{3}$); IR (neat): $2961,1765,1555,1435,1383,1158.1029,809 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.00(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, 8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dd}, J=12.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (dd, $J=12.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{dd}, J=9.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$, ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 171.6(\mathrm{C}), 160.9(\mathrm{C}), 151.4(\mathrm{C}), 129.4(\mathrm{CH}), 112.7(\mathrm{C}), 110.9(\mathrm{CH})$, $102.5(\mathrm{CH}), 76.7\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{CH}_{3}\right), 45.2(\mathrm{CH}), 39.9(\mathrm{C}), 25.6\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}$, relative intensity): $265\left(\mathrm{M}^{+}, 50\right), 218$ (100), 205 (38), 191 (26), 175 (94), 150 (31), 137 (28), 121 (29), 91 (23), 83 (40), 70 (33); exact mass calculate for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right): 265.0950$; found $\left(\mathrm{M}^{+}\right): 265.0950$.

Representative procedure for the preparation of compound 3a on water (Table 2, entry 13).

To a solution of trans-2-hydroxy- β-nitrostyrene ($\mathbf{1 a}, 50 \mathrm{mg}, 0.3 \mathrm{mmol}$), catalyst I ($20 \mathrm{mg}, 0.06$ $\mathrm{mmol})$ and acetic acid $(4 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added a solution of glutaraldehyde $(61 \mathrm{mg}, 0.60 \mathrm{mmol})$. The resulting solution was stirred at $30{ }^{\circ} \mathrm{C}$ for 24 h until the completion of reaction, monitored by TLC. The resulting mixture was extracted with EtOAc (20 mL), washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 28% EtOAc-hexane ($R_{f}=0.25$ for the hemiacetal, in 30% EtOAc-hexane) to give the hemiacetal as a colorless oil ($40 \mathrm{mg}, 50 \%$ yield). A solution of the hemiacetal ($25 \mathrm{mg}, 0.09 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and $\mathrm{PCC}(61 \mathrm{mg}, 0.28 \mathrm{mmol})$ was stirred at ambient temperature for 12 h until the completion of reaction, monitored by TLC. The reaction mixture was diluted with EtOAc (25 mL), and filtered through Celite. The filtrate was concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 22% EtOAc-hexane ($R_{f}=0.35$ for $\mathbf{3 m}$ in 30% EtOAc-hexane) to give $\mathbf{3 m}$ as a white solid (18 mg , 76% yield).
$\mathbf{3 m}$: white solid; $\mathrm{mp} 197-199^{\circ} \mathrm{C}, R_{f}=0.35$ for $\mathbf{3 m}$ in 30% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{23}-114$ (c 0.2 CHCl_{3}); IR (neat): $3231,2921,2857,1747,1541,1373,1010,764 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone- $\mathrm{d}_{6}, 500$ MHz): $\delta 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{td}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.79 (d, J $=4.2, \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=12.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=12.2,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.36-3.33 (m, 1 H), 2.19-2.14 (m, 2 H), 1.97-1.93 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 125 \mathrm{MHz}$): $\delta 169.3$ (C), $152.7(\mathrm{C}), 131.1(\mathrm{CH}), 130.4(\mathrm{CH}), 125.1(\mathrm{CH}), 124.0(\mathrm{C}), 117.6(\mathrm{CH}), 90.1(\mathrm{CH}), 68.6(\mathrm{CH})$, $39.4(\mathrm{CH}), 34.9(\mathrm{CH}), 29.2\left(\mathrm{CH}_{2}\right), 18.9\left(\mathrm{CH}_{2}\right)$; MS (m / z, relative intensity): $263\left(\mathrm{M}^{+}, 41\right), 216(100)$, 197 (31), 188 (43), 171 (29), 160 (33), 147 (43), 131 (30), 111 (27), 97 (38), 91 (26), 77 (24), 71 (41); exact mass calculate for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right): 263.0794$; found $\left(\mathrm{M}^{+}\right): 263.0797$.

$\int_{0(6)}^{1}$

Figure S1. ORTEP and Stereo plots for X-ray crystal structures of (-)-3m• $\mathrm{H}_{2} \mathrm{O}$
CCDC 794375 contains the supplementary crystallographic data for $(-)-\mathbf{3 m} \cdot \mathrm{H}_{2} \mathrm{O}$. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

3n: white solid; $\mathrm{mp} 191-193{ }^{\circ} \mathrm{C}, R_{f}=0.31$ for $\mathbf{3 n}$ in 30% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{23}-100$ (c 0.25 CHCl_{3}); IR (neat): $3228,2955,2909,1759,1546,1373,1199,1021,804 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}, $500 \mathrm{MHz}): \delta 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.0(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75$ (d, $J=4.1, \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=12.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=12.1,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.91(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 125$ $\mathrm{MHz}): \delta 169.3(\mathrm{C}), 161.5(\mathrm{C}), 153.5(\mathrm{C}), 131.7(\mathrm{CH}), 115.7(\mathrm{C}), 111.0(\mathrm{CH}), 103.0(\mathrm{CH}), 90.5(\mathrm{CH})$, $68.7(\mathrm{CH}), 55.9\left(\mathrm{CH}_{3}\right), 39.6(\mathrm{CH}), 34.3(\mathrm{CH}), 29.2\left(\mathrm{CH}_{2}\right), 18.8\left(\mathrm{CH}_{2}\right)$; MS (m / z, relative intensity): $293\left(\mathrm{M}^{+}, 56\right), 246(100), 229(36), 218$ (100), 189 (48), 177 (29), 161 (30), 91 (13), 77 (18), 55 (16); exact mass calculate for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{6}\left(\mathrm{M}^{+}\right):$293.0899; found $\left(\mathrm{M}^{+}\right): 293.0901$.

30: white solid; mp $159-161{ }^{\circ} \mathrm{C}, R_{f}=0.29$ for 3o in 30\% EtOAc-hexane, $[\alpha]_{\mathrm{D}}{ }^{23}-86$ (c 0.22 CHCl_{3}); IR (neat): $3227,2955,2909,1759,1546,1339,1152,1021,804 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}, 500 MHz): δ 6.99-6.97 (m, 1 H), 6.92-6.89 (m, 2 H), 4.82 (d, $J=4.4, \mathrm{~Hz}, 1 \mathrm{H}$), 4.69 (dd, $J=12.2$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=12.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.32-3.29(\mathrm{~m}, 1 \mathrm{H})$, 2.17-2.12 (m, 2 H), 1.94-1.91 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 125 \mathrm{MHz}$): $\delta 169.4$ (C), 156.9 (C), $146.4(\mathrm{C}), 124.9(\mathrm{C}), 118.4(\mathrm{CH}), 116.1(\mathrm{CH}), 115.3(\mathrm{CH}), 90.1(\mathrm{CH}), 68.6(\mathrm{CH}), 55.9\left(\mathrm{CH}_{3}\right), 39.3$ $(\mathrm{CH}), 35.2(\mathrm{CH}), 29.2\left(\mathrm{CH}_{2}\right), 18.9\left(\mathrm{CH}_{2}\right)$; MS (m / z, relative intensity): $293\left(\mathrm{M}^{+}, 100\right), 246(55), 229$ (18), 227 (60), 189 (19), 174 (26), 161 (44), 105 (54), 91 (62), 77 (28), 57 (87), 55 (62); exact mass calculate for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{6}\left(\mathrm{M}^{+}\right): 293.0899$; found $\left(\mathrm{M}^{+}\right)$: 293.0901 .

Fig S13. 1H NMR (CDCI3, 500 MHz) of compound cis-3a

PMK-02-3\#4Sepplementary Material (ESI) for Organic \& Biomolecula Chemistry
\# This journal is (c) The Royal Society of Chenist
exp24 szpuis journal is (c) The Royal Society of Che్లn istrymer

Fig S14. 13C NMR (CDCl3, 125 MHz) of compound cis-3a

Fig S15. DEPT of compound cis-3a
PMK-02-334-F 1
Organic \& Biomolecular Chemistry
exp25 \# Supplementary Material (ESI) for Organic \& Biomolecula

$\operatorname{exp27}$ gHS@CSupplementary Material (ESI) for Organic \& Biomolecular Chemistry

Fig S17. COSY of compound cis-3a
PMK-02-334-F
exp26 \#cosspplementary Material (ESI) for Organic \& Biomolecular Chemistry
date MAMPLE 82010 solvent
$\begin{array}{ll}\text { compl3 } & \text { hs spul } \\ \text { sample undefined } \\ \text { hsglvy }\end{array}$
$\begin{array}{llr}\text { solvent cdclu } & \text { sspul } & \text { n } \\ \text { sample } & \text { undefined } & \text { hsglvi } \\ \text { ACQUISITION } & 1003\end{array}$

|F2
|F2

Fig S18. NOESY of compọund cis-3a
PMK-82-334\#FGupplementary Material (ESI) for Organic \& Biomolecular Chemistry
exp28 woesY This journal is (c) The Royal Society of Chemistry 2010

Fig S19. 1H NMR (CDCl3, 500 MHz) of compound trans-3a

PMK-02-336-f2

 date SAMPLE
date ${ }_{\text {Solvent }}{ }^{\text {Sct }} 62010$
cdclu solven
ACQUISITION exp
$\begin{array}{lr}\mathrm{sfrq} & 499.830 \\ \mathrm{tn} & \mathrm{HI}\end{array}$
$\begin{array}{lr}\text { at } & \begin{array}{rr}\text { H1 } \\ \text { at } & 3.000 \\ \text { sw } & 48000 \\ \text { fw } & 800000\end{array}, ~\end{array}$
not used
 wtfile wtfil
proc
4.8
1.000
1.000
499.7

4 math wexp procplot
wbs
not used wnt wft

11	
in	n
dp	y
hs	nn
	DISPLAY
sp	-250.1
wp	5498.0
vs	100
sc	0
wc	210
hzmm	26.18
is	344.76
rfi	4638.7
rfp	3618.7
th	5
ins	100.000

Fig S20. 13C NMR (CDCl3, 125 MHz) of compound trans-3a

Fig S21. DEPT of compound trans-3a
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
PMKTRRS JOifntá is (c) The Royal Society of Chemistry 2010
exp35 DEPT

Fig S22. HSQC of compound trans-3a
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This journal is (c) The Royal Society of Chemistry 2010

Fig S23.COSY of compound trans-3a

Fig S24. NOESY of compound trans-3a

Fig S25. 1H NMR (CDCI3, 500 MHz) of compound 3b
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This journal is (c) The Royal Society of Chemistry 2010

PMK-02-364		
exp3 s2pul		- + ¢ ¢ m Nos.
SAMPLE	DEC. \& VT	$\lfloor\rfloor\rfloor$
date Apr 132010	dfrq 125.693	-
solvent cdcl3	dn C13	
file exp	dpwr 30	
ACQUISITION	dof 0	
sfrq 499.830	dm nnn	
tn H1	dmm ${ }^{\text {c }}$	
at 3.000	dmf 200	
np 48000	dseq	
sw 8000.0	dres 1.0	
fb not used	homo n	
bs 4	PROCESSING	
tpwr 58	wtfile	
pw 4.8	proc ft	
d1 1.000	fn not used	
tof 499.7	math f	
nt 4		
ct 4	werr react	
alock y	wexp procplot	
$\text { gain flags }{ }^{\text {not used }}$	wbs wnt wft	
il n		
in n		
dp y		
hs display nn		
sp DISPLAY -250.1		
$\begin{array}{ll}\text { sp } \\ \text { wp } & -250.1 \\ \text { cher }\end{array}$		
$\begin{array}{lr}\text { wp } \\ \text { vs } & 5248.0 \\ 50\end{array}$		
vs sc		
Sc 0		
wc 210		
hzmm 24.99		
is 274.81		
rfi 4637.9		
rfp 3618.7		
th 4		
ins 100.000		
nm cdc ph		

Fig S26. 13C NMR (CDCl3, 125 MHz) of compound 3b
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This journal is (c) The Royal Society of Chemistry 2010
PMK-02-364
exp4 s2pul
 $\begin{array}{llll}\text { date } & \text { SAMPLE } & & \\ \text { Apr } & 13 & 2010 & \text { dfrq } \\ \text { solvent } & \text { cdclu } & \text { dn } \\ \text { file } & & \text { exp } & \text { dpwr }\end{array}$ file ACQUISITION sfrq sfr
tn
at
tn
at
np
np
$\mathbf{s w}$
$\mathbf{f b}$
$\mathbf{b s}$
 $\begin{array}{lrl}62894 & \text { dseq } & \\ \text { fb } & \text { not used } & \text { dres } \\ \text { bs } & & 1.0\end{array}$
$\begin{array}{lrll}\text { tpwr } & { }^{2} & \text { lb } & \\ \text { pw } & 54 & \text { wtfile } & \end{array}$
$\begin{array}{lrlr}\text { tpwr } & 54 & \text { wtfile } & \\ \text { pw } & 4.0 & \text { proc } & \text { ft } \\ \text { di } & 1.000 & \text { fn } \\ \text { tof } & 2512.2 & \text { math } & \\ \text { nt } & \text { not }\end{array}$
tof
nt
ct
$\begin{array}{lll}\text { ct } & 2048 & \text { werr } \\ \text { alock } & 2048 & \text { weact }\end{array}$
$\begin{array}{lrlr}\text { alock } & 2048 & \text { werr } & \text { react } \\ \text { gain } & \text { not used } & \text { wexp } & \text { procplot }\end{array}$
in
dp
hs
hs display
sp DISPLAY

Fig S27. DEPT of compound 3b
PMK-02-364 \# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
exp5 DEPT\# This journal is (c) The Royal Society of Chemistry 2010

Fig S28. HSQC of compound 3b
PMK-02-36 \# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
PMK $-02-364 ~ T h i s ~ j o u r n a l ~ i s ~(c) ~ T h e ~ R o y a l ~ S o c i e t y ~ o f ~ C h e m i s t r y ~$
expr
gHSOC

Fig S29. COSY of compound 3b
\# Supplementary Material (ESI) for Organic \& Biomolecular Chernistry PMK-02- \mathbf{F}_{6} Ghis journal is (c) The Royal Society of Chemistry 2010

exp6 gCOSY

SAMPLE FLAGS
 solvent
sample efine
$\begin{array}{ll}\text { sample } & \\ \text { SW } & \\ \text { sw } & \\ \text { at } & \\ \text { np } & \\ \text { fb } & \\ \text { ss } & \\ \text { di } & \\ \text { dition } & \\ & \end{array}$
 ${ }^{n t}{ }_{2 D}$ ACQUISITION ${ }^{16} \mathrm{fn}_{\text {FI }}$ PROCESSING

Fig S30. NOESY of compound Sb
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry PMK-02- $\mathbf{3 6} \mathbf{6}$ 4 his journal is (c) The Royal Society of Chemistry 2010

exp NOESY

 $\begin{array}{lll}\text { solvent cdclu } & \text { sspul } \\ \text { sample undefined } & \text { PFGfig }\end{array}$
 $\begin{array}{ll}\text { ann } & \text { sch } \\ & \\ \text { sch } & \\ \text { vs } & \\ \text { th } & \\ & \text { ai }\end{array}$
SPECIAL
not used

not use OCESSING
0.04
not us dISPLAY

IF

-

Fig S31. 1H NMR (CDCl3, 500 MHz) of compound 3c
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Fig S32. 13C NMR (CDCl3, 125 MHz) of compound 3c

 exp25 \# TEPT journal is (c) The Royal Society of Chemistry 2010

Fig S34. HSQC of compound 3c
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
PMK-02- ${ }^{\text {G5 }}$ is journal is (c) The Royal Society of Chemistry 2010

Fig S35. COSY of compound 3c

Fig S36. NOESY of compound 3c
\# Supplementary Material (ESI) for Organic \& Biomolecular CHemistly
PMK-02-3 exp27 NOESY

Fig S37. 1H NMR (CDCl3, 500 MHz) of compound 3d
PMK-02-3E8Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Fig S38. 13C NMR (CDCl3, 125 MHz) of compound 3d
\# Supplementary Material (ESI) for Organic \& Biomoléexular Chemistry PMK-02-3th This journal is (c) The Royal Society of Chemistry 2090
$\begin{array}{ll}\text { exp4 } & \text { s2pul } \\ & \text { SAMPL }\end{array}$

$\text { date } \begin{aligned} & \text { SAMPLE } \\ & A p r \\ & 28 \\ & 2010 \end{aligned}$	
solvent	ent cdcl3
ACQUISITION	
sfrq	125.696
tn	C13
at	1.000
np	62894
sw	31446.5
fb	not used
bs	16
ss	2
tpwr	54
pw	4.0
d1	1.000
tof	2512.2
nt	1024
ct	1024
alock	not used
gain FL	FLAGS
11	n
in	n
dp	y
hs DIS	display \quad nn
sp	-1257.0
wp	28906.3
vs	50
sc	
wc	210
hzmm	137.65
is	500.00
rff	10984.4
rfp	9677.5
th	7
ins	100.000

Fig S39. DEPT of compound 3d
PMK-02-368 \# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
exp5 DEP\# This journal is (c) The Royal Society of Chemistry 2010

Fig S40. HSQC of compound 3d
PMK-02-\#8sapplementary Material (ESI) for Organic \& Biomolecular Chemistry
exp8 \quad \#HSQuis journal is (c) The Royal Society of Chemistry 2010

Fig S41. COSY of compound 3d
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

exp6 gCosy samp
sw
sw
at
n
f
s
d unde cdclu $\begin{aligned} & \text { hs } \\ & \text { sspu }\end{aligned}$ ACQUISITION $\begin{array}{ll}\text { sw } & \\ \text { at } & \\ \text { np } & \\ \text { fb } & \text { no } \\ \text { ss } & \\ \text { d1 } & \end{array}$ $\begin{array}{lr}\text { nt } & 1.000 \\ \text { 2D } & 8 \\ \text { SWI }\end{array}$ ${ }^{\mathrm{ni}}$ TRANSMITTER 12 tn
sfr
$\begin{array}{lr}\text { sfrq } & 499.829 \\ \text { tof } & -250.0 \\ \text { tpwr } & 11.100\end{array}$ tpwr

GRADIENTS
NTS 11.10 gzlvil 1003 $\begin{array}{ll}\text { gt1 } & 0.001000 \\ \text { gstab } & 0.000500\end{array}$

DECOUPLER C13 C13
nnn SAMPLE dn
dm
4490.3
0.228
0.228 SPECIAL AL temp
gain
spin
F2 2 PROCE -

sb ${ }^{\text {F2 }}$ PROCESSING $\begin{array}{ll}\text { fn } & \text { not } \\ \mathrm{F}_{1} \\ \text { PROCESSING }\end{array}$ nnn

0

di display
 sp
$w p$
$s p 1$
$w p 1$
$r f 1$
$r f p$
$r f 11$
$r f p 1$

$w c$
$s c$
sc
$w c 2$
$s c 2$
$v s$
$t h$ 265
 PLOT cdc av ?

F1 (ppm)

Fig S42. NOESY of compound 3d
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry PMK-02-368\# This journal is (c) The Royal Society of Chemistry 2010

Fig S43. 1H NMR (CDCl3, 500 MHz$)$ of compound cis-3e

PMK-02-371-f1

Fig S44. 13C NMR (CDCl3, 125 MHz$)$ of compound cis-3e

Fig S45. DEPT of compound cis-3e
PMK-02-371 \#f Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
exp14 \#EPT This journal is (c) The Royal Society of Chemistry 2010

Fig S46. HSQC of compound cis-3e
PMK-泀 2 Sunplepmentary Material (ESI) for Organic \& Biomolecular Chemistry
PMK- This journal is (c) The Royal Society of Chemistry 2010
expl7 gHSQC

Fig S47. COSY of compound cis-3e
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry PMK-02-371 \#-f1 This journal is (c) The Royal Society of Chemistry 2010 exp15 gCosy

Fig S48. NOESY of compound cis-3e
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry PMK-02-371\#fThis journal is (c) The Royal Society of Chemistry 2010 expl6 NOESY

$\begin{array}{lr}\text { sfrq } & 499 \\ \text { tof } & -2 \\ \text { tpwr } & \\ \text { pw } & \text { NOESY }\end{array}$
$\underset{\text { PRESATURATION }}{\mathbf{0 . 6 0 0}}$ satmode nnnn satpwr satdly atfrq
$d n$
$d m$
R

FLAGS n

AY 2
248
ot

Fig S49. 1H NMR (CDCl3, 500 MHz) of compound trans-3e

PMK-02-371-f2

exp43 s2p\# Pupplementary Material (ESI) for Organic \& Bion

Fig S50. 13C NMR (CDCI3, 125 MHz) of compound trans-3e
 \# This journal is (c) The Royal Society of Chemistry $2 \dot{0} 10$

$\text { date }{ }^{\text {SAMPLE }}{ }_{\text {May }} 2010$	$\begin{gathered} \text { DEC. \& VT } \\ \text { dfra } \\ 499.829 \end{gathered}$
date May 62010 solvent cdcla	$\begin{array}{lr}\text { dfrq } & 499.829 \\ d n & H 1\end{array}$
file exp	dpwr 39
ACQUISITION	dof 0
sfrq 125.696	dm yyy
tn C13	dima ${ }^{\text {W }}$
at 1.000	dmf 11905
np 62894	dseq
Sw 31446.5	dres 1.0
fb not used	homo
bs 16	PROCESSING
ss 2	1 lb 1.00
tpwr 54	wtfile
pw 4.0	proc ft
d1 1.000	fn not used
tof 2512.2	math
nt 2048	
ct 2048	werr react
flags	
11 n	
in n	
dp y	
hs display nn	
sp DISPLAY 1257.0	
$\begin{array}{ll}\text { sp } & \text { wp } \\ \text { 28906.3 }\end{array}$	
vs 200	
sc 0	
wc 210	
hzmmm 137.65	
is 500.00	
rfl 10981.5	
rfp 9677.5	
th 6	
ins 100.000	
nm cde ph	

PMK-02-371-f2
Fig S51. DEPT of compound trans-3e
\# \# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
exp45 DEP \# This journal is (c) The Royal Society of Chemistry 2010

Fig S52. HSQC of compound trans-3e
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
PMK-02-3\#1+fis journal is (c) The Royal Society of Chemistry 2010
exp48 gHSQC

\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry PMK-02-3\#1Fmies journal is (c) The Royal Society of Chemistry 2010
 solvent $\begin{aligned} & \text { cdclis } \\ & \text { sample } \\ & \text { spul }\end{aligned}$ undefined hsglvi sample undefine
sw ACQUISITION
4490.

Fig S53. COSY of compound trans-3e

Fig S54. NOESY of compound trans-3e

Fig S55. 1H NMR (CDCI3, 500 MHz$)$ of compound $3 f$
exp23 s2putSupplementary

Fig S56. 13C NMR (CDCl3, 125 MHz) of compound 3 f

PMK-02-\#7§upplementary Material (ESI) for Organic \& Biomolecular Chemistry S57. DEPT of compound $3 f$
exp25 DEPT journal is (c) The Royal Society of Chemistry 2010

\qquad

Fig S58. HSQC of compound 3 f
PMK-02-\#8supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Fig S59. COSY of compound $3 f$

Fig S60. NOESY of compound $3 f$

Fig S61. 1H NMR (CDCl3, 500 MHz) of compound 3 g
PMK-02-379

date MayPLE 222010 dfra DEC. \& VT

Fig S62. 13C NMR (CDCl3, 125 MHz) of compound 3 g

$$
\mathrm{cdc}
$$

\qquad

Fig S63. DEPT of compound 3 g
PMK-82-37 \# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
exp5 DEP\# This journal is (c) The Royal Society of Chemistry 2010

Fig S64. HSQC of compound 3 g
PmK-82-3\#sfupplementary Material (ESI) for Organic \& Biomolecular Chemistry

Fig S66. NOESY of compound 3 g

tpwr	58	wtfil	
pw	4.8	proc	$f t$
d1	1.000	fn	not used
tof	499.7	math	f
nt	4		
ct	4	werr	react
alock	y	wexp	procplot
gain	not used	wbs	
	FLAGS	wnt	wft
11	n		
in	n		
dp	y		
hs	nn		
	DISPLAY		
sp	-250.1		
wp	5498.0		
vs	100		
sc	0		
wc	210		
hzmm	26.18		
is	345.37		
rff	4638.7		
rfp	3618.7		
th	2		
ins	100.000		
nm c	dc ph		

Fig S68. 13C NMR (CDCI3, 125 MHz$)$ of compound 3 h

产

expls DEP
(ESI) for Organic \& Biomolecular Chemistry

sw	446.5	gain	n 20
at	1.000	spin	0
np	62894		PROCESSING
bs	16	1b	1.00
ss	-4	fn	not used
d1	1.000		SPECTRUM
nt	1024	wp	28906.3
ct	1024	sp	-1257.0
	TRANSMITTER	rp	125.8
tn	C13	$1 p$	225.7
toftpwrpw	2512.2	ai	cdc ph
	- 54		REFERENCE
	11.500	rfi	1306.0
DECOUPLER		rfp	0
dn	H1		PLOT
dof	0	wc	210
dpwr	39	sc	0
di.	nny	vs	100
din	ccw	hzmm	- 137.65
dimp	11905	th	68
pplvi	151		

$\begin{array}{ll}\mathrm{pp} & 28.000\end{array}$

PMK-02-390
Fig S70. HSQC of compound 3 h
exp18 \# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
 of Chemistry 2010
flags
ACQUISITION ARRAYS spoulg Ivi y
y
003 SPECIAL 003 44
0 GRADIENTS
 cdc ph
 003 $\begin{array}{rr} & \text { phase } \\ 256\end{array}$
1
1
1
2

Fig S71. COSY of compound 3h
PMK-02-390 \# Supplementary Material (ESI) for Organic \& Biomolequla Chem stry exp16 gcost ${ }^{2}$ This journal is (c) The Royal Society of Chemistry 2010
date SAMPLE 2010
date Jul 232010 soivent cdcl3 sspul sample undefined hsgivi
ACQUISITION
sw
at
$n p$
fb
ss
d1
nt
np
fb
ss
d
nt
nt 2 D ACQUISITION
$\begin{array}{lr}\text { Sw1 } & 4001.6 \\ n i & 128\end{array}$
tn TRANSMITTER $\begin{array}{r}128 \\ H 1\end{array}$
$\begin{array}{lr}\text { sfrq } & 499.829 \\ \text { tof } & -499.9\end{array}$ $\begin{array}{lr}\text { tof } & -499.9 \\ \text { tpwr } & 58\end{array}$ pw GRADIENTS 11.100 gzlvil
gt1

0.001003 $\begin{array}{ll}\text { gt1 } & 0.001000 \\ 0.00500\end{array}$ gstab ${ }_{\text {DECOUPLER }}^{0.00}$ | dn |
| :--- |
| d. | C13

nnn
 PECIAL $n n$
n 1003
IT
4001.6
0.128 temp

 ${ }^{\mathrm{f}} \mathrm{F}_{1}$ PROCES
 dim

Fig S72. NOESY of compound 3h
PMK-02-390
exp17 NdESupplementary Material (ESI) for Organic \& Biomolecular Ohemist
sampleis journal is (c) The Royal Society of Chemistry 2010
date Jut 232010 hs
solvent

$\begin{array}{ll}\text { at } & \\ \text { np } & \\ \text { fb } & \text { not } \\ \text { ss } & \\ \text { d } & \end{array}$
d1
nt
20
swi fn PROCESSIN 1024

PRESATURATIO

satmode

satpwr
satdiy
satfra
DECOUPLER
$d n$
$d m$
nnnn
0
0
0
C13
nnn
PLOT
ph

Fig S73. 1H NMR (CDCl3, 500 MHz$)$ of compound cis-3i

Fig S74. 13C NMR (CDCI3, 125 MHz$)$ of compound cis-3i

Fig S75. DEPT of compound cis-3i
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
1 his journal is (c) The Royal Society of Chemistry 2010

Fig S76. HSQC of compound cis-3i
exp18 gHSQC

solvent undefined PFGfig y
sample
sample undefined PFGfigg
ACOUISITION hsivi
 $\begin{array}{lrlr}\text { di } & 1.000 & \mathrm{gzlv11} & 1003 \\ \text { nt } & 8 & \text { gt1 } & 0.002000\end{array}$

sw1	21367.5	gt3	0.001000
ni	128	gstab	0.000500
phase	arrayed	F2 PROCESSING	
TRANSMITTER	gf	0.094	

$\begin{array}{lr}\text { sfrq } & 499.829 \\ \text { tof } & -499.9 \\ \text { towr } & 58\end{array}$ $\begin{array}{cc}\text { fn } & 2048 \\ \text { Fi } 1 & \text { PROCESSING } \\ 0.006\end{array}$
DW DECOUPLER 11.100

$$
\begin{aligned}
& \text { gisi } \\
& \text { proct }
\end{aligned}
$$

$\begin{array}{lr}\text { dn } & \text { C13 } \\ \text { dof } & -2515.2 \\ \text { dm } & \text { nny } \\ \text { dmm } & \text { ccp }\end{array}$
dmm
dmf
dpw

$d \mathrm{dmp}$ dpwr $\mathrm{p} w \times 1 \mathrm{l} \mathrm{m}^{2}$

${ }_{\substack{p w x \\ p w x}}$
$j 1 \times h$
jullfif
nuit
HSQC ${ }^{14}$
14.300

cdc

Fig S77. COSY of compound cis-3i

Fig S78. NOESY of compound cis-3i
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
PMK-02-377his journal is (c) The Royal Society of Chemistry 2010

Fig S79. 1H NMR (CDCl3, 500 MHz) of compound trans-3i

Fig S80. 13C NMR (CDCl3, 125 MHz) of compound trans-3i

PMK-02-377-f2

Fig S81. DEPT of compound trans-3i
exp25 DEPT \# upplementary Material (ESI) for Organic \& Biomolecular Chemistry

Fig S82. HSQC of compound trans-3i
exp28 ghspl Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Fig S84. NOESY of compound trans-3i

Fig S85. 1H NMR (CDCI3, 500 MHz$)$ of compound 3 j

Fig S86. 13C NMR (CDCl3, 125 MHz) of compound 3 j
\# Supplementary Material (ESI) for Organic \& Biomotecular Chemisteyy PMK-02-360This journal is (c) The Royal Society of Chemistry 2010

expl4 s2pul

 solv
file ACQUISITIO
sfrq
sfr
tn
at
np

alock
gain
flagS

in FLAGS	
in	n
	n

11
in
d
hs DISPLAY
DISPLAY -1257
wp -1257
wc
$h z$
hzm
is
rff
rfp
rfi
rfp
th
th
cdc ph
-130.076
-128.717
-125.166
120.982
-116.866
100
0
210
210
137.65
500.00
500.00
10983.4
9677.5
9677.5
100.000
dc ph

wnt

Fig S87. DEPT of compound 3 j
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
PMK-02-369 His journal is (c) The Royal Society of Chemistry 2010


```
j1xh
mult
DEPT T 140.0 ACQUISITION ARRAYS array arraydim
```

```
mult
```

mult
gain
gain
N0.5 (emp gain not used
N0.5 (emp gain not used
$\begin{array}{lr}1 & \text { mult } \\ 1 & 0.5 \\ 2 & 1.5\end{array}$
lb PROCESSING 1.00
lb PROCESSING 1.00
\#}$$
\begin{array}{l}{\mathrm{ not used }}\\{\mathrm{ SPECTRUM }}
 #}\begin{array}{l}{\mathrm{ not used }}\\{\mathrm{ SPECTRUM }}
 28906.3
 28906.3
 -1257.0
 -1257.0
lol
```
lol
```


```
                    \(\begin{array}{rr}\mathrm{ccw} & \mathrm{hz} \\ 1905 & \text { th }\end{array}
$$\)
h lolog
```                h lolog```
25.600

Fig S88. 13C of compound 3j (Extracted from DEPT)
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Fig S89. 13C of compound 3 j (Extracted from DEPT, Expand.)
PMK-02-36 Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
exp15 DEPT ${ }^{\text {\# This journal is (c) The Royal Society of Chemistry } 2010}$

| SAMPLE | DEPT | |
| :---: | :---: | :---: |
| date Apr 72010 | j1xh | 140.0 |
| solvent cdcl3 | mult | arrayed |
| sample undefined | | SPECIAL |
| ACQUISITION | temp | not used |
| Sw 31446.5 | gain | 28 |
| at 1.000 | spin | 0 |
| np 62894 | | PROCESSING |
| bs 16 | 1b | 1.00 |
| Ss -4 | fn | not used |
| d1 1.000 | | SPECTRUM |
| nt 2048 | wp | 1759.1 |
| ct 2048 | sp | 8797.5 |
| TRANSMITTER | rp | 48.8 |
| tn C13 | 1 p | 201.1 |
| tof 2512.2 | ai | cdc ph |
| tpwr 54 | | REFERENCE |
| pw 11.500 | rfi | 1306.9 |
| DECOUPLER | rfp | 0 |
| dn H1 | | PLOT |
| dof | wc | 210 |
| dpwr 39 | sc | 0 |
| dim nny | vs | 500 |
| dmm ccw | hzmm | 8.38 |
| dmf 11905 | th | 7 |
| pplvi 51 | | |
| pp 25.600 | | |

Fig S90. HSQC of compound 3 j

\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

exp18 (c) The Royal Society of Chemistry 2010

Fig S91. COSY of compound 3 j

Fig S92. NOESY of compound 3 j

Fig S93. 1H NMR (CDCl3, 500 MHz) of compound 3 k

| $\text { date Aug } 72010$ | dfrq ${ }^{\text {d }}$ (25.693 |
| :---: | :---: |
| solvent cdcla | dn $\quad 125$ |
| file exp | dpwr 30 |
| ACQUISITION | dof 0 |
| sfrq 499.830 | dm nnn |
| tn H1 | dmm c |
| at 3.000 | dmf 200 |
| np 48000 | dseq |
| sw 8000 | dres 1.0 |
| fb not used | homo n |
| bs 4 | temp 23.0 |
| tpwr 58 | PROCESSING |
| pw 4.8 | wtfile |
| d1 1.000 | proc ft |
| tof 499.7 | fn not used |
| nt 4 | math f |
| ct 4 | |
| alock gain | werr react
 wexp procplot |
| flags | wbs |
| il \quad n | wnt wft |
| in n | |
| dp y | |
| hs nn | |
| DISPLAY | |
| sp $\quad-250.1$ | |
| wp 5498.0 | |
| vs 100 | |
| sc 0 | |
| wc 210 | |
| hzmm 26.18 | |
| is 274.36 | |
| rfi | |
| $\begin{array}{ll}\text { rfp } & 3618.7\end{array}$ | |
| th 4 | |
| ins 100.000 | |
| nm cdc ph | |

aifcifermistryy ${ }^{\circ}$
\qquad

Fig S94. 13C NMR (CDCl3, 125 MHz) of compound 3 k

Fig S95. DEPT of compound 3 k
PMK-02-\#9gupplementary Material (ESI) for Organic \& Biomolecular Chemistry
exp5 D\#PThis journal is (c) The Royal Society of Chemistry 2010

Fig S96. HSQC of compound 3k
exps \# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

sample undefined PFG sample undefined PFGf
ACQUISITION
hsglv
sw
at
$n p$
fb
ss
d1
d

Fig S97. COSY of compound 3k

Fig S98. NOESYof compound $3 k$

Fig S99. 1H NMR (CDCl3, 500 MHz$)$ of compound 3 I

exp13 s2pul creimisiry o o o o o oj

date

$\begin{array}{lr}\text { solvent } \\ \text { file } & \text { cdclu } \\ \text { exp }\end{array}$
$\begin{array}{lr}\text { file } & \text { ACQUISITION } \\ \text { sfrq } & 499.830 \\ \text { tn } & \text { H1 } \\ \text { at } & 3.000 \\ \text { np } & 48000\end{array}$

PROCESSING ${ }^{23}$
oc not used
1.000
499.7

DISPLAY
-250.1
-250.1
5498.0 100
0
210

210
26.18
297.68
297.68
4638.4
3618.7
4638.4
3618.7
$p h^{100.00}$

C13 spectrum of Fig S100. 13C NMR (CDCI3, 100 MHz) of compound 31 \# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This journal is (c) The Royal Society of Chemistry 2010

| Current Data Parameters | |
| :--- | ---: |
| NAME | PMK-02-395 |
| EXPNO | 2 |
| PROCNO | 1 |

F2 - Acquisition Parameters
Date_ Parame

INSTRUM spect
$\begin{array}{lll}\text { PROBHD } \\ \text { PULPROG } & \mathrm{mm} \text { ONP } 1 \mathrm{H}\end{array}$

| PULPROG | zgpg30 |
| :--- | ---: |
| TD | 65536 |

| TD | 65536 |
| :--- | :--- |
| SOLVENT | CDC13 |

NS \quad CDCI3

| DS | 512 |
| :--- | ---: |
| SWH | |

$\begin{array}{lr}\text { SWH } & 25125.629 \mathrm{~Hz} \\ \text { FIDRES } & 0.383397 \mathrm{~Hz}\end{array}$ $\begin{array}{ll}A Q & 0.383387 \mathrm{~Hz}\end{array}$ $\stackrel{A}{A}$ RG
DW
DW
DE

19.900 usec
6.50 usec 6.50 usec
300.0 K 2.00000000 2.00000000 sec
0.03000000 sec 0.00002000 sec CHANNEL $\dagger 1$

| =========== | CHANNEL $+1===$ |
| :--- | ---: |
| NUC1 | 13 C |
| P1 | 10.00 usec |
| PL1 | 0.00 dB |
| SFO1 | 100.6237959 MHz |

| ====== | CHANNEL f2 == |
| :---: | :---: |
| CPDPRG2 | waltz16 |
| NUC2 | 1H |
| PCPD2 | 90.00 usec |
| PL2 | -3.00 dB |
| PL12 | 15.60 dB |
| PL13 | 18.60 dB |
| SFO2 | 400.1326008 MHz |

F2 - Processing parameters $\begin{array}{ll}\text { SF } & 100.6127731 \mathrm{MHz}\end{array}$ WDW EM
\qquad GB $\quad 0$ 1.40

10 NMR plot parameters

| CX | 20.00 cm |
| :--- | ---: |
| F1P | 220.000 ppm |
| F1 | 22134.81 Hz |
| F2P | 0.000 ppm |
| F2 | 0.00 Hz |
| PPMCM | $11.00000 \mathrm{ppm} / \mathrm{cm}$ |
| HZCM | $1106.74048 \mathrm{~Hz} / \mathrm{cm}$ |

Fig S101. DEPT of compound 31
PMK-02-395 $\#$ Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
exp15 D\$PThis journal is (c) The Royal Society of Chemistry 2010

Fig S102. HSQC of compound 31
PMK-02-395
exp18 gHSRESupplementary Material (ESI) for Organic \& Biomolecular Chemistry

32
1.000 gzivil gzlvil
gt1
gzlvl3 ${ }_{2 D}{ }^{2}$ ACQUISITION 8 $\begin{array}{lll}2 \mathrm{D} \\ \text { SW1 ACQUISITION } & \text { gzlv } \\ 21367.5 & \text { gt3 }\end{array}$ 1003
0.002000
505
0.001000 0.001000
0.000500 $\begin{array}{lll}\text { ni } & 128 & \text { gstab } 0.000 \\ \text { phase } & \text { arrayed } & \text { F2 PROCESSING }\end{array}$
 $\begin{array}{lrrr}\text { sfrq } & 499.81 & \text { gfs } & \text { not us } \\ \text { tof } & 499.7 & \text { fn } & \text { F1 } \\ \text { torocessing }\end{array}$ $\begin{array}{lrrr}\text { tof } & 499.7 & \text { F1 } & \text { PROCESSING } \\ \text { tpwr } & 58 & \text { gf1 } & 0.006 \\ \text { pw } & 11.100 & \text { gfs1 } & \text { not used }\end{array}$ pw decoupler 11.100 gfsi not used
dn OECOUPLER C13 fr
$\begin{array}{ll}d n & -25 \\ d o f & \\ d m & \\ d m m & \\ d m f & \end{array}$ dpwr
pwxlv
pwx $n n y$
ccp
3258
36
52

DISPLAY

j1×h HSQC
nulif

14.300
 40.0 y 2

Fig S103. COSY of compound 31

Fig S104. NOESY of compound 31

Fig S105. 1H NMR (acetone-d6, 500 MHz) of compound 3 m
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

date Aug 102010 dfr
solvent Acetone dn solvent Acetone dn
file /export/home/~ dpwr vnmri/vnmrsys/data~ dof /PMK/PMK-02-393/ox~ d ACQUISITION.

| idized/H.fid ACQUISITION | | dmf 200 | |
| :---: | :---: | :---: | :---: |
| | | dseq | |
| n | H1 | dres | 1.0 |
| t | 3.000 | homo | |
| p | 48000 | | SING |
| w | 8000.0 | wtfil | |
| b | not used | proc | $f t$ |
| s | 4 | fn | not used |
| tpw | 58 | math | |
| w | 4.8 | | |
| 1 | 1.000 | werr | |
| f | 499.7 | wexp | wft |
| t | 4 | wbs | wft |
| | 4 | wnt | wft |

${ }^{6} .694$

 ヘin
alock
not used
$\begin{array}{lr}\text { il } & n \\ \text { in } & n \\ d p & y \\ \text { hs } & y n\end{array}$
DISPLAY
-250.0
5498.0
5498.0
100

210
26.18 251.31
2035.9 251.31
2035.9
1024.7 100.000
cac ph

Fig S106. 13C NMR (acetone-d6, 125 MHz) of compound 3m

Fig S107. 1H NMR (acetone-d6, 500 MHz) of compound 3 m

Fig S109. Another DEPT of compound 3m
PMK-02-393-oxidized
omolecular Chemistry
exp35 \#Esupplementary Material (ESI) for Organic \& Biomolecula

PMK-02-393-oxidized exp\#8ThisHEQfnal is (c) The Royal Society of Chemistry 2010

Fig S111. COSY of compound 3m

Fig S112. NOESY of compound 3 m
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Fig S113. 1H NMR (acetone-d6, 500 MHz) of compound 3 n
PMK-02-404-f2-oxidized

Fig S114. 13C NMR (acetone-d6, 125 MHz) of compound $3 n$

\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

exp34 s2pul
SAMPLE DEC. \& VT

Fig S115. 13C NMR (acetone-d6, 125 MHz) of compound 3n (Expand).

Fig S116. DEPT of compound $3 n$
PMK-02-4\#4St̉ppexidized Material (ESI) for Organic \& Biomolecular Chemistry
exp35 咁pithis journal is (c) The Roy申l Society of Chemistry 2010

at
np
bs
ss
d1
nt
$\begin{array}{lr}\text { nt } & 1.000 \\ \text { ct } & 1024\end{array}$
transmitter

$\begin{array}{lr}\text { tof } & 2512.2 \text { ai } \mathrm{cdc} \text { ph } \\ \text { R } & 54\end{array}$

dn
dof
dpwr
din
dim
$d m m$
$d m p$
dmf
pplvi
$p \mathrm{p}$
pp
1195
28.000

8.00

Fig S117. HSQC of compound 3n

exp38 \# ghrsiegournal is (c) The Royal Society of Chemistry 2010

Fig S118. COSY of compound 3n
PM著-9ypplementary Material (ESI) for Organic \& Biomolecular Chemistry
\# This journal is (C) The Royal Society of Chemistry 2010
exp36 gCOSY
date SAMPLE 2010 hs FL $\begin{array}{lll}\text { date Aug } 212010 & \text { hs } \\ \text { solvent Acetone } \\ \text { sspul }\end{array}$ somple undefined hspul
samive
 IAL $\begin{aligned} & 1003_{2}^{n} \\ & 23.0\end{aligned}$

Fig S119. NOESY of compound $3 n$
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

PMK-02-406-f1-oxidized

THIS journal is (c) The Royal So
SAMPLE

[^0]$\square \square \square$

Fig S120. 1H NMR (acetone-d6, 500 MHz) of compound 3o

Fig S121. 13C NMR (acetone-d6, 125 MHz) of compound 3o

-Fig S122. 13C NMR (acetone-d6, 125 MHz) of compound 3o (Expand).

Fig S123. DEPT of compound 30
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
PMK- \#2TAR ${ }^{6}$ Jotitnaxis (č)ephe Royal Society of Chemistry 2010
exp2

date
sol
samp
sw
at
np
bs
ss
d1
nt
$c t$
tn
tof
tpw
pw
dn
dof
dpw
dm
dmm
dmf
ppl
$p p$

$\begin{array}{lrl}\text { sw } & 31446.5 & \text { teain } \\ \text { at } & 1.000 & \text { gain } \\ \text { np } & 62894 & \\ \text { spin } & & \\ \text { PROCESSING }\end{array}$

ct TRANSMITTER
TRANSHITTER ${ }^{2} 13$
tof
tpwr
pw
DECOUPLER
dn
dof
dpw
dm
dmm
dmf
$p p$
$p p$

Fig S124. HSQC of compound 3o

Fig S125. COSY of compound 3o

Fig S127．HPLC analysis of racemic compound 3a．（For comparison，Table 2，entry 1）

PMK－02－340－racemate－colm－IA－8\％ipa／hex
Report produced on 2010／3／19 at 上午 11：00：51 by Put your name here

2010／3／19 aWaÈ 10：27：29 Flow set to 1.00 at 0.00 minutes
2010／3／19 aWaĖ 11：00：01 Run stopped by operator

PEAK REPORT

| \＃ | begin | end | area | percent | maximum | time | begins as | name |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 9.15 | 10.78 | 2146 | 49.9 | 111.14 | 9.60 | Baseline | |
| 2 | 11.34 | 13.03 | 2151 | 50.1 | 108.96 | 11.78 | Baseline | |

Fig S128．HPLC analysis of compound 3a obtained．（Table 2，entry 1）

PMK－02－336－chiral－colm－IA－8\％ipa／hex

Report produced on 2010／3／19 at 上午 11：44：07 by Put your name here

2010／3／19 aWaÈ 11：03：54 Flow set to 1.00 at 0.00 minutes
2010／3／19 aWaÈ 11：43：43 Run stopped by operator

PEAK REPORT

| \＃ | begin | end | area | percent | maximum | time | begins as name |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 11.16 | 12.90 | 4041 | 100.0 | 172.09 | 11.60 | Baseline |

Fig S129. HPLC analysis of the mixture of racemic and chiral compound 3a obtained.
(For comparison, Table 2, entry 1)
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This jorfal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-336-chiral+racemate-colm-IA-8\%ipa/hex

Report produced on 2010/3/19 at 下午 01:26:19 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 8.68 | 10.42 | 1322 | 83.91 | 9.45 | 27.3 | Baseline |
| 2 | 11.02 | 12.73 | 3519 | 159.29 | 11.48 | 72.7 | Baseline |

Fig S130. HPLC analysis of racemic compound 3b.
(For comparison, Table 2, entry 2) \# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This joftal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-364-racemate-colm-OD-6\%ipa/Hex
Report produced on 2010/7/16 at 下午 05:44:16 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 26.55 | 31.12 | 5008 | 77.07 | 27.89 | 50.7 | Baseline |
| 2 | 36.14 | 41.26 | 4874 | 68.42 | 37.08 | 49.3 | Baseline |

Fig S131. HPLC analysis of compound 3b obtained. (Table 2, entry 2)
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This josfal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-364-Chiral-colm-OD-6\%ipa/Hex
Report produced on 2010/7/16 at 下午 05:49:10 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 35.88 | 41.28 | 8854 | 96.16 | 37.06 | 100.0 | Baseline |

Fig S132. HPLC analysis of the mixture of racemic and chiral compound 3b obtained.
(For comparison, Table 2, entry 2)
\# Supplementary Material'(ESI) for Organic \& Biomolecular Chemistry \# This jofal is (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-364-Chiral+racemate-colm-OD-6\%ipa/Hex

Report produced on 2010/7/16 at 下午 05:46:45 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 26.68 | 29.40 | 4120 | 75.59 | 27.73 | 34.2 | Baseline |
| 2 | 35.14 | 42.79 | 7942 | 88.31 | 36.64 | 65.8 | Baseline |

Fig S133. HPLC analysis of racemic compound 3c.

\# This jofral is (c) The Royal Society of Chemistry 2010
Peak Report
PMK-02-365-racemate-colm-OD-10\%ipa/Hex
Report produced on 2010/7/17 at 下午 04:27:56 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 20.18 | 24.02 | 13992 | 235.50 | 21.03 | 50.6 | Baseline |
| 2 | 26.63 | 30.86 | 13674 | 217.21 | 27.63 | 49.4 | Baseline |

Fig S134. HPLC analysis of compound 3c obtained. (Table 2, entry 3)

Material (ESI) for Organic \& Biomolecular Chemistry (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-365-chiral-colm-OD-10\%ipa/Hex
Report produced on 2010/7/17 at 下午 04:26:18 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | :---: | ---: | ---: |
| 1 | 20.28 | 24.92 | 37595 | 632.83 | 20.92 | 100.0 | Baseline |

Fig S135．HPLC analysis of the mixture of racemic and chiral compound 3c obtained．
（For comparison，Table 2，entry 3） \＃Supplementary Material（ESI）for Organic \＆Biomolecular Chemistry \＃This jorfal is（c）The Royal Society of Chemistry 2010

Chromatogram Report
PMK－02－365－chiral＋racemate－colm－OD－10\％ipa／Hex
Report produced on 2010／7／17 at 下午 04：23：12 by Put your name here

2010／7／17 aUxE 03：42：50 Flow set to 1.00 at 0.00 minutes
2010／7／17 םUaĖ 04：22：05 Run stopped by operator

PEAK REPORT

| \＃ | begin | end | area | percent | maximum | time | begins as name |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 1 | 20.00 | 24.72 | 17725 | 83.5 | 283.50 | 20.87 | Baseline |
| 2 | 26.22 | 29.42 | 3404 | 16.0 | 72.23 | 27.48 | Baseline |

Fig S136. HPLC analysis of racemic compound 3d.
(For comparison, Table 2, entry 4)
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This jorfal is (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-368-racemate-colm-OD-4\%ipa/Hex
Report produced on 2010/7/19 at 下午 08:10:52 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 14.68 | 16.24 | 2877 | 110.55 | 15.37 | 51.7 | Baseline |
| 2 | 16.34 | 18.56 | 2686 | 102.65 | 16.75 | 48.3 | Baseline |

Fig S137. HPLC analysis of compound 3d obtained. (Table 2, entry 4)
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This josfal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-368-chiral-colm-OD-4\%ipa/Hex
Report produced on 2010/7/19 at 下午 06:18:06 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 14.45 | 16.32 | 6140 | 183.38 | 14.93 | 100.0 | Baseline |

Fig S138. HPLC analysis of the mixture of racemic and chiral compound 3d obtained.

\# This jopral is (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-368-chiral+racemate-colm-OD-4\%ipa/Hex

Report produced on 2010/7/19 at 下午 06:21:34 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | :---: | ---: | ---: |
| 1 | 14.63 | 16.39 | 2759 | 105.92 | 15.32 | 77.3 | Baseline |
| 2 | 16.54 | 18.29 | 812 | 75.10 | 16.85 | 22.7 | Baseline |

Fig S139. HPLC analysis of racemic compound cis-3e.
(For comparison Table 2 entry 5)
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This jortal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-371F1-racemate-colm-OD-6\%ipa/Hex
Report produced on 2010/7/16 at 下午 05:42:02 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17.55 | 20.51 | 17202 | 285.81 | 18.62 | 50.6 | Baseline |
| 2 | 20.56 | 24.02 | 16784 | 270.22 | 21.30 | 49.4 | Baseline |

Fig S140. HPLC analysis of compound cis-3e obtained. (Table 2, entry 5)

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 20.34 | 23.95 | 30647 | 446.82 | 21.07 | 100.0 | Baseline |

Fig S141. HPLC analysis of the mixture of racemic and chiral compound cis-3e obtained.

\# This jo fal is (c) The Royal Society of Chemistry 2010
Peak Report
PMK-02-371F1-chiral+racemate-colm-OD-6\%ipa/Hex
Report produced on 2010/7/16 at 下午 05:36:58 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 1 | 17.70 | 19.82 | 4353 | 90.94 | 18.72 | 29.4 | Baseline |
| 2 | 20.56 | 24.04 | 10442 | 165.37 | 21.41 | 70.6 | Baseline |

Fig S142. HPLC analysis of racemic compound trans-3e.
\# s(Fpprementary Rarisison \# This jo\&fal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-371F2-racemate-colm-IA-5\%ipa/hex

Report produced on 2010/7/26 at 下午 06:40:23 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | :---: | :---: | ---: | ---: | :---: | ---: | ---: |
| 1 | 8.56 | 9.71 | 4730 | 228.35 | 8.93 | 49.9 | Baseline |
| 2 | 10.01 | 11.24 | 4747 | 207.41 | 10.40 | 50.1 | Baseline |

Fig S143. HPLC analysis of compound trans-3e obtained. (Table 2, entry 5)

is Material (ESI) for Organic \& Biomolecular Chemistry (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-371F2-chiral-colm-IA-5\%ipa/hex
Report produced on 2010/7/26 at 下午 06:38:00 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | :---: | ---: | ---: | ---: |
| 1 | 8.38 | 9.71 | 5329 | 251.24 | 8.81 | 93.1 | Baseline |
| 2 | 9.93 | 10.63 | 398 | 58.78 | 10.27 | 6.9 | Baseline |

Fig S144. HPLC analysis of the mixture of racemic and chiral compound trans-3e obtained.
(For comparison, Table 2 entry 5)
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This josfal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-371F2-chiral+racemate-colm-IA-5\%ipa/hex

Report produced on 2010/7/26 at 下午 06:33:44 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 8.38 | 10.02 | 4388 | 206.33 | 8.97 | 59.9 | Baseline |
| 2 | 10.09 | 11.07 | 2943 | 147.92 | 10.45 | 40.1 | Baseline |

Fig S145. HPLC analysis of racemic compound 3f.(For comparison, Table 2, entry 6)

Report produced on 2010/7/21 at 下午 03:27:28 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 10.61 | 11.78 | 1741 | 102.71 | 11.01 | 50.0 | Baseline |
| 2 | 12.70 | 14.04 | 1740 | 105.43 | 13.01 | 50.0 | Baseline |

Fig S146. HPLC analysis of compound 3f obtained. (Table 2, entry 6)

Report produced on 2010/7/21 at 下午 03:29:44 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 12.63 | 14.06 | 3850 | 178.32 | 13.04 | 100.0 | Baseline |

Fig S147. HPLC analysis of the mixture of racemic and chiral compound $3 f$ obtained.
(For comparison, Table 2, entry 6)
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
\# This josfal is (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-375-chiral+racemate-colm-IA-6\%ipa/Hex

Report produced on 2010/7/21 at 下午 03:31:34 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | :---: | ---: | ---: |
| 1 | 10.39 | 11.35 | 1413 | 95.81 | 10.88 | 37.8 | Baseline |
| 2 | 12.45 | 13.40 | 2320 | 137.83 | 12.71 | 62.2 | Baseline |

Fig S148. HPLC analysis of racemic compound 3 g .
(For comparison, Table 2, entry 7) \# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This jofal is (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-379-racemate-colm-IA-6\%ipa/Hex
Report produced on 2010/7/21 at 下午 03:33:17 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | :---: | ---: | ---: |
| 1 | 13.65 | 15.31 | 1759 | 94.46 | 14.29 | 49.9 | Baseline |
| 2 | 16.90 | 18.79 | 1768 | 90.40 | 17.56 | 50.1 | Baseline |

Fig S149. HPLC analysis of compound 3 g obtained. (Table 2, entry 7)

Report produced on 2010/7/21 at 下午 03:35:10 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | :---: | ---: | ---: |
| 1 | 16.77 | 18.51 | 5938 | 204.58 | 17.57 | 100.0 | Baseline |

Fig S150. HPLC analysis of the mixture of racemic and chiral compound 3 g obtained.
(For comparison Table 2in entry 7) \# This jos enal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-379-chiral+racemate-colm-IA-6\%ipa/Hex

Report produced on 2010/7/21 at 下午 03:36:27 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | :---: | ---: | ---: |
| 1 | 13.85 | 15.06 | 1529 | 86.55 | 14.31 | 36.8 | Baseline |
| 2 | 16.82 | 18.93 | 2623 | 111.13 | 17.62 | 63.2 | Baseline |

Fig S151. HPLC analysis of racemic compound 3 h .
(Forr comparison Table 2 entry 8)
\# Supplementary Material (ESI) for Organic \& Biopholecular Chemistry \# This joy fal is (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-390-racemate-colm-OD-10\%ipa/hex
Report produced on 2010/7/26 at 下午 03:19:53 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 16.60 | 19.11 | 4085 | 116.60 | 17.41 | 49.2 | Baseline |
| 2 | 25.64 | 29.47 | 4212 | 104.63 | 26.79 | 50.8 | Baseline |

Fig S152. HPLC analysis of compound 3h obtained. (Table 2, entry 8)

PMK-02-390-chiral-colm-OD-10\%ipa/hex

Report produced on 2010/7/26 at 下午 03:28:38 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | :---: | ---: | ---: | :---: | ---: | ---: |
| 1 | 25.71 | 30.60 | 13799 | 244.11 | 26.74 | 100.0 | Baseline |

Fig S153. HPLC analysis of the mixture of racemic and chiral compound 3 h obtained.

PMK-02-390-chiral+racemate-colm-OD-10\%ipa/hex
Report produced on 2010/7/26 at 下午 03:33:15 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 16.57 | 18.87 | 2367 | 91.32 | 17.18 | 24.8 | Baseline |
| 2 | 25.51 | 29.25 | 7195 | 152.92 | 26.56 | 75.2 | Baseline |

Fig S154. HPLC analysis of racemic compound cis-3i. \#(For comparison) (ETable Mor 2 antry 9) \# This joy fal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-377-racemate-2\%ipa/Hex
Report produced on 2010/7/28 at 下午 01:23:34 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 6.33 | 6.86 | 1476 | 165.73 | 6.50 | 49.8 | Baseline |
| 2 | 7.04 | 7.81 | 1486 | 155.76 | 7.22 | 50.2 | Baseline |

Fig S155. Fig S99. HPLC analysis of compound cis-3i obtained. (Table 2, entry 9)

fal is (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-377-chiral-2\%ipa/Hex
Report produced on 2010/7/28 at 下午 01:21:49 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| 1 | 6.40 | 6.69 | 156 | 57.05 | 6.55 | 6.6 | Baseline |
| 2 | 7.05 | 7.94 | 2196 | 206.15 | 7.24 | 93.4 | Baseline |

Fig S156. HPLC analysis of the mixture of racemic and chiral compound cis-3i obtained.
(For comparison, Table 2, entry 9)
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This joffal is

Peak Report
PMK-02-377-chiral+racemate-2\%ipa/Hex
Report produced on 2010/7/28 at 下午 01:48:22 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 1 | 6.34 | 6.81 | 818 | 114.93 | 6.55 | 30.7 | Baseline |
| 2 | 7.06 | 7.83 | 1849 | 179.51 | 7.29 | 69.3 | Baseline |

Fig S157. HPLC analysis of the racemic compound trans-3i.
\# supplementary Material(ESI) for Obrganic \& entry 9) ${ }^{2}$) \# This joffal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-377-F2-racemate-colm-IB-3\%ipa-hex

Report produced on 2010/9/15 at 下午 06:29:08 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | :---: | ---: | ---: | ---: | ---: | :---: |
| 1 | 9.20 | 10.09 | 249 | 46.40 | 9.56 | 51.0 | Baseline |
| 2 | 10.19 | 11.04 | 240 | 45.66 | 10.52 | 49.0 | Baseline |

Fig S158. HPLC analysis of compound trans-3i obtained. (Table 2, entry 9)

Report produced on 2010/9/15 at 下午 06:28:04 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | :---: | ---: | :---: |
| 1 | 9.71 | 10.35 | 29 | 34.46 | 9.93 | 1.6 | Baseline |
| 2 | 10.50 | 11.42 | 1811 | 102.62 | 10.80 | 98.4 | Baseline |

Fig S159. HPLC analysis of the mixture of racemic and chiral compound trans-3i obtained.

omparis
\# This jorfal is (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-377-F2-chiral+racemate-colm-IB-3\%ipa-hex
Report produced on 2010/9/15 at 下午 06:25:35 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | :---: | ---: | :---: |
| 1 | 9.68 | 10.45 | 143 | 38.19 | 9.91 | 32.6 | Baseline |
| 2 | 10.55 | 11.37 | 297 | 43.67 | 10.89 | 67.4 | Baseline |

Fig S160. HPLC analysis of racemic compound 3 j .
 \# This joffal is (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-360-racemate-colm- OD-8\%ipa/hex
Report produced on 2010/7/16 at 上午 10:57:18 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 11.86 | 14.22 | 4302 | 120.59 | 12.53 | 50.4 | Baseline |
| 2 | 14.36 | 17.00 | 4231 | 119.17 | 15.06 | 49.6 | Baseline |

Fig S161. HPLC analysis of compound 3j obtained. (Table 2, entry 10)

PMK-02-360-Chiral-colm- OD-8\%ipa/hex

Report produced on 2010/7/15 at 下午 05:54:43 by .

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | :---: | ---: | ---: |
| 1 | 11.65 | 14.40 | 11600 | 269.84 | 12.42 | 95.9 | Baseline |
| 2 | 14.52 | 15.57 | 492 | 61.90 | 14.88 | 4.1 | Baseline |

Fig S162. HPLC analysis of the mixture of racemic and chiral compound 3j obtained.
(For comparison, Table 2, entry 10) \# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This joffal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-360-Chiral+racemate-colm- OD-8\%ipa/hex

Report produced on 2010/7/16 at 上午 10:58:42 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 11.98 | 14.54 | 4933 | 115.19 | 12.76 | 63.2 | Baseline |
| 2 | 14.63 | 17.00 | 2876 | 85.31 | 15.44 | 36.8 | Baseline |

Fig S163. HPLC analysis of racemic compound $3 k$.
(For comparison, Table 2, entry 11) \# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This jof isal (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-394-racemate-colm-IA-5\%ipa/Hex

Report produced on 2010/8/14 at 下午 03:54:07 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 11.32 | 13.16 | 5997 | 232.01 | 11.68 | 49.8 | Baseline |
| 2 | 14.06 | 16.54 | 6051 | 225.15 | 14.45 | 50.2 | Baseline |

Fig S164. HPLC analysis of compound 3k obtained. (Table 2, entry 11)

Report produced on 2010/8/14 at 下午 03:52:11 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 11.30 | 13.73 | 9585 | 358.51 | 11.66 | 95.0 | Baseline |
| 2 | 14.19 | 14.90 | 507 | 64.00 | 14.52 | 5.0 | Baseline |

Fig S165. HPLC analysis of the mixture of racemic and chiral compound 3 k obtained.
(For comparison, Table 2, entry 11) \# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This jorfal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-394-chiral+racemate-colm-IA-5\%ipa/Hex
Report produced on 2010/8/14 at 下午 03:49:59 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 11.34 | 13.42 | 6963 | 257.86 | 11.75 | 60.8 | Baseline |
| 2 | 14.09 | 16.47 | 4490 | 172.03 | 14.52 | 39.2 | Baseline |

Fig S166. HPLC analysis of racemic compound 31. (For comparison, Table 2, entry 12)
 is (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-395-racemate-colm-IA-5\%ipa/Hex

Report produced on 2010/8/14 at 下午 03:48:15 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 12.83 | 13.88 | 4079 | 194.69 | 13.14 | 49.9 | Baseline |
| 2 | 13.93 | 15.68 | 4102 | 186.28 | 14.22 | 50.1 | Baseline |

Fig S167. HPLC analysis of compound 3I obtained. (Table 2, entry 12)
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This josfal is (c) The Royal Society of Chemistry 2010

Peak Report

PMK-02-395-chiral-colm-IA-5\%ipa/Hex
Report produced on 2010/8/14 at 下午 03:45:14 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 13.11 | 13.75 | 763 | 76.32 | 13.35 | 9.8 | Baseline |
| 2 | 13.91 | 16.57 | 7046 | 300.01 | 14.32 | 90.2 | Baseline |

Fig S168. HPLC analysis of the mixture of racemic and chiral compound 31 obtained.
(For comparison, Table 2, entry 12) \# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This joffal is (c) The Royal Society of Chemistry 2010

PMK-02-395-chiral+racemate-colm-IA-5\%ipa/Hex

Report produced on 2010/8/14 at 下午 03:42:40 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 13.13 | 14.09 | 3097 | 162.45 | 13.49 | 38.6 | Baseline |
| 2 | 14.22 | 16.85 | 4916 | 211.95 | 14.54 | 61.4 | Baseline |

Fig S169. HPLC analysis of compound 3m obtained from cat (S)-I. (Table 2, entry 13)
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This josfal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-393-chiral-(S-Enatiomer)-colm-IA-8\%ipa/Hex
Report produced on 2010/9/7 at 下午 03:02:29 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 44.35 | 50.20 | 3848 | 60.84 | 46.28 | 100.0 | Baseline |

Fig S170. HPLC analysis of compound 3m obtained from cat (R)-I.
(For comparison Table 2, entry 13)
\# Supplementary Material (ESI) for Organic \& Bionolecular Chemistry \# This josfal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-405-chiral-(R-Enatiomer)-colm-IA-8\%ipa/Hex

Report produced on 2010/9/7 at 下午 12:32:31 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | :---: | ---: | ---: |
| 1 | 38.01 | 41.39 | 3354 | 82.25 | 38.92 | 100.0 | Baseline |

Fig S171. HPLC analysis of the mixture of (+)- and (-)-3m.
(For comparison, Table 2, entry 13)
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This jorfal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-393+405-chiral-(S+R-Enatiomer)-colm-IA-8\%ipa/Hex

Report produced on 2010/9/7 at 下午 01:34:43 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 38.67 | 41.33 | 1398 | 56.79 | 39.87 | 37.9 | Baseline |
| 2 | 44.25 | 49.48 | 2288 | 52.65 | 46.25 | 62.1 | Baseline |

Fig S172. HPLC analysis of compound 3n obtained from cat (S)-I. (Table 2, entry 14)

Report produced on 2010/9/8 at 下午 02:58:01 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | :---: | ---: | ---: |
| 1 | 15.82 | 17.41 | 4343 | 197.54 | 16.29 | 100.0 | Baseline |

Fig S173. HPLC analysis of compound 3n obtained from cat (R)-I. (Table 2, entry 14)

Peak Report

PMK-02-407-(R-enatiomer)chiral-colm-IA-15\%ipa/Hex

Report produced on 2010/9/8 at 下午 02:25:52 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | :---: | ---: | ---: |
| 1 | 17.51 | 19.01 | 4982 | 206.04 | 17.87 | 100.0 | Baseline |

Fig S174. HPLC analysis of the mixture of (+)- and (-)-3n.
(For comparison, Table 2, entry 14) \# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This jofal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-404+407-(S+R-enatiomer)chiral-colm-IA-15\%ipa/Hex

Report produced on 2010/9/8 at 下午 03:35:18 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 15.80 | 16.98 | 2859 | 147.92 | 16.32 | 59.7 | Baseline |
| 2 | 17.70 | 18.92 | 1929 | 104.66 | 18.10 | 40.3 | Baseline |

Fig S175. HPLC analysis of compound 30 obtained from cat (S)-I. (Table 2, entry 15)
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
\# This joffal is (c) The Royal Society of Chemistry 2010
PeaK Report
PMK-02-406-(S-enatiomer)chiral-colm-IA-15\%ipa/Hex
Report produced on 2010/9/8 at 上午 11:23:51 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 21.54 | 24.26 | 14841 | 215.11 | 22.76 | 100.0 | Baseline |

Fig S176. HPLC analysis of compound 3o obtained from cat (R)-I.

\# This josfal is (c) The Royal Society of Chemistry 2010
Peak Report
PMK-02-408-(R-enatiomer)chiral-colm-IA-15\%ipa/Hex

Report produced on 2010/9/8 at 上午 10:34:02 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | :---: | ---: | ---: |
| 1 | 31.45 | 34.16 | 11019 | 219.65 | 31.93 | 100.0 | Baseline |

Fig S177. HPLC analysis of the mixture of $(+)$ - and $(-)-30$.
(For comparison, Table 2, entry 15)
\# Supplementary Material (ESI) for Organic \& Biomolecular Chemistry \# This jof inal is (c) The Royal Society of Chemistry 2010

Peak Report
PMK-02-406+408-(S+R-enatiomer)chiral-colm-IA-15\%ipa/Hex

Report produced on 2010/9/8 at 下午 12:11:30 by Put your name here

| Peak \# | Begin | End | Peak Area | Maximum | Time | Area \% | Begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 21.61 | 23.87 | 5268 | 135.17 | 22.59 | 58.9 | Baseline |
| 2 | 30.22 | 32.55 | 3677 | 104.75 | 30.81 | 41.1 | Baseline |

[^0]: DISPLAY
 nn
 -250.0 5498.0 0
 210 $\begin{array}{lr} & 26.18 \\ \text { hzmm } & 570.00 \\ \text { is } & 2035.9\end{array}$ $\begin{array}{ll}\text { rff } & 2035.9 \\ \text { rfp } & 1024.7 \\ \text { th } & 100.00\end{array}$ ns
 ns
 cdc 100.000^{2}

