Exploring Leishmania major Inositol Phosphorylceramide Synthase (LmjlPCS): Insights into the ceramide binding domain

Electronic Supplementary Information

Table of Contents

Electronic Supplementary Information 1
Table of Contents 1
Chemistry Experimental 2
General Considerations 2
Compound Numbering System 2
Spectroscopic Data 2
Mass Spectrometry 2
Experimental Procedures 3
Synthesis of Intermediate compounds 3
General Procedure for Phase Transfer Catalysis ${ }^{9,13}$ 12
Olefin Cross Metathesis 15
General procedure for BOC de-protection - Acylation Reactions 19
Biological Methods 32
Preparation of the Screening Compounds 32
The Assay Protocol of the Inhibition Assays 32
Mass Spectrometry Analyses 32
Cytotoxicity screening 49
References 50

Chemistry Experimental

General Considerations

Compound Numbering System

Numbered compounds in the manuscript have the same number in the ESI. All other compounds are numbered following the pattern S\#\#.

Spectroscopic Data

Infrared spectra were recorded using a golden gate (ATR) on a Perkin-Elmer FT-IR 1600 spectrometer and reported in the following format $v_{\text {max }}$ frequency (s , strong; br, broad and w , weak) $\mathrm{cm}^{1} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were acquired in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ unless otherwise stated on a Varian VXR-400 $\left({ }^{1} \mathrm{H}\right.$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 101 MHz) and reported as follows:

Chemical shift was reported in the following format; $\delta(\mathrm{ppm})$ (number of protons, multiplicity, coupling constant J (Hz), assignment).

The residual protic solvent was used as internal reference:
$\mathrm{CHCl}_{3} \delta_{\mathrm{H}}=7.26 \mathrm{ppm} ; \mathrm{CDCl}_{3} \delta_{\mathrm{C}}=77.16 \mathrm{ppm}$
$\mathrm{CHD}_{2} \mathrm{OD} \delta_{\mathrm{H}}=3.31 \mathrm{ppm}, 1.09 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD} \delta_{\mathrm{C}}=49.0 \mathrm{ppm}$

Assignment of stereochemistry was carried out using COSY, HSQC, HMBC and NOESY experiments.

Mass Spectrometry

Low Resolution Mass Spectra were obtained on Waters Micromass LCT Mass spectrometer. Gas-Chromatography Mass Spectra (GC-MS) were taken using a Thermo-Finnigan Trace. High-resolution mass spectra (HRMS) were performed on a Thermo-Finnigan LTQ FT Mass Spectrometer by Durham University Mass Spectroscopy service

Experimental Procedures

Synthesis of Intermediate compounds

S01 (S)-tert-Butyl (1-(methoxy(methyl)amino)-1-oxopropan-2-yl)carbamate ${ }^{1}$

Procedure: ${ }^{2}$ To a solution of N -(tert-butoxycarbonyl)-L-alanine ($1.513 \mathrm{~g}, 8.0 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml) was added N-methylmorpholine ($0.967 \mathrm{ml}, 8.8 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and N, O-dimethylhydroxylamine hydrochloride ($0.859 \mathrm{~g}, 8.8 \mathrm{mmol}, 1.1 \mathrm{eq}$.) at $-15{ }^{\circ} \mathrm{C}$. To the reaction mixture was added 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride ($1.53 \mathrm{~g}, 8.8 \mathrm{mmol}, 1.1 \mathrm{eq}$.) over 30 min at the same temperature. The reaction mixture was stirred for 4 hrs then poured into ice and 1 N HCl . The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined, and washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to give the crude Weinreb amide as a white solid. Column chromatography on silica gel (from 25% to 50% EtOAc in pet. ether) gave 101 ($1.69 \mathrm{~g}, 98 \%$) as a white solid. $v_{\max }$ (ATR) 3293 (s), 2976, 1703, 1658, 1537, 1293, 1173, 1066, $981 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.24(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 4.68(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.44$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.31\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,3-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.8 \mathrm{C} 1,155.3 \mathrm{NHCOO}, 79.7 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 61.8$ $\mathrm{OCH}_{3}, 46.7 \mathrm{C} 2,32.3 \mathrm{NCH}_{3}, 28.5 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 18.9 \mathrm{C} 3 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 232.9[\mathrm{M}]^{+} \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N}_{2}{ }^{23}$ (Expected: 232.1), 255.1 $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N}_{2}{ }^{23} \mathrm{Na}$ (Expected: 255.1).

13 (S)-tert-Butyl (3-oxopent-4-en-2-yl)carbamate ${ }^{3}$

Procedure: ${ }^{2}$ Vinyl magnesium bromide (12 ml of 0.6 M solution in THF, $7.2 \mathrm{mmol}, 4$ eq.) was added dropwise at 0 ${ }^{\circ} \mathrm{C}$ to a solution of $\mathrm{S} 01(400 \mathrm{mg}, 1.8 \mathrm{mmol})$ in anhydrous THF (10 ml). The reaction mixture was allowed to warm up to room temperature. After the reaction mixture was stirred for 1 hr at the same temperature, the reaction mixture was poured into ice cooled 2 N HCl . The resulting mixture was extracted with ethyl acetate. The organic layers were combined, washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to give the crude products. Column chromatography on silica gel (from 10% to 50% EtOAc in pet. ether) gave 13 ($335 \mathrm{mg}, 98 \%$) as a white solid ($R_{f} \approx 0.37$; EtOAc/pet. ether 25/75). $v_{\max }$ (ATR) 3382 (s), 2975, 2931, 1710, 1694, 1612, 1518, 1282, 1246, 1162, $1003 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.4,10.5,4-\mathrm{H}), 6.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.4,1.3,5-$ $\left.H_{\text {trans }}\right), 5.88\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.5,1.3,5-H_{\text {cis }}\right), 5.36(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 4.61(1 \mathrm{H}, \mathrm{p}, \mathrm{J} 7.2,2-H), 1.43\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.33(3 \mathrm{H}$, d, J 7.2, , 1- H_{3}); $\delta_{\mathrm{C}}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 198.8 \mathrm{C} 3,155.3 \mathrm{NHCOO}, 132.9 \mathrm{C} 4,130.3 \mathrm{C} 5,79.8 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 53.2 \mathrm{C} 2,28.5$ $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 18.6 \mathrm{C} 1 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 222.2[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~N}^{23} \mathrm{Na}$ (Expected: 222.1).

16
tert-Butyl ((2S,3R)-3-hydroxypent-4-en-2-yl)carbamate ${ }^{4}$

Procedure: ${ }^{2}$ To a solution of $13(500 \mathrm{mg}, 2.5 \mathrm{mmol})$ in spectrophotometric grade ethanol (31 ml) was added lithium tri-tert-butoxy aluminium hydride ($1.40 \mathrm{~g}, 5.5 \mathrm{mmol}, 2.2 \mathrm{eq}$.) at $-78^{\circ} \mathrm{C}$. After the reaction mixture was stirred at the same temperature for $2 \mathrm{hrs}, 0.1 \mathrm{~N} \mathrm{HCl}(15 \mathrm{ml})$ was added followed by Celite and EtOAc (15 ml). The resulting slurry was filtered through Celite and the filtering bed was washed with EtOAc (15 ml). The two phases were separated and the aqueous phase was re-extracted with EtOAc. The organic extracts were combined, washed with NaHCO_{3} and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to give the product as a single diastereoisomer 16 as ascertained by crude ${ }^{1} \mathrm{H}$ NMR. Column chromatography on silica gel (from 25% to 50% ethyl acetate in pet. ether) gave 16 ($450 \mathrm{mg}, 89 \%$) as a white solid ($R_{f} \approx 0.3$; EtOAc/pet. ether 25/75). $v_{\max }$ (ATR) 3351 (br, s), 2986, 2937, 1679, 1529, 1280, 1161, $1021 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.85(1 \mathrm{H}$, ddd, J 17.2, 10.6, 5.5, 4-H), $5.33(1 \mathrm{H}$, dt, $\left.J 17.2,1.5,5-H_{\text {trans }}\right), 5.23\left(1 \mathrm{H}, \mathrm{dd}, J 10.6,1.5,5-H_{\text {cis }}\right), 4.65(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 4.22-4.16(1 \mathrm{H}, \mathrm{m}, 3-H), 3.84(1 \mathrm{H}, \mathrm{m}, 2-H)$, $1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.09\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,1-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.5 \mathrm{NHCOO}, 137.0 \mathrm{C} 4,116.7 \mathrm{C} 5,79.9$ $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 75.9 \mathrm{C} 3,50.9 \mathrm{C} 2,28.5 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 15.5 \mathrm{C} 1$; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 224.3[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}^{23} \mathrm{Na}$ (Expected: 224.1).

19
(S)-tert-Butyl (3-oxohex-5-en-2-yl)carbamate ${ }^{5,6}$

Procedure: ${ }^{6}$ A solution of n-BuLi (1.4 M solution in hexanes, $7.2 \mathrm{ml}, 10 \mathrm{mmol}, 1.0$ eq.) was added dropwise at -10 ${ }^{\circ} \mathrm{C}$ to a solution of N -(tert-butoxycarbonyl)-L-alanine ($1.89 \mathrm{~g}, 10 \mathrm{mmol}$) in anhydrous THF (100 ml). The resulting thick gelatinous suspension was stirred at $-10{ }^{\circ} \mathrm{C}$ for 30 minutes, cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with a solution of allylmagnesium bromide (1.0 M solution in ether, $23.0 \mathrm{ml}, 23 \mathrm{mmol}, 2.3$ eq.). The resultant light grey slurry was stirred for 1 hour at $-78{ }^{\circ} \mathrm{C}$, warmed to room temperature over 1 hour, stirred at this temperature for an additional 30 minutes and then poured into a mixture of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution, ice and ether. The organic layer was separated and the aqueous layer was extracted with ether. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated under vacuo to yield the desired product 19 as a crystalline white solid $(2.03 \mathrm{~g}, 9.5 \mathrm{mmol}, 95 \%)$. The product was used without further purification ($R_{f} \approx 0.80$; EtOAc/pet. ether 67/33). $v_{\max }$ (ATR) 3386, 2975, 2932, 1726, 1694, 1642, 1516, $1166 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.91(1 \mathrm{H}$, ddt, J 17.1, 10.2, 6.9, $5-H), 5.15\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NH}\right.$ and $\left.6-\mathrm{H}_{2}\right), 4.41-4.31(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.34-3.21\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 1.43\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.33(3 \mathrm{H}$, d, J 7.1, 1- H_{3}); $\delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 207.6 \mathrm{C} 3,155.3 \mathrm{NHCOO}, 129.9 \mathrm{C} 5,119.5 \mathrm{C} 4,79.9 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 54.9 \mathrm{C} 2,44.2$ C3, 28.5 C($\left.\mathrm{CH}_{3}\right)_{3}, 17.8 \mathrm{C} 1 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{-}\right) 212.1[\mathrm{M}-\mathrm{H}]^{-} ;\left(\mathrm{ES}^{+}\right) 236.2[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{HRMS}^{\left(E S^{+}\right)}$found $[\mathrm{M}+\mathrm{Na}]^{+} 236.1257$, $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}^{23} \mathrm{Na}$ requires M^{+}236.1257.

20 tert-Butyl (2S,3R)-3-hydroxyhex-5-en-2-ylcarbamate ${ }^{6}$

Procedure: ${ }^{6}$ A solution of $19(2 \mathrm{~g}, 9.4 \mathrm{mmol})$ in anhydrous methanol (60 ml) was treated with sodium borohydride ($0.72 \mathrm{~g}, 18.5 \mathrm{mmol}, 1.97 \mathrm{eq}$.) at $-78{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 90 minutes, carefully quenched by addition of a sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution at $-78^{\circ} \mathrm{C}$, warmed to room temperature, and diluted with 1 M NaOH solution $(24 \mathrm{ml})$ and ether (60 ml). The organic layer was separated and the aqueous layer was extracted with ether (2×20 ml). The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated under vacuum to yield the crude product as a white solid consists of an $82: 18$ mixture of 20 and the other diastereoisomer respectively as determined by analysis of the ${ }^{1} \mathrm{H}$ NMR spectra of the crude product. The crude mixture was purified by chromatography (25% ethyl acetate in pet. ether) to yield 0.73 g of a $70 / 30$ mixture of the diastereoisomers followed by 1.14 g of pure 20 with total yield $92 \%(1.87 \mathrm{~g}, 8.7 \mathrm{mmol})\left(R_{f} 20 \approx 0.30, R_{f} 20^{\prime} \approx 0.32\right.$; EtOAc/pet. ether 25/75). 20; $v_{\max }(A T R) 3358$ (br, s), 2979, 2940, 1681 (s), 1526 (s), 1174 (s), 1024 (s) $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $5.84(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 7.3,10.3,14.4,5-H), 5.19-5.09(2 \mathrm{H}, \mathrm{m}, 6-H), 4.75(1 \mathrm{H}, \mathrm{br}$ s, NH$), 3.71(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and 3-H), 2.38$2.11\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OH}, 4-\mathrm{H}_{2}\right), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,1-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.0 \mathrm{NHCOO}, 134.8$ C 5 , 118.2 $\mathrm{C} 6,79.6 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 73.4 \mathrm{C} 3,50.4 \mathrm{C} 2,38.5 \mathrm{C} 4,28.5 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 14.7 \mathrm{C} 1 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 238.2[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS $\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+} 238.1414, \mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}^{23} \mathrm{Na}$ requires M^{+}238.1414.

S02 (S)-2-((tert-Butoxycarbonyl)amino)-3-((tert-butyldimethylsilyl)oxy)propanoic acid ${ }^{2,6}$

Procedure: ${ }^{6}$ To a solution of N-(tert-butoxycarbonyl)-L-serine ($512 \mathrm{mg}, 2.5 \mathrm{mmol}$) in anhydrous DMF (12 mL), imidazole ($509 \mathrm{mg}, 7.5 \mathrm{mmol}, 3$ eq.) was added and the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ followed by addition of TBSCI ($490 \mathrm{mg}, 3.25 \mathrm{mmol}, 1.3 \mathrm{eq}$.). The resulting mixture was slowly warmed to room temperature and stirred overnight and followed by TLC. Upon total consumption of the starting material (monitored by TLC), the reaction mixture was poured into a mixture of ice cooled $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ and ether $(20 \mathrm{~mL})$ to hydrolyze the silyl ester. The organic layer was separated and the aqueous layer was extracted with ether ($2 \times 20 \mathrm{ml}$). The combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated under vacuum to yield the desired product S 02 as pale yellow sticky oil ($630 \mathrm{mg}, 1.97 \mathrm{mmol}, 79 \%$). $v_{\max }$ (ATR) 3380-3492 (br), 3451 (s), 2952, 2569, 1724, 1691, $1505 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, acidic OH$), 5.35(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 8.2, \mathrm{NH}), 4.36(1 \mathrm{H}, \mathrm{m}, 2-$ H), $4.09(1 \mathrm{H}, \mathrm{A}$ of ABX syst., m, $3-\mathrm{HH}), 3.83\left(1 \mathrm{H}, \mathrm{B}\right.$ of ABX syst., dd, J 10.1, 3.5, 3-HH), $1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.03,0.2\left(2 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}, \mathrm{CDCI} 3) 175.3 \mathrm{COOH}, 155.5 \mathrm{NHCOO}, 80.1$ $\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}, 63.7 \mathrm{C} 3,55.6 \mathrm{C} 2,28.2 \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}, 25.7 \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}, 18.4 \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3},-5.5 \mathrm{SiCH}_{3},-5.6 \mathrm{SiCH}_{3} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right)$ $320.3[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~N}$ (Expected: 320.2).

S03 (S)-tert-Butyl (3-hydroxy-1-(methoxy(methyl)amino)-1-oxopropan-2-yl)carbamate ${ }^{2,7}$

Procedure: ${ }^{2}$ To a solution of N-(tert-butoxycarbonyl)-L-serine ($3.075 \mathrm{~g}, 15 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 ml) was added N-methylmorpholine ($1.812 \mathrm{ml}, 16.5 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and N, O-dimethylhydroxylamine hydrochloride (1.610 g , $16.5 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) at -15{ }^{\circ} \mathrm{C}$. To the reaction mixture was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride ($2.874 \mathrm{~g}, 16.5 \mathrm{mmol}, 1.1 \mathrm{eq}$.) over 30 min at the same temperature. The reaction mixture was stirred for 4 hrs then poured into ice and 1 N HCl . The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined, and washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to give the crude Weinreb amide $\mathrm{S} 03(3.400 \mathrm{gm}, 91 \%)$ as a colourless solid. The crude product was at high purity and was used directly without further purification. $v_{\max }$ (ATR) $3329,2935,1715,1665,1498,1173 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.57$ (1H, br s, NH), 4.89-4.74 (1H, m, 2-H), 3.86-3.79 (2H, m, 3-H2), $3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.49(1 \mathrm{H}$, br s, OH), $1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.9 \mathrm{C} 1,156.0 \mathrm{NHCOO}, 80.3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 64.1 \mathrm{C} 3,61.8$ $\mathrm{OCH}_{3}, 52.5 \mathrm{C} 2,31.1 \mathrm{NCH}_{3}, 28.5 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 271.2[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}_{2}{ }^{23} \mathrm{Na}$ (Expected: 271.1).

S04 (S)-tert-Butyl (3,8,8,9,9-pentamethyl-4-oxo-2,7-dioxa-3-aza-8-siladecan-5-yl)carbamate ${ }^{2}$

Procedure: ${ }^{7}$ To a solution of $\mathrm{SO} 3(500 \mathrm{mg}, 2.02 \mathrm{mmol})$ in anhydrous DMF (2.5 mL) were added imidazole (410 mg , $6.12 \mathrm{mmol}, 3 \mathrm{eq}$.) and a catalytic amount of DMAP ($25 \mathrm{mg}, 0.2 \mathrm{mmol}, 0.1 \mathrm{eq}$.) at $0{ }^{\circ} \mathrm{C}$ followed by addition of a solution of TBSCI ($349 \mathrm{mg}, 2.32 \mathrm{mmol}, 1.15$ eq.) in anhydrous DMF (2.5 ml). The resulting mixture was allowed to warm up to room temperature, stirred overnight, and poured into sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 ml) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{ml})$. The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated under vacuum to yield the crude product as yellowish viscous oil. Column chromatography on silica gel (from 25% to 50% EtOAc in pet. ether) gave S 04 ($650 \mathrm{mg}, 1.80 \mathrm{mmol}, 89 \%$) as a sticky oil ($R_{f} \approx 0.25$; EtOAc/pet. ether 25/75). $v_{\max }(A T R) 2931,2857,2350,1711,1661,1494,1468,1168,1111,837 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(700$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.35(1 \mathrm{H}, \mathrm{brd}, J 8.5, \mathrm{NH}), 4.80-4.70(1 \mathrm{H}, \mathrm{m}, 5-H), 3.84(1 \mathrm{H}, \mathrm{dd}, J 9.4,4.5,6-H \mathrm{H}), 3.78(1 \mathrm{H}, \mathrm{dd}, J 9.7$, $4.5,6-\mathrm{HH}), 3.74\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.43\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.02,0.01(2 \times$ $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.9,155.5,79.7,63.7,61.6,52.6,32.3,28.5,25.9,-5.4,-5.4 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right)$ $385.2[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{~N}_{2}{ }^{28} \mathrm{Si}^{23} \mathrm{Na}$ (Expected: 385.1).

12 (S)-tert-Butyl (1-((tert-butyldimethylsilyl)oxy)-3-oxopent-4-en-2-yl)carbamate ${ }^{2}$

Procedure: ${ }^{2}$ A (0.6 M) solution of vinyl magnesium bromide (c.a. $11 \mathrm{ml}, 6.64 \mathrm{mmol}, 4$ eq.) in THF was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of $\mathrm{S} 04(600 \mathrm{mg}, 1.66 \mathrm{mmol})$ in anhydrous THF (10 ml). The reaction mixture was allowed to warm up to room temperature. After the reaction mixture was stirred for 1 hour at the same temperature, the reaction mixture was poured into ice cooled 2 N HCl . The resulting mixture was extracted with ethyl acetate. The organic layers were combined, washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to give the crude products. Column chromatography on silica gel (from 5\% to 20% EtOAc in pet. ether) gave 12 (920 $\mathrm{mg}, 84 \%$) as a viscous oil ($R_{f} \approx 0.78$; EtOAc/pet. ether 25/75). $v_{\max }$ (ATR) 3460, 2865, 1695, 1489, 1359, $1173 \mathrm{~cm}^{-}$ ${ }^{1}$; $\delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.55(1 \mathrm{H}, \mathrm{dd}, J 17.5,10.7,4-\mathrm{CH}), 6.34\left(1 \mathrm{H}, \mathrm{dd}, J 17.5,1.0,5-\mathrm{CH}_{\text {trans }}\right), 5.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.7$, $\left.1.0,5-\mathrm{CH}_{\text {cis }}\right), 5.52(1 \mathrm{H}, \mathrm{brd}, J 6.8, \mathrm{NH}), 4.63-4.56(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{CH}), 4.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2,3.1,1-\mathrm{CHH}), 3.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 10.2, 4.4, 1-CHH), $\left.2.04(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.83\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.02,0.01(2 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH})_{3}\right)$; $\delta_{\mathrm{C}}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 196.8,155.3,133.1,129.3,79.7,63.4,59.5,28.3,25.7,18.2,-5.6 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 330.5[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~N}_{1}{ }^{28} \mathrm{Si}$ (Expected: 330.2).

14 tert-Butyl ((2S,3R)-1-((tert-butyldimethylsilyl)oxy)-3-hydroxypent-4-en-2-yl)carbamate ${ }^{2}$

Procedure: ${ }^{2}$ To a solution of the enone $12(910 \mathrm{mg}, 2.77 \mathrm{mmol})$ in spectrophotometric grade ethanol (35 ml) was added lithium tri-tert-butoxy aluminium hydride ($1.546 \mathrm{~g}, 6.1 \mathrm{mmol}, 2.2 \mathrm{eq}$.) at $-78{ }^{\circ} \mathrm{C}$. After the reaction mixture was stirred at the same temperature for $2 \mathrm{hrs}, 0.1 \mathrm{~N} \mathrm{HCl}(16.5 \mathrm{ml})$ was added followed by Celite and EtOAc (16.5 $\mathrm{ml})$. The resulting slurry was filtered through Celite and the residue was washed with EtOAc (16.5 ml). The two phases were separated and the aqueous phase re-extracted with EtOAc. The organic extracts were combined, washed with NaHCO_{3} and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to give the crude product as a single diastereomer 14 as indicated by the ${ }^{1} \mathrm{H}$ NMR analysis. Column chromatography on silica gel (from 20\% to 50% ethyl acetate in pet. ether) gave $14\left(870 \mathrm{mg}, 95 \%\right.$) as a viscous oil ($R_{f} \approx 0.40$; EtOAc/pet. ether 25/75). $v_{\max }$ (ATR) $3445,2940,1699,1494,1168,840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.91$ (1H, ddd, J 17.1, 10.6, 4.9, 4-H), 5.37 (1H, dd, J 17.1, 1.6, 5- $H_{\text {trans }}$), 5.27 (1H, br d, J 7.9, NH), 5.23 (1H, dd, J 10.6, 1.6, 5- $H_{c i s}$), 4.29-4.22 (1H, m, 3-H), $3.91(1 \mathrm{H}, \mathrm{dd}, J 10.4,2.9,1-H \mathrm{H}), 3.74(1 \mathrm{H}, \mathrm{dd}, J 8.3,2.91-\mathrm{HH}), 3.65-3.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.47(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.44$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.05,0.04\left(2 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 155.9,138.0,115.9$, 79.7 , 74.9, 63.6, 54.2, 28.5, 28.5, 25.9, 25.9, 18.2, -5.52, -5.54; m/z (ES ${ }^{+}$) $332.4[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{~N}_{1} \mathrm{Si}_{1}$ (Expected: 332.2), $354.4[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{16} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{~N}_{1}{ }^{28} \mathrm{Si}^{23} \mathrm{Na}$ (Expected: 354.2).

15 tert-Butyl ((2S,3R)-1,3-dihydroxypent-4-en-2-yl)carbamate ${ }^{2}$

Procedure: A solution of $14(100 \mathrm{mg}, 0.3 \mathrm{mmol})$ in methanol $(1.5 \mathrm{ml})$ was treated with $2 \mathrm{~N} \mathrm{HCl}(150 \mu \mathrm{l})$ dropwise at $-0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 15 minutes at the same temperature and monitored by TLC. Upon complete consumption of the starting material, the reaction was quenched by addition of a brine solution (5 ml) and extracted with EtOAc ($2 \times 10 \mathrm{ml}$). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated under vacuum to yield the crude product. Column chromatography on silica gel (from 25% to 50% ethyl acetate in pet. ether and elution with MeOH) gave $15(60 \mathrm{mg}, 2.76 \mathrm{mmol}, 92 \%)$ as viscous oil $\left(R_{f} \approx 0.13\right.$; EtOAc/pet. ether 50/50). $v_{\max }$ (ATR) 3456, 2931, 1705, 1510, 1177, $842 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.94$ (1H, ddd, $J 16.9,10.6,5.3,4-H), 5.40\left(1 H, d, J 16.9,5-H_{\text {trans }}\right), 5.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.27\left(1 \mathrm{H}, \mathrm{d}, J 10.6,5-\mathrm{H}_{\text {cis }}\right), 4.39(1 \mathrm{H}$, br s, $3-H), 3.93(1 H, d d, J 11.2,3.5,1-H H), 3.74-3.68(1 H, m, 1-H H), 3.68-3.61(1 H, m, 2-H), 2.85(1 H$, app d, J 4.5, 3$\mathrm{OH}), 2.57(1 \mathrm{H}, \mathrm{br}$ s, 1-OH$), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.3,137.6,116.7,80.1,75.1,62.7,55.1$, 28.5; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 240.4[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}^{23} \mathrm{Na}$ (Expected: 240.1).

S05 (1S,2S,4S,5R)-1-(Anthracen-9-ylmethyl)-2-((R)-hydroxy(quinolin-4-yl)methyl)-5-vinyl-1-azoniabicyclo [2.2.2]octane chloride ${ }^{8}$

Procedure: ${ }^{8}$ To a suspension of cinchonidine ($294 \mathrm{mg}, 1.0 \mathrm{mmol}$) in toluene (4 ml) was added 9-(chloromethyl) anthracene ($237 \mathrm{mg}, 1.05 \mathrm{mmol}, 1.05 \mathrm{eq}$.), and the mixture was stirred at reflux $110{ }^{\circ} \mathrm{C}$ for 3 hrs . The mixture was cooled to room temperature, poured into 20 ml of ether. The solid residue was collected by centrifugation and decantation of the liquid phase. The residue was washed by ether ($2 \times 20 \mathrm{ml}$) and collected by centrifugation. The mother liquor was concentrated in vacuo and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether and kept at $-20{ }^{\circ} \mathrm{C}$ to precipitate another fraction of the product. The combined solid residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether and kept at $-20^{\circ} \mathrm{C}$ to afford $\mathrm{S} 05(460 \mathrm{mg}, 0.88 \mathrm{mmol}, 88 \%)$ as light yellow solid ($R_{f} \approx 0.30 ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 93 / 7$). δ_{H} $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20 \mathrm{mg} / \mathrm{ml}\right)^{9} 8.97(1 \mathrm{H}, \mathrm{d}, J 8.4), 8.86(1 \mathrm{H}, \mathrm{d}, J 4.3), 8.79(2 \mathrm{H}, \mathrm{d}, J 8.9), 8.17(1 \mathrm{H}, \mathrm{d}, J 4.9), 8.06-$ $8.01(2 \mathrm{H}, \mathrm{m}, J 4.7), 7.71(1 \mathrm{H}, \mathrm{d}, J 8.2), 7.68-7.64(1 \mathrm{H}, \mathrm{m}), 7.61(1 \mathrm{H}, \mathrm{d}, J 7.8), 7.47-7.40(1 \mathrm{H}, \mathrm{m}), 7.29-7.21(4 \mathrm{H}$, m), 7.19-7.09 (1H, m), 7.09-7.04 (1H, m), 6.74 (2H, s), 5.42 (1H, ddd, J 16.8, 10.5, 6.1), 5.21 (1H, d, J 16.8), 4.90 ($1 \mathrm{H}, \mathrm{dd}, J 10.5,1.4$), $4.85-4.73(1 \mathrm{H}, \mathrm{m}), 4.72-4.58(1 \mathrm{H}, \mathrm{m}), 3.97(1 \mathrm{H}, \mathrm{d}, J 13.0), 2.58(1 \mathrm{H}, \mathrm{dd}, J 12.9,10.6), 2.47$ (1H, app. t, J 12.6), 2.18-2.06 (1H, m), 1.95-1.77 (2H, m), 1.77-1.56 (1H, m), 1.22-1.11 (1 H, m), 1.11-0.95 (1H, $\mathrm{m}) ; \delta_{\mathrm{C}}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 149.01,136.52,133.38,132.76,131.21,130.45,130.39,128.98,128.86,128.38,127.76$, 127.46, 127.23, 125.98, 125.73, 124.93, 124.91, 124.38, 124.06, 120.26, 118.26, 117.86, 67.22, 67.18, 61.58, 54.98, 50.66, 38.64, 25.99, 25.81, 23.50; m/z (ES ${ }^{+} 485.5\left[\mathrm{M}^{+} \mathrm{C}_{34} \mathrm{H}_{33} \mathrm{ON}_{2}\right.$ (Expected: 485.3).

Page 8 of 50

29
(1S,2S,4S,5R)-2-((R)-Allyloxy(quinolin-4-yl)methyl)-1-(anthracen-9-ylmethyl)-5-vinyl-1-azoniabicyclo [2.2.2]octane bromide ${ }^{8}$

Procedure: ${ }^{8}$ To a suspension of $\mathrm{S} 05(200 \mathrm{mg}, 0.39 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added allyl bromide ($100 \mu \mathrm{l}, 1.17$ mmol, 3.05 eq.) and 50% aq. KOH solution ($200 \mu \mathrm{l}, 1.9 \mathrm{mmol}, 5 \mathrm{eq}$.). The resulting mixture was stirred vigorously at room temperature for 4 hrs . The mixture was diluted with water (6.25 ml) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo. Recrystallization of the residue from $\mathrm{MeOH} /$ ether at $-20^{\circ} \mathrm{C}$ afforded the desired product $29(190 \mathrm{mg}, 0.32 \mathrm{mmol}, 84 \%)$ as an orange solid. $\delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 25 \mathrm{mg} / \mathrm{ml}\right)^{9} 9.07(1 \mathrm{H}, \mathrm{d}, J 4.4), 8.93(1 \mathrm{H}, \mathrm{s}), 8.77(1 \mathrm{H}, \mathrm{d}, J 9.0), 8.63-8.56(1 \mathrm{H}, \mathrm{m}), 8.48(1 \mathrm{H}$, d, J 9.1), $8.31-8.26(2 \mathrm{H}, \mathrm{m}), 8.25(1 \mathrm{H}, \mathrm{d}, J 8.3), 8.01-7.93(3 \mathrm{H}, \mathrm{m}, J 15.0,7.2), 7.83(1 \mathrm{H}, \mathrm{dd}), 7.79(1 \mathrm{H}, \mathrm{dd}, J 8.5$, $7.2), 7.68(2 \mathrm{H}, \mathrm{dd}, J 14.4,6.3), 6.98(1 \mathrm{H}, \mathrm{s}), 6.44(2 \mathrm{H}, \mathrm{ddd}, J 15.9,11.0,5.6), 5.92(1 \mathrm{H}, \mathrm{d}, J 13.9), 5.76-5.67(2 \mathrm{H}$, m), $5.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.4), 5.06-4.98(2 \mathrm{H}, \mathrm{m}, \mathrm{J} 13.2), 4.59-4.52(2 \mathrm{H}, \mathrm{m}, \mathrm{J} 13.0,6.0), 4.51-4.42(2 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{d}$, $J 13.0), 3.30-3.24(1 \mathrm{H}, \mathrm{m}), 2.94(1 \mathrm{H}, \mathrm{td}, J 11.6,5.1), 2.54-2.42(2 \mathrm{H}, \mathrm{m}, J 23.5,13.6), 2.21(1 \mathrm{H}, \mathrm{s}), 2.00(1 \mathrm{H}, \mathrm{s})$, $1.70-1.58(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(176 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 151.05,149.38,142.94,138.50,134.80,134.67,134.61,133.94,133.10$, $133.04,131.52,131.31,131.18,130.66,129.41,129.26,127.08,126.66,126.57,125.28,124.88,121.65,119.12$,
 (Expected: 525.3).

S06 (1S,2R,4S,5R)-1-(Anthracen-9-ylmethyl)-2-((S)-hydroxy(quinolin-4-yl)methyl)-5-vinyl-1-azoniabicyclo [2.2.2]octane chloride ${ }^{9}$

Procedure: ${ }^{9}$ To a suspension of cinchonine ($294 \mathrm{mg}, 1.0 \mathrm{mmol}$) in toluene (4 ml) was added 9(chloromethyl)anthracene ($237 \mathrm{mg}, 1.05 \mathrm{mmol}, 1.05 \mathrm{eq}$.) , and the mixture was stirred at reflux $110{ }^{\circ} \mathrm{C}$ for 4 days. The mixture was cooled to room temperature, poured into 20 ml of ether. The solid residue was collected by centrifugation and decantation of the liquid phase. The residue was washed by ether ($2 \times 20 \mathrm{ml}$) and collected by centrifugation. The mother liquor was concentrated in vacuo and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether and kept at $-20^{\circ} \mathrm{C}$ to precipitate another fraction of the product. The combined solid residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether and kept at $-20^{\circ} \mathrm{C}$ to afford S 06 ($250 \mathrm{mg}, 0.48 \mathrm{mmol}, 48 \%$) as light yellow solid ($R_{f} \approx 0.30$; Page 9 of 50
$\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 93 / 7\right) . \delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25 \mathrm{mg} / \mathrm{ml}\right)^{9} 9.24(1 \mathrm{H}, \mathrm{d}, J 8.6), 8.92(1 \mathrm{H}, \mathrm{d}, J 6.7), 8.81(1 \mathrm{H}, \mathrm{s}), 8.41(1 \mathrm{H}$, d, J 8.7), $8.20(1 \mathrm{H}, \mathrm{s}), 8.02(1 \mathrm{H}, \mathrm{d}, J 3.7), 7.85(1 \mathrm{H}, \mathrm{s}), 7.55(1 \mathrm{H}, \mathrm{d}, J 8.1), 7.53(1 \mathrm{H}, \mathrm{d}, J 8.3), 7.45(1 \mathrm{H}, \mathrm{d}, J 8.2)$, $7.27-7.23(1 \mathrm{H}, \mathrm{m}), 7.21-7.16(2 \mathrm{H}, \mathrm{m}), 7.11-7.06(1 \mathrm{H}, \mathrm{m}, \mathrm{J} 6.7), 7.06-7.02(1 \mathrm{H}, \mathrm{m}, \mathrm{J} 7.2), 6.98-6.89(3 \mathrm{H}, \mathrm{m}), 6.46$ (1H, d, J 13.7), 5.56 (1H, ddd, J 17.2, 10.5, 6.6), 5.00 (1H, d, J 10.5), 4.84 (1H, d, J 17.3), 4.75-4.68 (1H, m), 4.44$4.36(1 \mathrm{H}, \mathrm{m}), 4.24(1 \mathrm{H}, \mathrm{t}, J 11.5), 2.45(2 \mathrm{H}, \mathrm{t}, J 12.0), 2.30(1 \mathrm{H}, \mathrm{dd}, J 20.5,10.7), 1.92(1 \mathrm{H}, \mathrm{t}, J 12.6), 1.73-1.64$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{J} 23.5,10.1), 1.49(1 \mathrm{H}, \mathrm{s}), 1.34(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 11.1), 0.65-0.57(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{H}}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 149.4,147.0$, $145.6,135.6,133.1,132.8,130.9,130.4,130.1,129.0,128.5,128.2,127.6,127.3,126.9,124.9,124.9,124.61$, $120.1,118.1,117.5,67.8,66.8,57.6,54.3,54.0,38.1,26.4,24.1,22.7 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 485.8[\mathrm{M}]^{+} \mathrm{C}_{34} \mathrm{H}_{33} \mathrm{ON}_{2}$ (Expected: 485.3).

28 (1S,2R,4S,5R)-2-((S)-Allyloxy(quinolin-4-yl)methyl)-1-(anthracen-9-ylmethyl)-5-vinyl-1-azoniabicyclo [2.2.2]octane bromide ${ }^{10}$

Procedure: ${ }^{8}$ To a suspension of $\mathrm{S} 06(272 \mathrm{mg}, 0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{ml})$ was added allyl bromide ($141 \mu \mathrm{l}, 1.63$ $\mathrm{mmol}, 3.05$ eq.) and 50% aq. KOH solution ($286 \mu \mathrm{l}, 2.6 \mathrm{mmol}, 5 \mathrm{eq}$.). The resulting mixture was stirred vigorously at room temperature for 4 hrs . The mixture was diluted with water (9 ml) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 7 \mathrm{ml}$). The combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo. Recrystallization of the residue from $\mathrm{MeOH} /$ ether at $-20^{\circ} \mathrm{C}$ afforded the desired product $28(275 \mathrm{mg}, 0.45 \mathrm{mmol}, 87 \%)$ as orange solid. δ_{H} $\left(700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 18 \mathrm{mg} / \mathrm{ml}\right)^{9} 9.04(1 \mathrm{H}, \mathrm{d}, J 4.0), 9.01(1 \mathrm{H}, \mathrm{d}, J 9.0), 8.77(2 \mathrm{H}, \mathrm{m}), 8.27(1 \mathrm{H}, \mathrm{d}, J 8.7), 8.20-8.14$ $(3 \mathrm{H}, \mathrm{m}), 8.00(1 \mathrm{H}, \mathrm{s}), 7.94-7.90(2 \mathrm{H}, \mathrm{m}), 7.84-7.79(1 \mathrm{H}, \mathrm{m}), 7.70-7.66(1 \mathrm{H}, \mathrm{m}), 7.62-7.57(2 \mathrm{H}, \mathrm{m}, \mathrm{J} 10.4,5.4)$, $6.90(1 \mathrm{H}, \mathrm{s}), 6.46-6.38(1 \mathrm{H}, \mathrm{m}), 6.13-5.99(2 \mathrm{H}, \mathrm{m}), 5.93(1 \mathrm{H}, \mathrm{ddd}, J 17.2,10.6,6.9), 5.72(1 \mathrm{H}, \mathrm{d}, J 17.2), 5.63(1 \mathrm{H}$, d, J 10.6), $5.19(1 \mathrm{H}, \mathrm{d}, J 10.5), 5.04(1 \mathrm{H}, \mathrm{d}, J 17.3), 4.58(1 \mathrm{H}, \mathrm{m}), 4.55(1 \mathrm{H}, \mathrm{dd}, J 12.8,6.0), 4.41-4.34(3 \mathrm{H}, \mathrm{m})$, $3.11(1 \mathrm{H}$, app. t, J 11.5), $2.77(1 \mathrm{H}, \mathrm{m}), 2.55-2.50(1 \mathrm{H}, \mathrm{m}), 2.25-2.14(1 \mathrm{H}, \mathrm{m}), 1.85-1.78(2 \mathrm{H}, \mathrm{m}), 1.64-1.55(1 \mathrm{H}$, m), 1.20-1.12 (1H, m), $0.70(0.45 \mathrm{H}, \mathrm{t}, J 7.4) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 525.7[\mathrm{M}]^{+} \mathrm{C}_{37} \mathrm{H}_{37} \mathrm{ON}_{2}$ (Expected: 525.3).

22 Methyl 2-((diphenylmethylene)amino)acetate ${ }^{11}$

Procedure: ${ }^{11}$ To a suspension of methyl glycine hydrochloride ($753 \mathrm{mg}, 6 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml), an equimolar amount of benzophenone imine ($1 \mathrm{ml}, 6 \mathrm{mmol}$) was added and the reaction mixture was stirred at room temperature for 24 hr . The reaction mixture was filtered to remove $\mathrm{NH}_{4} \mathrm{Cl}$ and evaporated to dryness on a rotary evaporator. The residue was dissolved in 20 mL of ether, filtered, washed with 20 mL of water, and dried over MgSO4 to yield the crude product. Column chromatography on silica gel (from 10% to 50% ethyl acetate in pet. ether) gave 22 ($1.221 \mathrm{~g}, 4.8 \mathrm{mmol}, 80 \%$) as white waxy solid ($R_{f} \approx 0.33$; EtOAc/pet. ether 33/67). $v_{\max }$ (ATR) 2948, 2890, 2361, 1970, 1752, 1622, 1573, 1384, 1195, $682 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.66(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.49-7.42$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{\prime} H\right), 7.33\left(2 \mathrm{H}, \mathrm{m}, \operatorname{Ar}^{\prime} \mathrm{H}\right), 7.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{\prime} H\right), 4.22\left(2 \mathrm{H}, \mathrm{s} 2-\mathrm{H}_{2}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$; δ_{C} ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 172.0, 171.2, 139.3, 136.0, 130.6, 128.9, 128.9, 128.8, 128.2, 127.8, 55.7, 52.1; m/z (ES ${ }^{+}$) 254.4 $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}$ (Expected: 254.1).

General Procedure for Phase Transfer Catalysis ${ }^{8,12}$

To an ice cooled solution of the Schiff base 22 in Toluene $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(7: 3 \mathrm{v} / \mathrm{v})$, the cinchona catalyst 29 or 28 was added ($5 \mathrm{~mol} \%$) followed by dropwise addition of allyl bromide (5.0 eq .) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 5 min before the dropwise addition of 50% aq. KOH (5 eq .). The reaction was stirred vigorously overnight from $0^{\circ} \mathrm{C}$ to room temperature. The reaction was monitored by TLC and upon completion; the reaction mixture was diluted with water (10 ml) and extracted with EtOAc $(3 \times 5 \mathrm{ml})$. The organics were dried over MgSO_{4}, filtered, and evaporated in vacuo, affording the crude products.

S07 (S)-Methyl 2-((diphenylmethylene)amino) pent-4-enoate ${ }^{8}$
S08 (R)-Methyl 2-((diphenylmethylene)amino)pent-4-enoate
$v_{\max }(\mathrm{ATR}) 2954,2385,1704,1491,1168,840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.65-7.61(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.47-7.42(3 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.40-7.36(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.35-7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.19-7.14(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.67(1 \mathrm{H}, \mathrm{ddt}, J 17.1,10.1,7.2$, $4-H), 5.07(1 \mathrm{H}, \mathrm{dd}, J 17.1,2.0,5-\mathrm{HH}), 5.02(1 \mathrm{H}, \mathrm{dd}, J 10.1,2.0,5-H \mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{dd}, J 7.8,5.3,2-H), 3.72(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 2.75-2.56\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.4\left(\mathrm{COOCH}_{3}\right), 170.8\left(\mathrm{Ph}_{2} \mathrm{CN}\right), 139.6(\mathrm{Ar}), 136.4(\mathrm{Ar})$, 134.4 (Ar), 130.5 (C4), 128.94 (Ar), 128.78 (Ar), 128.61 (Ar), 128.14 (Ar), 128.03 (Ar), 117.8 (C5), 65.4 (C2), 52.1 $\left(\mathrm{OCH}_{3}\right), 38.3(\mathrm{C} 3)$.

S09 (S)-Methyl 2-((tert-butoxycarbonyl)amino)pent-4-enoate ${ }^{13,14}$

Procedure: ${ }^{15}$ A mixture of the starting material $\mathrm{S} 07(735 \mathrm{mg}, 2.51 \mathrm{mmol})$ and $4 \mathrm{~N} \mathrm{HCl}(3.1 \mathrm{ml}$, excess) in $\mathrm{MeOH}(10$ ml) was refluxed for 1 hr . The reaction mixture was allowed to cool down to room temperature. The reaction mixture was extracted by ether ($2 \times 5 \mathrm{ml}$). The ether layer was discarded and the aqueous layer was basified by NaHCO_{3} to pH 8 followed by addition of Boc2O (Boc anhydride) ($824 \mathrm{mg}, 3.77 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and the reaction was stirred for 2 hrs at room temperature and monitored by TLC. The reaction volume was reduced under vacuum and extracted with EtOAc $(3 \times 10 \mathrm{ml})$. The combined organic extracts were washed with brine, dried over MgSO4, filtered and evaporated in vacuo to afford the crude product. Column chromatography on silica gel (from 20\% to
50% ethyl acetate in pet. ether) gave S 09 ($442 \mathrm{~g}, 1.9 \mathrm{mmol}, 76 \%$) as viscous liquid ($\mathrm{Rf} \approx 0.42$; EtOAc/pet. ether 33/67). $v_{\max }(\mathrm{ATR}) 3375,2971,2879,1716,1491,1173,840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.68(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 17.0,9.7$, $7.2,4-H), 5.17-5.08\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 5.03(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 6.2, \mathrm{NH}), 4.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.3,6.2,2-H), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 2.61 - $2.39\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 1.42\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.2,155.3,132.4,119.1,79.9,52.3,36.9$, 28.4; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 253.0[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ (Expected: 253.1).

S10 (R)-Methyl 2-((tert-butoxycarbonyl)amino)pent-4-enoate ${ }^{13,14}$

Procedure: ${ }^{15}$ A mixture of the starting material $\mathrm{S} 08(690 \mathrm{mg}, 2.35 \mathrm{mmol})$ and $4 \mathrm{~N} \mathrm{HCl}(3.0 \mathrm{ml}$, excess) in $\mathrm{MeOH}(10$ ml) was refluxed for 1 hr . The reaction mixture was allowed to cool down to room temperature. The reaction mixture was extracted by ether ($2 \times 5 \mathrm{ml}$). The ether layer was discarded and the aqueous layer was basified by NaHCO_{3} to pH 8 followed by addition of $\mathrm{Boc}_{2} \mathrm{O}$ (Boc anhydride) ($775 \mathrm{mg}, 3.53 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and the reaction was stirred for 2 hrs at room temperature and monitored by TLC. The reaction volume was reduced under vacuum and extracted with EtOAc $(3 \times 10 \mathrm{ml})$. The combined organic extracts were washed with brine, dried over MgSO4, filtered and evaporated in vacuo to afford the crude product. Column chromatography on silica gel (from 20% to 50% ethyl acetate in pet. ether) gave $\mathrm{S} 10(408 \mathrm{~g}, 1.78 \mathrm{mmol}, 75 \%$) as viscous liquid ($\mathrm{Rf} \approx 0.42$; EtOAc/pet. ether $33 / 67) . v_{\max }(\mathrm{ATR}) 3375,2971,2879,1716,1491,1173,840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.68(1 \mathrm{H}, \mathrm{ddt}, J 17.0,9.7$, $7.2,4-H), 5.17-5.08\left(2 H, m, 5-H_{2}\right), 5.03(1 H, b r d, J 6.2, N H), 4.37(1 H, d d, J 13.3,6.2,2-H), 3.72(3 H, s, O C H 3)$, 2.61-2.39 (2H, m, 3- H_{2}), $1.42\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.2,155.3,132.4,119.1,79.9,52.3,36.9$, 28.4; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 253.1[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ (Expected: 253.1).

25 (S)-tert-Butyl (1-hydroxypent-4-en-2-yl)carbamate ${ }^{16}$

Procedure: A solution of S 09 ($332 \mathrm{mg}, 1.45 \mathrm{mmol}$) in anhydrous ether (5 ml) was added dropwise to a stirred suspension of $\mathrm{LiAlH}_{4}\left(100 \mathrm{mg}, 3.19 \mathrm{mmol}, 2.2\right.$ eq.) in anhydrous ether (5 ml) at $-0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm up to room temperature, was stirred for additional 1 hr and followed by TLC. Upon completion, the reaction was carefully quenched with dropwise addition of water (1 ml) followed by addition of 15% aq. $\mathrm{NaOH}(1$ $\mathrm{ml})$, water $(3 \mathrm{ml})$, Celite and EtOAc $(10 \mathrm{ml})$. The resulting slurry was filtered through Celite and the filtering bed was washed with EtOAc ($2 \times 5 \mathrm{ml}$). The two phases were separated and the organic layer was washed with brine, dried over MgSO_{4}, filtered and evaporated in vacuo to afford the crude product $25(265 \mathrm{mg}, 1.32 \mathrm{mmol}, 91 \%)$ as a pale yellow oil ($R_{f} \approx 0.25$; EtOAc/pet. ether $33 / 67$). The product was pure enough and was used without further purification. $v_{\max }(\mathrm{ATR}) 3375,2971,2879,1716,1491,1173,840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.78(1 \mathrm{H}$, ddt, J 17.2 , 10.2, 7.1, 4-H), $5.11\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 4.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.74-3.58\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right.$ and $\left.2-\mathrm{H}\right), 2.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$,
$2.31(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{HH}), 2.23(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{HH}), 1.43\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; $\delta_{\mathrm{c}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.56,134.28$, 118.23, 79.89, 65.54, 52.30, 36.10, 28.49; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 224.0[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ (Expected: 224.1).

24 (R)-tert-Butyl (1-hydroxypent-4-en-2-yl)carbamate ${ }^{16}$

Procedure: A solution of $\mathrm{S} 10(388 \mathrm{mg}, 1.69 \mathrm{mmol})$ in anhydrous ether (6 ml) was added dropwise to a stirred suspension of LiAlH_{4} ($102 \mathrm{mg}, 3.72 \mathrm{mmol}, 2.2$ eq.) in anhydrous ether $(6 \mathrm{ml})$ at $-0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm up to room temperature, was stirred for additional 1 hr and followed by TLC. Upon completion, the reaction was carefully quenched with dropwise addition of water (1 ml) followed by addition of 15% aq. $\mathrm{NaOH}(1$ $\mathrm{ml})$, water $(3 \mathrm{ml})$, Celite and EtOAc (12 ml). The resulting slurry was filtered through Celite and the filtering bed was washed with EtOAc ($2 \times 5 \mathrm{ml}$). The two phases were separated and the organic layer was washed with brine, dried over MgSO_{4}, filtered and evaporated in vacuo to afford the crude product $24(270 \mathrm{mg}, 1.34 \mathrm{mmol}, 79 \%)$ as a pale yellow oil ($R_{f} \approx 0.25$; EtOAc/pet. ether $33 / 67$). The product was pure enough and was used without further purification. $v_{\max }(\mathrm{ATR}) 3375,2971,2879,1716,1491,1173,840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.78(1 \mathrm{H}$, ddt, J 17.2 , 10.2, 7.1, 4-H), $5.11\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 4.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.74-3.58\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right.$ and $\left.2-H\right), 2.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.31$ (1H, m, 3-HH), $2.23(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{HH}), 1.43\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.56(\mathrm{NHCOO}), 134.28,118.23\right.$, 79.89, 65.54, 52.30, 36.10, 28.49; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 224.0[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ (Expected: 224.1).

Olefin Cross Metathesis

To a solution of Grubbs II $(0.3 \% \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the starting material was added as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by the addition of the coupling olefin in excess (5 eq.). The reaction mixture was refluxed, typically for $4 \sim 8$ hrs. The reaction was followed by TLC and quenched by addition of potassium 2-isocyanoacetate ($1.32 \% \mathrm{~mol}, 4.4$ eq. to Grubbs catalyst). ${ }^{17}$ The reaction was stirred for 15 min at room temperature then evaporated in vacuo to yield the crude mixture which was purified by column chromatography on silica. ${ }^{2}$

18a tert-Butyl ((2S,3R,E)-3-hydroxyoctadec-4-en-2-yl)carbamate

Yield (52\%); $v_{\max }(A T R) 3375,2971,2879,1716,1491,1173,840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.75-5.66(1 \mathrm{H}, \mathrm{m}, 5-$ H), $5.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5,6.6,4-H), 4.68-4.60(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 4.14-4.06(1 \mathrm{H}, \mathrm{m}, 3-H), 3.83-3.75(1 \mathrm{H}, \mathrm{m}, 2-H), 2.07-$ $2.01\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.39-1.22\left(22 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ to $\left.17-\mathrm{H}_{2}\right), 1.07\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4,1-\mathrm{H}_{3}\right), 0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.6.9,18-H_{3}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.3(\mathrm{NHCOO}), 134.2,128.5,79.8,75.9,32.5,32.1,29.9,29.8,29.8,29.7$, 29.6, 29.5, 29.3, 28.5, 22.8, 15.6, 14.3; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 406.5[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{HRMS}^{\left(\mathrm{ES}^{+}\right) \text {found }[\mathrm{M}+\mathrm{H}]^{+} 384.3474, \mathrm{C}_{23} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{~N}_{1}, ~}$ requires $M^{+} 384.3472$.

18b tert-Butyl ((2S,3R,E)-3-hydroxynon-4-en-2-yl)carbamate

Yield (67\%); $v_{\max }(A T R) 3375,2971,2879,1716,1491,1173,840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.76-5.65(1 \mathrm{H}, \mathrm{m}, 5-$ $H), 5.42(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 15.4,6.6,1.4,4-H), 4.74-4.61(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 4.13-4.05(1 \mathrm{H}, \mathrm{m}, 3-H), 3.84-3.72(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, 2.01-2.07 $\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 1.43\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.40-1.25\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 1.07\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,1-\mathrm{H}_{3}\right), 0.88$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,9-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.4,134.1,128.6,79.7,75.9,51.2,32.1,31.5,28.5,22.3,15.7,14.0$; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 280.0[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~N}_{1} \mathrm{Na}_{1}$; $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{H}]^{+} 258.2064, \mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~N}_{1}$ requires M^{+}258.2064, $[\mathrm{M}+\mathrm{Na}]^{+}$280.1884, $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+}280.1883.

18c tert-Butyl ((2S,3R,E)-3-hydroxy-6-phenylhex-4-en-2-yl)carbamate

Yield (64\%) as viscous oil; $v_{\max }(A T R) 3375,2971,2879,1716,1491,1173,840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.32-$ 7.24 (2H, m, ArH), 7.23-7.14 (3H, m, ArH), 5.93-5.83 (1H, m, 5-H), 5.53 (1H, ddt, J 15.3, 6.3, 1.4, 4-H), 4.74-4.66 $(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 4.19-4.13(1 \mathrm{H}, \mathrm{m}, 3-H), 3.86-3.73(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.40\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,6-\mathrm{H}_{2}\right), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.08$ (3H, d, J 6.9, 1-H3); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.4,140.1,132.2,130.2,128.6,128.9,126.3,79.8,75.6,51.2,38.9$, 28.5, 15.6; m/z (ES ${ }^{+}$) $314.3[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~N}_{1} \mathrm{Na}_{1}$; HRMS (ES ${ }^{+}$) found $[\mathrm{M}+\mathrm{H}]^{+} 292.1908, \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~N}_{1}$ requires M^{+}292.1907.

21a tert-Butyl ((2S,3R,E)-3-hydroxynonadec-5-en-2-yl)carbamate

Yield (53\%); $v_{\max }(A T R) 3375,2971,2879,1716,1491,1173,840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.55$ (1H, dt, J 12.8, 6.7, 6-H), 5.43-5.36 (1H, m, 5-H), 4.83-4.68 (1H, m, NH), 3.73-3.58 (2H, m, 3-H and 2-H), 3.48 (1H, d, J 7.8, OH), 2.27-2.15 (4H, m, 4- H_{2} and $\left.7-\mathrm{H}_{2}\right), 2.14-1.98\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.38-1.22\left(94 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right.$ to 18H_{2} and $\left.1-H_{3}\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,19-H_{3}\right) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.24,135.03,125.50,79.56,73.69,50.35,37.46$, $32.88,32.15,29.90,29.88,29.85,29.73,29.66,29.58,29.45,29.44,28.63,22.92,14.35 ; \mathrm{m} / \mathrm{z}\left(E S^{+}\right) 398.5[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ES ${ }^{+}$) found $[\mathrm{M}+\mathrm{H}]^{+} 398.3627, \mathrm{C}_{24} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{~N}_{1}$ requires $\mathrm{M}^{+} 398.3629$; $[\mathrm{M}+\mathrm{Na}]^{+} 420.3446, \mathrm{C}_{24} \mathrm{H}_{47} \mathrm{O}_{3} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires $M^{+} 420.3448$.

21b tert-Butyl ((2S,3R,E)-3-hydroxydec-5-en-2-yl)carbamate

Yield (56\%);waxy solid; $v_{\max }$ (ATR) 3449, 2928, 1715, 1497, 1173, $839 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.55(1 \mathrm{H}, \mathrm{dt}, J$ 13.2, 6.6, 6-CH), 5.43-5.34 (1H, m, 5-H), 4.83-4.70 (1H, m, NH), 3.74-3.58 (2H, m, 2-H and 3-H), 2.23-1.96 (4H, $\mathrm{m}, 4-\mathrm{H}_{2}$ and $\left.7-\mathrm{H}_{2}\right), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.39-1.23\left(4 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right.$ and $\left.9-\mathrm{H}_{2}\right), 1.15-1.02\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,1-\mathrm{H}_{3}\right), 0.89$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,10-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.0,134.8,125.6,79.6,73.5,50.4,37.2,32.3,31.6,28.4,22.2,13.9$; $m / z\left(E S^{+}\right) 294.3[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS $\left(E S^{+}\right)$found $[\mathrm{M}+\mathrm{H}]^{+} 272.2220, \mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~N}_{1}$ requires $\mathrm{M}^{+} 272.2220$; $[\mathrm{M}+\mathrm{Na}]^{+}$ 294.2040, $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+}294.2040.

21c tert-Butyl ((2S,3R,E)-3-hydroxy-7-phenylhept-5-en-2-yl)carbamate

Yield (64\%) as viscous oil; $v_{\max }(A T R) 3375,2971,2879,1716,1491,1173,840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.30-$ 7.27 (2H, m, ArH), 7.21-7.15 (3H, m, ArH), 5.71 (1H, dtd, J 15.2, 11.8, 6.6, 6-H), 5.53 (1H, dd, J 15.2, 6.3, 5-H), $4.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.75-3.62(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $2-H), 3.36\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6,7-\mathrm{H}_{2}\right), 2.24-2.05\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 1.44(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.10\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,1-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 155.88,140.56,135.89,133.24,128.57,127.42,126.16$, $79.58,73.75,50.37,39.23,39.22,37.17,28.55,14.72 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 328.3[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ES ${ }^{+}$) found $[\mathrm{M}+\mathrm{H}]^{+}$ 306.2063, $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~N}_{1}$ requires $\mathrm{M}^{+} 306.2064$; $[\mathrm{M}+\mathrm{Na}]^{+} 328.1883, \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+}328.1883.

17a tert-Butyl ((2S,3R,E)-1,3-dihydroxyoctadec-4-en-2-yl)carbamate ${ }^{2}$

Yield (44\%, 50\%); $v_{\text {max }}(A T R) 3410,2886,2874,1687,1512,1173 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.83-5.73(1 \mathrm{H}, \mathrm{m}, 5-$ $H), 5.53(1 \mathrm{H}, \mathrm{ddt}, J 15.6,6.5,1.2,4-\mathrm{H}), 5.30(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 6.4, \mathrm{NH}), 4.38-4.28(1 \mathrm{H}, \mathrm{m}, 3-H), 3.94(1 \mathrm{H}, \mathrm{app} . \mathrm{d}, \mathrm{J} 10.0$, $1-\mathrm{HH}), 3.76-3.67(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{HH}), 3.63-3.54(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.50(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH}), 2.05(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.3,6-\mathrm{H}), 1.45(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.42-1.18\left(22 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ to $\left.17-\mathrm{H}_{2}\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9,18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 158.1,134.2,128.9$, $79.7,74.9,62.9,56.0,32.3,31.9,29.8,29.6,29.5,29.3,29.1,29.1,28.4,22.6,14.1 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 400.9[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ES ${ }^{+}$) found $[\mathrm{M}+\mathrm{H}]^{+} 400.3419, \mathrm{C}_{23} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{~N}_{1}$ requires $\mathrm{M}^{+} 400.3421$, $[\mathrm{M}+\mathrm{Na}]^{+} 422.3238, \mathrm{C}_{23} \mathrm{H}_{45} \mathrm{O}_{4} \mathrm{~N}_{1}^{23} \mathrm{Na}_{1}$ requires $M^{+} 422.3241$.

17b tert-Butyl ((2S,3R,E)-1,3-dihydroxynon-4-en-2-yl)carbamate

Yield (59\%, 57\%); $v_{\max }(A T R) 3375,2971,2879,1716,1491,1173,840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.76(1 \mathrm{H}, \mathrm{dtd}, J$ $15.4,6.7,1.1,5-H), 5.51(1 \mathrm{H}, \mathrm{ddt}, J 15.4,6.5,1.3,4-H), 5.32(1 \mathrm{H}, \mathrm{br}$ d, NH$), 4.34-4.21(1 \mathrm{H}, \mathrm{m}, 3-H), 3.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $11.4,1-H H), 3.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0,1-\mathrm{HH}), 3.63-3.51(1 \mathrm{H}, \mathrm{m}, 2-H), 2.97(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH}), 2.05(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.8,6.7$, $\left.6-\mathrm{H}_{2}\right), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.39-1.23\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,9-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 156.4, 134.2, 129.1, 79.9, 74.8, 62.8, 55.6, 32.1, 31.4, 28.5, 22.3, 14.0; m/z (ES ${ }^{+}$) $274.6[M+H]^{+} ; \mathrm{HRMS}^{\left(E S^{+}\right)}$ found $[\mathrm{M}+\mathrm{H}]^{+} 274.2012, \mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}_{1}$ requires $\mathrm{M}^{+} 274.2013,[\mathrm{M}+\mathrm{Na}]^{+} 296.1831, \mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+} 296.1832.

17c
tert-Butyl ((2S,3R,E)-1,3-dihydroxy-6-phenylhex-4-en-2-yl)carbamate

Yield (62\%, 43\%); $v_{\text {max }}(A T R) 3375,2971,2879,1716,1491,1173,840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.32-7.26(2 \mathrm{H}$, m, ArH), 7.23-7.19 (1H, m, ArH), 7.18-7.14 (2H, m, ArH), 6.00-5.90 (1H, m, 5-H), $5.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.4,6.2,4-H)$, $5.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.40-4.32(1 \mathrm{H}, \mathrm{m}, 3-H), 3.93(1 \mathrm{H}, \mathrm{dd}, J 11.2,3.5,1-\mathrm{H} H), 3.71(1 \mathrm{H}, \mathrm{dd}, J 11.4,3.5,1-H \mathrm{H})$, $3.67-3.58(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.40(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,6-\mathrm{H}), 2.71-2.44(2 \mathrm{H}, \mathrm{br} \mathrm{m}, 2 \times \mathrm{OH}), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$, CDCl_{3}) 156.7, 139.3, 132.8, 130.7, 128.66, 128.62, 126.4, 80.7, 74.8, 62.8, 38.8, 28.5; m/z (ES ${ }^{+}$) $329.9[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ES ${ }^{+}$) found $[M+H]^{+} 308.1855, C_{17} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{1}$ requires $\mathrm{M}^{+} 308.1856,[\mathrm{M}+\mathrm{Na}]^{+} 330.1673, \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~N}_{1}^{23} \mathrm{Na}_{1}$ requires $M^{+} 330.1676$.

27a (S,E)-tert-Butyl (1-hydroxyoctadec-4-en-2-yl)carbamate ${ }^{18}$

Yield (53\%); $v_{\max }$ (ATR) $3375,2971,2879,1716,1491,1173,840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.52(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.4$, $6.7,5-H), 5.41-5.27(1 \mathrm{H}, \mathrm{m}, 4-H), 4.66(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}), 3.73-3.48\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right.$ and $\left.2-H\right), 2.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.33-$ $2.10\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 2.00\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.0,6.7,6-\mathrm{H}_{2}\right), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.39-1.14(22 \mathrm{H}, \mathrm{m}), 0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8,18-$ H_{3}); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 155.98,134.82,125.20,79.85,65.99,52.74,34.89,32.73,32.07,29.84,29.81,29.78$, 29.66, 29.54, 29.51, 29.32, 28.51, 22.84, 14.28; m/z (ES ${ }^{+}$) $384.9[M+H]^{+}$; HRMS (ES ${ }^{+}$) found $[M+H]^{+} 384.3470$, $\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{~N}_{1}$ requires $M^{+} 384.2472,[\mathrm{M}+\mathrm{Na}]^{+} 406.3288, \mathrm{C}_{23} \mathrm{H}_{45} \mathrm{O}_{3} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires $M^{+} 406.3292$.

26a (R,E)-tert-Butyl (1-hydroxyoctadec-4-en-2-yl)carbamate ${ }^{18}$

Yield (62\%); $v_{\max }(\mathrm{ATR}) 3375,2971,2879,1716,1491,1173,840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.52(1 \mathrm{H}, \mathrm{dtt}, \mathrm{J} 15.4$, $6.6,1.0,5-H), 5.35(1 \mathrm{H}, \mathrm{dtt}, J 15.4,7.1,1.3,4-H), 4.66(1 \mathrm{H}, \mathrm{br} s, \mathrm{NH}), 3.70-3.53\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right.$ and $\left.2-H\right), 2.57(1 \mathrm{H}$, br s, OH), 2.30-2.11 (2H, m, 3- H_{2}), $1.99\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.7,6.7,6-\mathrm{H}_{2}\right), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.36-1.22(22 \mathrm{H}, \mathrm{m}, 7-$ H_{2} to $\left.17-H_{2}\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9,18-H_{3}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 155.98,134.82,125.20,79.85,65.99,52.74,34.89$, $32.73,32.07,29.84,29.81,29.78,29.66,29.54,29.51,29.32,28.51,22.84,14.28 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 384.9[\mathrm{M}+\mathrm{H}]^{+}$; HRMS $\left(E S^{+}\right.$) found $[M+H]^{+} 384.3470, \mathrm{C}_{23} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{~N}_{1}$ requires $\mathrm{M}^{+} 384.2472,[\mathrm{M}+\mathrm{Na}]^{+} 406.3288, \mathrm{C}_{23} \mathrm{H}_{45} \mathrm{O}_{3} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+} 406.3292.

General procedure for BOC de-protection - Acylation Reactions

To a solution of the N -Boc protected starting material in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, TFA (excess) was added dropwise at room temperature and the reaction was monitored by TLC. Typically the reaction was complete in less than 1 hr . The reaction mixture was dried on the rotary evaporator to remove the excess TFA. The resulting residue (unprotected amine) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and basified to pH 8 with aq. NaHCO_{3} followed by the addition of the corresponding acid chloride (1.2 eq.). The reaction was monitored by TLC. Upon completion, the reaction was diluted with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The phases were separated and the aqueous layer was extracted with twice $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried on anhydrous MgSO_{4} and evaporated to yield the crude product. Assessment of the crude product purity was based on crude ${ }^{1} \mathrm{H}$ NMR. Compounds that were $\geq 80 \%$ pure were used as they soon as produced. Others were purified by standard column chromatography. All compounds used in the screening were characterised as an array (${ }^{1} \mathrm{H}$ NMR and Mass Spectrometry data).

18an (2S,3R,E)-2-aminooctadec-4-en-3-ol
Yield (62\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.80\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 5.77(1 \mathrm{H}, \mathrm{dt}, J 15.2,6.4,5-H), 5.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.2,6.1,4-$ H), 4.41-4.24 (1H, m, 3-H), 3.40-3.28 (2H, m, 2-H and OH), $2.02\left(2 H, d d, J 13.7,6.7,6-H_{2}\right), 1.29-1.21(25 H, m, 7-$ H_{2} to $17-H_{2}$ and $\left.1-H_{3}\right), 0.87\left(3 H, t, J 6.8,18-H_{3}\right) ; m / z\left(\mathrm{ES}^{+}\right) 284.3\left[\mathrm{M}+\mathrm{H}^{+} ; \mathrm{HRMS}^{\left(E S^{+}\right)}\right.$found $[\mathrm{M}+\mathrm{H}]^{+} 284.2947$, $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{~N}_{1}$ requires M^{+}284.2948.

18az N-((2S,3R,E)-3-hydroxyoctadec-4-en-2-yl)acetamide
Yield (80\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.75-5.66(1 \mathrm{H}, \mathrm{m}, 5-H), 5.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4, \mathrm{NH}), 5.48-5.35(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.12$ (1H, dd, J 6.7, 3.2, 3-H), 4.10-4.04 (1H, m, 2-H), 2.11-1.95 (5H, m, 6-H2 and COCH ${ }_{3}$), 1.40-1.11 (22H, m, 7-H2 to $\left.18-\mathrm{H}_{2}\right), 1.08\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,1-\mathrm{H}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8,18-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 348.4[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS $\left(E S^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+}$ 348.2871, $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+}348.2873.

18ay N -((2S,3R,E)-3-hydroxyoctadec-4-en-2-yl)-2-phenylacetamide
Yield (22\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.39-7.23(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.64$ (1H, dtd, J 15.0, 7.0, 0.9, $\left.5-H\right), 5.51$ (1H, br d, NH), $5.31(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0,6.3,4-H), 4.13-4.03(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $2-H), 3.58(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 1.98(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.8,7.0,6-$ H_{2}), 1.39-1.18 (22H, m, $7-H_{2}$ to $\left.17-H_{2}\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,1-H_{3}\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9,18-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 424.5$ $[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS $\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+} 424.3182, \mathrm{C}_{26} \mathrm{H}_{43} \mathrm{O}_{2} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+}424.3186.

18ax $\quad \mathbf{N}$-((2S,3R,E)-3-hydroxyoctadec-4-en-2-yl)octanamide
Yield (41%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.71$ (1H, dtd, J 14.9, 6.7, 1.1, 5-H), 5.43 (1H, ddt, J 15.4, 6.6, 1.4, 4-H), 4.64 (1H, br s, NH), 4.14-4.06 (1H, m, 3-H), 3.85-3.72 (1H, m, 2-H), $2.56(1 \mathrm{H}, \mathrm{br}$ s, OH), $2.04(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.9,7.0,6-$ $\left.H_{2}\right), 1.40-1.20\left(22 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ to $\left.17-\mathrm{H}_{2}\right), 1.07\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,1-\mathrm{H}_{3}\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9,18-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(E S^{+}\right) 432.6$ $[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS $\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+} 432.3806, \mathrm{C}_{26} \mathrm{H}_{51} \mathrm{O}_{2} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+}432.3812.

18bn (2S,3R,E)-2-aminonon-4-en-3-ol
Yield (73\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.79-5.69(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.39(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.9,5.3,4-\mathrm{H}), 5.30\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$, 4.32-4.24 (1H, m, 3-H), 3.33-3.21 (1H, m, 2-H), $2.03\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.8,5.2,6-\mathrm{H}_{2}\right), 1.41-1.26\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and 8- H_{2}), $1.15\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,1-\mathrm{H}_{3}\right), 0.88\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9,9-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 158.1[\mathrm{M}+\mathrm{H}]^{+}$; HRMS $\left(E S^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+}$158.1539, $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}_{1} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+}158.1539.

18bz N-((2S,3R,E)-3-hydroxynon-4-en-2-yl)acetamide

Yield (79\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.74-5.62(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.3,6.4,4-H)$, 4.16-4.00 (1H, m, 3-H and 2-H), $3.73(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.14-1.87\left(5 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right.$ and $\left.\mathrm{COCH}_{3}\right), 1.44-1.25\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.\left.8-H_{2}\right), 1.06\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,1-\mathrm{H}_{3}\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8,9-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 222.2[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{HRMS}^{(E S}{ }^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+}$ 222.1463, $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+}222.1465.

18by $\quad \mathbf{N}$-((2S,3R,E)-3-hydroxynon-4-en-2-yl)-2-phenylacetamide
Yield (50\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.35-7.22(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.69-5.59(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.9,6.3,4-H)$, 4.19-3.98 (2H, m, 3-H and 2-H), $3.56\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 1.99\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.3,6.6,6-\mathrm{H}_{2}\right), 1.34-1.21\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.\left.8-\mathrm{H}_{2}\right), 1.01\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6,1-\mathrm{H}_{3}\right), 0.89\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5,9-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 298.3[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{HRMS}^{(E S}{ }^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+}$ 298.1775, $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+}298.1778.

18bx N-((2S,3R,E)-3-hydroxynon-4-en-2-yl)octanamide

Yield (23\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.76-5.67(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.63(1 \mathrm{H}, \mathrm{br} d, J 7.7, \mathrm{NH}), 5.41$ (1H, dd, J 15.5, 6.3, 4$H), 4.11(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $2-\mathrm{H}), 2.20-2.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right), 2.10-2.02\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 1.66-1.58(2 \mathrm{H}, \mathrm{m}$, $\mathrm{COCH}_{2} \mathrm{CH}_{2}$), 1.39-1.22 (12H, m, 7-H2, 8- H_{2} and $4 \times$ octanoyl aliphatic CH_{2}), $1.09\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,1-\mathrm{H}_{3}\right), 0.92-0.85$ $\left(6 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{3}\right.$ and octanoyl terminal $\left.\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 306.4[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ES ${ }^{+}$) found $[\mathrm{M}+\mathrm{Na}]^{+} 306.2402$, $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+}306.2404.

18cn (2S,3R,E)-2-amino-6-phenylhex-4-en-3-ol

Yield (77\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.85\left(2 \mathrm{H}, \mathrm{brs}, \mathrm{NH}_{2}\right), 7.29-7.23(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.20-7.16(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.14-7.11$ (2H, m, ArH), 5.97-5.88 (1H, m, 5-H), 5.45 (1H, dd, J 15.5, 6.2, 4-H), 4.48-4.39 (1H, m, 3-H), 3.43-3.37 (1H, m, 2H), $\left.3.35\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7,6-\mathrm{H}_{2}\right), 2.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.19\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,1-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 192.2[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}^{\left(E S^{+}\right.}\right)$ found $[\mathrm{M}+\mathrm{H}]^{+}$192.1383, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{1} \mathrm{~N}_{1}$ requires M^{+}192.1383.

18cz N-((2S,3R,E)-3-hydroxy-6-phenylhex-4-en-2-yl)acetamide

Yield (67\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.31-7.27(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.22-7.14(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.93-5.82$ $(1 \mathrm{H}, \mathrm{m}, 5-H), 5.50(1 \mathrm{H}, \mathrm{dd}, J 15.3,6.2,4-H), 4.21-4.13(1 \mathrm{H}, \mathrm{m}, 3-H), 4.06(1 \mathrm{H}, \mathrm{dt}, J 8.0,4.0,2-H), 3.38(1 \mathrm{H}, \mathrm{d}, J$ $\left.6.7,6-H_{2}\right), 2.85(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 1.08\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,1-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 256.3[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS $\left(E S^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+} 256.1307, \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+}256.1308.

18cy $\quad N$-((2S,3R,E)-3-hydroxy-6-phenylhex-4-en-2-yl)-2-phenylacetamide

Yield (87%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.35-7.10(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.91$ (1H, br s, NH), $5.86-5.77(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.40(1 \mathrm{H}$, dd, J 15.4, 6.0, 4-H), 4.18-3.96 (1H, m, 3-H), 3.60-3.49 (1H, m, 2-H), $3.42(2 H, s, C O C H 2), 3.32(2 H, d, J 6.7,6-$ $\left.H_{2}\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,1-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 332.3[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS $\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+} 332.1618, \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~N}_{1}^{23} \mathrm{Na}_{1}$ requires $M^{+} 332.1621$.

18cx $\quad N$-((2S,3R,E)-3-hydroxy-6-phenylhex-4-en-2-yl)octanamide

Yield (90\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.31-7.24(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.22-7.12(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.95-5.82(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $\mathrm{NH}), 5.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.4,6.2,4-H), 4.20-4.03(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $2-H), 3.38\left(1 \mathrm{H}, \mathrm{d}, J 6.7,6-\mathrm{H}_{2}\right), 2.17-2.10(2 \mathrm{H}, \mathrm{m}$, COCH_{2}), 1.66-1.51 (2H, m, COCH CH_{2}), 1.32-1.20 ($8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}$), $1.08\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,1-\mathrm{H}_{3}\right), 0.87(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8$, octanoyl terminal CH_{3}); m/z (ES ${ }^{+}$) $318.2[\mathrm{M}+\mathrm{H}]^{+}, 340.4[\mathrm{M}+\mathrm{Na}]^{+}$; $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{H}]^{+} 318.2431, \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{~N}_{1}$ requires $M^{+} 318.2428$.

21bn (2S,3R,E)-2-aminodec-5-en-3-ol

Yield (79\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.62-5.45(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 5.41-5.26(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.14\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 3.83-3.71$ $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.31-3.13(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.27-1.93\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right.$ and $\left.7-\mathrm{H}_{2}\right), 1.33-1.29\left(4 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right.$ and $\left.9-\mathrm{H}_{2}\right), 1.16$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.1,1-\mathrm{H}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0,10-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 172.3[\mathrm{M}+\mathrm{H}]^{+}, 194.3[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{HRMS}\left(\mathrm{ES}{ }^{+}\right)$found $[\mathrm{M}+\mathrm{H}]^{+}$ 172.1696, $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{1} \mathrm{~N}_{1}$ requires M^{+}172.1696.

$21 \mathrm{bz} \quad \mathrm{N}$-((2S,3R,E)-3-hydroxydec-5-en-2-yl)acetamide
Yield (70\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.88$ (1H, br s, NH), 5.55 (1H, dt, J 13.4, 6.6, 6-H), 5.44-5.34 (1H, m, 5-H), 4.01 (1H, ddd, J 8.5, 6.8, 3.0, 2-H), $3.64(1 \mathrm{H}$, ddt, J $8.5,4.2,3.1,3-H), 2.11-1.99\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right.$ and $\left.7-\mathrm{H}_{2}\right), 1.98(3 \mathrm{H}$, s, $\left.\mathrm{COCH}_{3}\right), 1.38-1.25\left(4 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right.$ and $\left.9-\mathrm{H}_{2}\right), 1.10\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,1-\mathrm{H}_{3}\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,10-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(E S^{+}\right) 236.3$ $[\mathrm{M}+\mathrm{Na}]^{+}$; $\mathrm{HRMS}\left(E S^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+} 236.1620, \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+}236.1621.

21by $\quad \mathbf{N}$-((2S,3R,E)-3-hydroxydec-5-en-2-yl)-2-phenylacetamide
Yield (85%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.22(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.50(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.2,6.6,6-H), 5.35$ (1H, ddd, J 15.2, 7.7, 6.3, 5-H), $3.99(1 \mathrm{H}$, ddd, J $8.5,6.9,3.1,2-H), 3.56\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.\mathrm{PhCH}_{2}\right), 2.22-2.08(2 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{H}_{2}\right), 2.06-1.92\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 1.34-1.28\left(4 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right.$ and $\left.9-\mathrm{H}_{2}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,1-\mathrm{H}_{3}\right), 0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1$, $\left.10-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 312.4[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS $\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+} 312.1935, \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires $\mathrm{M}^{+} 312.1934$.

21bx $\quad \mathrm{N}$-((2S,3R,E)-3-hydroxydec-5-en-2-yl)octanamide
Yield (83\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.03-5.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.54-5.43(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 5.35-5.25(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.23-$ $4.11(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.05-3.98(1 \mathrm{H}, \mathrm{m}, 3-H), 2.35-2.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right), 2.20-2.11\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 2.06-1.94(2 \mathrm{H}, \mathrm{m}$, 7- H_{2}), 1.68-1.50 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.39-1.19\left(12 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}, 9-\mathrm{H}_{2}\right.$ and $4 \times$ aliphatic $\left.\mathrm{CH}_{2}\right), 1.14-1.05(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.6.9,1-\mathrm{H}_{3}\right), 0.86\left(6 \mathrm{H}, 10-\mathrm{H}_{3}\right.$ and octanoyl terminal $\left.\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 298.5[\mathrm{M}+\mathrm{H}]^{+}, 320.5[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ES $\left.{ }^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+} 320.2563, \mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires $\mathrm{M}^{+} 320.2560$.

21cn (2S,3R,E)-2-amino-7-phenylhept-5-en-3-ol

Yield (46\%); $\delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.88\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.20-7.11$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 5.71-5.65 (1H, m, 6-H), 5.45-5.40 $(1 \mathrm{H}, \mathrm{m}, 5-H), 3.93-3.89(1 \mathrm{H}, \mathrm{m}, 3-H), 3.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7,2-H), 3.32\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7,7-\mathrm{H}_{2}\right), 2.28-2.09\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$, $1.20\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3,1-\mathrm{H}_{3}\right) . \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 206.3\left[\mathrm{M}+\mathrm{H}^{+}, 228.3[\mathrm{M}+\mathrm{Na}]^{+}\right.$; HRMS (ES ${ }^{+}$) found $[\mathrm{M}+\mathrm{H}]^{+} 206.1540, \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{1} \mathrm{~N}_{1}$ requires M^{+}206.1539.

21cz N-((2S,3R,E)-3-hydroxy-7-phenylhept-5-en-2-yl)acetamide

Yield (86%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.34-7.24(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.24-7.15(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.73(1 \mathrm{H}$, ddd, J 15.2, 8.4, 4.3, 6-H), 5.52 (1H, ddd, J 15.2, 7.7, 6.4, 5-H), 4.03 (1H, dqd, J 13.8, 6.9, 3.0, 2-H), 3.72-3.65 $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.37\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7,7-\mathrm{H}_{2}\right), 2.30-2.04\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 1.98\left(3 \mathrm{H}, \mathrm{s} . \mathrm{COCH}_{3}\right), 1.11\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,1-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}$ $\left(E S^{+}\right) 248.4\left[\mathrm{M}+\mathrm{H}^{+}, 270.3[\mathrm{M}+\mathrm{Na}]^{+}\right.$; $\mathrm{HRMS}\left(E S^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+} 270.1464, \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}_{1}^{23} \mathrm{Na}_{1}$ requires $\mathrm{M}^{+} 270.1465$.

21cy N-((2S,3R,E)-3-hydroxy-7-phenylhept-5-en-2-yl)-2-phenylacetamide
Yield (27\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.43-7.08(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.78-5.59(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 5.57-5.37(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.07-$ $3.93(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.64-3.50\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.\mathrm{PhCH}_{2}\right), 3.34\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7,7-\mathrm{H}_{2}\right), 2.25-1.93\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 1.03(3 \mathrm{H}$, d, J 6.8, 1- H_{3}); $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 346.4[\mathrm{M}+\mathrm{Na}]^{+}$; $\mathrm{HRMS}\left(E S^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+} 346.1779, \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+} 346.1778.

21cx N-((2S,3R,E)-3-hydroxy-7-phenylhept-5-en-2-yl)octanamide

Yield (70%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.31-7.27(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.23-7.15(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.87-5.65(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$ and $6-$ H), $5.52(1 \mathrm{H}, \mathrm{dt}, J 14.2,6.6,5-H), 4.13-3.94(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.78-3.59(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.37\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6,7-\mathrm{H}_{2}\right), 2.32-$ $2.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right), 1.70-1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.37-1.21\left(8 \mathrm{H}, \mathrm{m}, 4 \times\right.$ aliphatic $\left.\mathrm{CH}_{2}\right), 1.13(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,1-$ H_{3}), $0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6\right.$, octanoyl terminal $\left.\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 332.5\left[\mathrm{M}+\mathrm{H}^{+}, 354.4[\mathrm{M}+\mathrm{Na}]^{+}\right.$; HRMS (ES ${ }^{+}$) found $[\mathrm{M}+\mathrm{Na}]^{+}$ 354.2403, $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires $M^{+} 354.2404$.

21an (2S,3R,E)-2-aminononadec-5-en-3-ol
Yield (70%); $\delta_{H}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.12\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 5.56-5.48(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.0,6.7,5-\mathrm{H})$, 3.73-3.67 (1H, m, 3-H), 3.65-3.60 (1H, m, 2-H), 2.15-2.07 (1H, m, 4-HH), 2.04-1.95 (3H, m, 4-HH and 7-H2), $1.38-1.09\left(26 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right.$ to $18-\mathrm{H}_{2}$ and $\left.1-\mathrm{H}_{3}\right), 0.86\left(3 \mathrm{H}, \mathrm{t}, J 7.0,19-\mathrm{H}_{3}\right) . \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 298.4[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ES $\left.{ }^{+}\right)$found $[\mathrm{M}+\mathrm{H}]^{+} 298.3099, \mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{1} \mathrm{~N}_{1}$ requires M^{+}298.3110.

21az N-((2S,3R,E)-3-hydroxynonadec-5-en-2-yl)acetamide
Yield (82%); $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.96$ (1 H , br d, J 6.0, NH), 5.54 (1 H , dt, J $15.0,6.6,6-\mathrm{H}$), $5.45-5.34$ ($1 \mathrm{H}, \mathrm{m}, 5-$ H), $4.00(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 8.5,6.9,3.0,3-\mathrm{H}), 3.64(1 \mathrm{H}$, ddd, J $8.8,4.4,3.0,2-\mathrm{H}), 2.23-1.99\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.4-\mathrm{H}_{2}\right), 1.97$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 1.38-1.21\left(22 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right.$ to $\left.18-\mathrm{H}_{2}\right), 1.10\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,1-\mathrm{H}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9,19-\mathrm{H}_{3}\right) . \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{-}\right)$ $338.4\left[\mathrm{M}-\mathrm{H}^{-} ;\right.$(ES^{+}) 362.4.3 $[\mathrm{M}+\mathrm{Na}]^{+}$; $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{H}]^{+} 340.3219, \mathrm{C}_{21} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{~N}_{1}$ requires $\mathrm{M}^{+} 340.3216$.

21ay N-((2S,3R,E)-3-hydroxynonadec-5-en-2-yl)-2-phenylacetamide

Yield (86%); $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.37-7.32(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.31-7.24(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.74(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 8.3, \mathrm{NH}), 5.50$ ($1 \mathrm{H}, \mathrm{dt}, J 14.7,6.6,6-H$), 5.34 (1 H , ddd, J 15.2, 7.6, 6.4, $5-H$), 3.99 (1 H , ddd, J $8.4,6.9,3.1,3-H$), 3.73-3.64 (1 H , $\mathrm{m}, 2-\mathrm{H}), 3.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 2.15-2.08\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 2.06-1.94\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 1.36-1.22\left(22 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right.$ to $\left.18-\mathrm{H}_{2}\right)$, $1.04\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,1-\mathrm{H}_{2}\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9,19-\mathrm{H}_{3}\right) . \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{-}\right) 414.4[\mathrm{M}-\mathrm{H}]^{-}$; $\left(\mathrm{ES}^{+}\right) 438.4[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{HRMS}^{\left(E S^{+}\right)}$ found $[\mathrm{M}+\mathrm{H}]^{+} 416.3533, \mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{~N}_{1}$ requires $M^{+} 416.3529$.

21ax N-((2S,3R,E)-3-hydroxynonadec-5-en-2-yl)octanamide

Yield (85\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.85(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 8.4, \mathrm{NH}), 5.55(1 \mathrm{H}, \mathrm{dt}, J 14.9,6.6,6-H), 5.39(1 \mathrm{H}$, ddd, J 15.0, $7.5,6.4,5-H), 4.03\left(1 \mathrm{H}\right.$, ddd, J 8.7, 7.0, 3.0, 3-H), $3.64\left(1 \mathrm{H}\right.$, ddd, J 8.8, 4.1, 3.0, 2-H), $2.33\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{COCH}_{2}\right)$, 2.19-2.14 (2H, m, 4-H2), $2.00\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.7,6.6,7-\mathrm{H}_{2}\right), 1.62\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.3,6.0, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.34-1.22(26 \mathrm{H}$, $\mathrm{m}, 8-\mathrm{H}_{2}$ to $18-\mathrm{H}_{2}$ and $4 \times$ aliphatic $\left.\mathrm{CH}_{2}\right), 1.10\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,1-\mathrm{H}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7,19-\mathrm{H}_{3}\right) . \mathrm{m} / \mathrm{z}\left(E S^{-}\right) 422 .[\mathrm{M}-\mathrm{H}]^{-}$; $\left(\mathrm{ES}^{+}\right) 446.4[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS $\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{H}]^{+} 424.4174, \mathrm{C}_{27} \mathrm{H}_{54} \mathrm{O}_{2} \mathrm{~N}_{1}$ requires M^{+}424.4155.

17bn (2S,3R,E)-2-aminonon-4-ene-1,3-diol
Yield (54\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.80-5.71(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.2,6.7,4-\mathrm{H}), 4.31\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH} \mathrm{N}_{2}\right.$ and $2 \times \mathrm{OH}$), 4.25-4.19 (1H, m, 3-H), 3.78-3.63 (2H, m, 2-H and 1-HH), $3.06(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.7,4.2,1-\mathrm{HH}), 2.04(2 \mathrm{H}$, dd, J $\left.13.1,6.5,6-H_{2}\right), 1.39-1.26\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0,9-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}{ }^{+}\right) 174.3[\mathrm{M}+\mathrm{H}]^{+}, 196.4$ $[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS $\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{H}]^{+}$174.1490, $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}_{1}$ requires M^{+}174.1489.

17bz $\quad N$-((2S,3R,E)-1,3-dihydroxynon-4-en-2-yl)acetamide
Yield (73\%); $\delta_{H}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.44(1 \mathrm{H}$, br d, J 13.7, NH), 5.82-5.76 (1H, m, 5-H), $5.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.1,5.7,4-$ $H), 4.47-4.39(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.87-3.77(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $1-\mathrm{HH}), 3.35-3.29(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{HH}), 2.09-2.00\left(5 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right.$ and $\left.\mathrm{COCH}_{3}\right), 1.41-1.23\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3,9-\mathrm{H}_{3}\right) . \mathrm{m} / \mathrm{z}\left(\mathrm{ES}{ }^{+}\right) 238.2[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$; HRMS (ES ${ }^{+}$) found $[\mathrm{M}+\mathrm{Na}]^{+}$238.1419, $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+}238.1419.

17by $\quad N$-((2S,3R,E)-1,3-dihydroxynon-4-en-2-yl)-2-phenylacetamide

Yield (65\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.35-7.23(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.34(1 \mathrm{H}, \mathrm{br}$ d, J 6.6, NH$), 5.66(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.9,6.7,5-$ $H), 5.40(1 \mathrm{H}, \mathrm{dd}, J 14.9,6.5,4-H), 4.23-4.16(1 \mathrm{H}, \mathrm{m}, 3-H), 3.88-3.79(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $1-H \mathrm{H}), 3.61(1 \mathrm{H}, \mathrm{dd}, J 10.9$, 2.7, 1-HH), $3.56\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 1.98\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.5,6.8,6-\mathrm{H}_{2}\right), 1.32-1.25\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 7.0, $9-\mathrm{H}_{3}$); m/z (ES ${ }^{+}$) $292.2\left[\mathrm{M}+\mathrm{H}^{+}, 314.2[\mathrm{M}+\mathrm{Na}]^{+}\right.$; $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{H}]^{+} 292.1907, \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~N}_{1}$ requires M^{+} 292.1913.

17bx $\quad N$-((2S,3R,E)-1,3-dihydroxynon-4-en-2-yl)octanamide

Yield (68\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.44$ (1H, br s, NH), 5.74 (1H, dt, J 15.9, 6.7, 5-H), 5.49 (1H, dd, J 15.9, 6.0, 4$H), 4.30-4.21(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.94-3.84(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $1-\mathrm{HH}), 3.71-3.63(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H} H), 2.24-2.16(2 \mathrm{H}, \mathrm{m}$, COCH_{2}), $2.04\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.0,6.7,6-\mathrm{H}_{2}\right), 1.64-1.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.34-1.21\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 0.87$, $0.86\left(2 \times 3 H, t, J 6.5,9-H_{3}\right.$ and octanoyl terminal $\left.\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 300.3[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}\left(E S^{+}\right)$found $[\mathrm{M}+\mathrm{H}]^{+}$ 300.2536, $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~N}_{1}$ requires $\mathrm{M}^{+} 300.2539$.

17an ($2 S, 3 R, E$)-2-aminooctadec-4-ene-1,3-diol ${ }^{2}$
Yield (64\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.87-5.79(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.53\left(1 \mathrm{H}\right.$, dd, J 15.4, 6.5, 4-H), $4.78\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$, 4.41-4.36 (1H, m, 3-H), 4.10 (1H, dd, J 11.5, 2.7, 1-HH), 3.93 (1H, m, 2-H), 3.73 (1H, dd, J 11.5, 3.5, 1-HH), 2.77 $(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH}), 2.06\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.0,7.0,6-\mathrm{H}_{2}\right), 1.67\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 12.2,6.0,17-\mathrm{H}_{2}\right), 1.48-1.22\left(20 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ to $\left.16-\mathrm{H}_{2}\right), 0.89\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5,18-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 300.5[\mathrm{M}+\mathrm{H}]^{+}, 322.5[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{HRMS}^{\left(E S^{+}\right)}$found $[\mathrm{M}+\mathrm{H}]^{+} 300.2902$, $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{~N}_{1}$ requires $\mathrm{M}^{+} 300.2897$.

17az $\quad \mathrm{N}$-((2S,3R,E)-1,3-dihydroxyoctadec-4-en-2-yl)acetamide
Yield (71\%); $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.81(1 \mathrm{H}, \mathrm{dt}, J 14.6,7.1,5-H), 5.51(1 \mathrm{H}$, dd, J 15.4, 6.4, 4-H), $5.39(1 \mathrm{H}$, br s, $N H$), 4.38-4.32 (1H, m, 3-H), 4.07(1 H, dd, J 11.6, 2.7, 2-H), 3.83-3.78 (1H, m, 1-HH), $3.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.6,2.9,1-$ $H H$), 2.09-1.98 (5H, m, 6- H_{2} and $\left.\mathrm{COCH}_{3}\right), 1.39-1.20\left(22 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ to $\left.17-\mathrm{H}_{2}\right), 0.87\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7,18-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(E S^{+}\right)$ $364.4\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; HRMS $\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+} 364.2829, \mathrm{C}_{20} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{~N}_{1}{ }^{23} \mathrm{~N}_{1}$ requires M^{+}364.2822.

17ay $\quad \boldsymbol{N}$-((2S,3R,E)-1,3-dihydroxyoctadec-4-en-2-yl)-2-phenylacetamide
Yield (44\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.21$ (1H, br d, J7.0, NH), 5.73-5.63 (1H, m, 5-H), 5.42 (1H, dd, J 15.4, 6.5, 4-H), 4.27-4.20 (1H, m, 3-H), 3.90-3.83 (2H, m, 2-H and 1-HH), 3.65 (1H, dd, J 11.8, 3.9, 1$\mathrm{HH}), 3.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 2.97-2.64(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OH}), 1.99\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.8,6.9,6-\mathrm{H}_{2}\right), 1.34-1.16\left(22 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ to $17-\mathrm{H}_{2}$), $0.88\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8,18-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 440.5[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ES ${ }^{+}$) found $[\mathrm{M}+\mathrm{H}]^{+} 418.3324, \mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{~N}_{1}$ requires $M^{+} 418.3316$.

17ax N-((2S,3R,E)-1,3-dihydroxyoctadec-4-en-2-yl)octanamide

Yield (38\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.25(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 7.8, \mathrm{NH}), 5.84-5.74(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5,6.5,4-$ $H), 4.36-4.30(1 \mathrm{H}, \mathrm{m}, 3-H), 3.96(1 \mathrm{H}, \mathrm{dd}, J 11.1,3.7,1-\mathrm{H} H), 3.93-3.88(1 \mathrm{H}, \mathrm{m}, 2-H), 3.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.1,2.9$, 1$H H), 2.71(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH}), 2.27-2.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right), 2.06\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.6,7.4,6-\mathrm{H}_{2}\right), 1.71-1.57(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.43-1.18\left(28 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ to $17-\mathrm{H}_{2}$ and $4^{\prime}-\mathrm{H}_{2}$ to $\left.7^{\prime}-\mathrm{H}_{2}\right), 0.92-0.83\left(6 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}_{3}\right.$ and octanoyl terminal $\left.\mathrm{CH}_{3}\right) ; m / \mathrm{z}\left(\mathrm{ES}^{+}\right) 426.4[\mathrm{M}+\mathrm{H}]^{+}$; HRMS $\left(E S^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+} 448.3761, \mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{~N}_{1}$ requires $\mathrm{M}^{+} 448.3767$.

17 cn (2S,3R,E)-2-amino-6-phenylhex-4-ene-1,3-diol

Yield (67%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.25-7.20(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.16-7.07(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.88(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.0,6.6,5-H)$, $5.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0,5.0,4-H), 4.87\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 4.40-4.29(1 \mathrm{H}, \mathrm{m}, 3-H), 3.76-3.67(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and 1-HH$)$, 3.41-3.33 (1H, m, 1-HH), $3.30\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6,6-\mathrm{H}_{2}\right), 3.21-3.14(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH}) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 208.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS $\left(E S^{+}\right)$found $[M+H]^{+}$208.1331, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}_{1}$ requires $\mathrm{M}^{+} 208.1338$.

17cz N-((2S,3R,E)-1,3-dihydroxy-6-phenylhex-4-en-2-yl)acetamide
Yield (31\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.32-7.27(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.23-7.14(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.32(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{NH}), 5.96(1 \mathrm{H}$, $\mathrm{dt}, \mathrm{J} 15.4,6.7,5-H), 5.61(1 \mathrm{H}, \mathrm{dd}, J 15.4,6.0,4-H), 4.38-4.32(1 \mathrm{H}, \mathrm{m}, 3-H), 3.99-3.88(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and 1-HH), 3.70 $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.0,2.8,1-\mathrm{HH}), 3.40\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7,6-\mathrm{H}_{2}\right), 2.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 250.1[\mathrm{M}+\mathrm{H}]^{+}, 272.1[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ES ${ }^{+}$) found $[\mathrm{M}+\mathrm{Na}]^{+} 272.1248, \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}_{1}{ }^{23} \mathrm{Na}_{1}$ requires M^{+}272.1263.

17cy $\quad \boldsymbol{N}$-((2S,3R,E)-1,3-dihydroxy-6-phenylhex-4-en-2-yl)-2-phenylacetamide
Yield (85%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.34-7.25(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.22-7.11(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.32(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 7.5, \mathrm{NH}), 5.82$ (1H, dt, J 15.0, 6.8, 5-H), 5.47 (1H, dd, J 15.0, 5.8, 4-H), 4.24-4.18 (1H, m, 3-H), 3.89-3.84 (1H, m, 2-H), 3.81 (1H, dd, J 11.1, 4.0, 1-HH), $3.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.1,3.2,1-\mathrm{HH}), 3.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2}\right), 3.31\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,6-\mathrm{H}_{2}\right), 2.25(2 \mathrm{H}$, br $\mathrm{s}, 2 \times \mathrm{OH}) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 326.2[\mathrm{M}+\mathrm{H}]^{+}$; $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{H}]^{+} 326.1767, \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{1}$ requires M^{+}326.1756.

17cx $\quad N$-((2S,3R,E)-1,3-dihydroxy-6-phenylhex-4-en-2-yl)octanamide

Yield (82\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.31-7.23$ (3H, m, ArH), 7.22-7.18 (1H, m, ArH), 7.17-7.11 (2H, m, ArH), 6.41 (1H, br d, J 6.6, NH), $5.92(1 \mathrm{H}, \mathrm{dt}, J 15.3,6.8,5-H), 5.58(1 \mathrm{H}, \mathrm{dd}, J 15.3,6.1,4-H), 4.33-4.27(1 \mathrm{H}, \mathrm{m}, 3-H), 3.89$ $(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $1-\mathrm{HH}), 3.66(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.6,4.7,1-\mathrm{HH}), 3.38\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,6-\mathrm{H}_{2}\right), 2.23-2.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right)$, 1.63-1.53 (2H, m, $\left.\mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.32-1.22\left(8 \mathrm{H}, \mathrm{m}, 4 \times\right.$ aliphatic $\left.\mathrm{CH}_{2}\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8\right.$, octanoyl terminal $\left.\mathrm{CH}_{3}\right)$; $m / z\left(\mathrm{ES}^{+}\right) 334.2[\mathrm{M}+\mathrm{H}]^{+}$; $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+} 334.2393, \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{~N}_{1}$ requires M^{+}334.2382.

27an (S,E)-2-aminooctadec-4-en-1-ol

Yield (61\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.51(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.9,6.5,5-H), 5.38-5.30(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2,1-\mathrm{HH})$, $3.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2,8.2,1-\mathrm{HH}), 2.97-2.83(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.34\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH} \mathrm{N}_{2}\right.$ and OH$), 2.20-2.10\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$, $1.99\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.5,6.6,6-\mathrm{H}_{2}\right), 1.37-1.20\left(22 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ to $\left.17-\mathrm{H}_{2}\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5,18-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 284.2$ $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS $\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{H}]^{+}$284.2947, $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{O}_{1} \mathrm{~N}_{1}$ requires M^{+}284.2953.

27az (S,E)-N-(1-hydroxyoctadec-4-en-2-yl)acetamide
Yield (68\%); $\delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.82(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 14.8, \mathrm{NH}), 5.51(1 \mathrm{H}, \mathrm{dt}, J 15.0,6.7,5-H), 5.34(1 \mathrm{H}, \mathrm{dt}, J 15.1$, $7.1,4-H), 3.91(1 H, t d d, J 11.1,7.2,3.6,2-H), 3.65(1 H, d d, J 11.0,3.3,1-H H), 3.58(1 H, d d, J 11.1,5.7,1-H H)$, $3.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.27-2.22(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{HH}), 2.17(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.1,7.1,3-\mathrm{HH}), 1.98\left(5 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right.$ and $\left.\mathrm{COCH}_{3}\right)$, $1.35-1.30\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 1.30-1.22\left(20 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right.$ to $\left.\left.17-\mathrm{H}_{2}\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,18-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}{ }^{-}\right) 324.4 \mathrm{MM}^{-\mathrm{H}}\right]^{-}$;

27ay (S,E)-N-(1-hydroxyoctadec-4-en-2-yl)-2-phenylacetamide

Yield (82\%); $\delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.36-7.33(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.30-7.28(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.25-7.22(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.58$ (1H, br d, J 5.6, NH), 5.32 (1H, dt, J 14.7, 6.6, 5-H), 5.23-5.18 (1 H, m, 4-H), 3.88 (1H, dtd, J 13.2, 6.5, 3.8, 2-H), $3.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.1,3.5,1-\mathrm{HH}), 3.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 3.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.1,6.2,1-\mathrm{HH}), 2.19-2.14(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{HH})$, 2.09-2.04 (1H, m, 3-HH), $1.88\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.2,6.5,6-\mathrm{H}_{2}\right), 1.31-1.23\left(22 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ to $\left.17-\mathrm{H}_{2}\right), 0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0,18-$ $\left.H_{3}\right) ; m / z\left(\mathrm{ES}^{-}\right) 400.5[\mathrm{M}-\mathrm{H}]^{-} ;\left(\mathrm{ES}^{+}\right) 402.4\left[\mathrm{M}+\mathrm{H}^{+} ; \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)\right.$found $[\mathrm{M}+\mathrm{H}]^{+} 402.3356, \mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{~N}_{1}$ requires M^{+} 402.3348.

27ax (S,E)-N-(1-hydroxyoctadec-4-en-2-yl)octanamide

Yield (85%); $\delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.71$ (1 H, br s, NH), 5.52 (1 H , dt, J $14.8,6.8,5-H$), $5.37-5.31$ ($1 \mathrm{H}, \mathrm{m}, 4-H$), 3.91 (1H, tdd, J 10.8, 6.9, 3.6, 2-H), $3.65(1 \mathrm{H}, \mathrm{dd}, J 10.9,3.1,1-H \mathrm{H}), 3.58(1 \mathrm{H}$, dd, J 11.0, 6.0, 1-HH), $3.28(1 \mathrm{H}$, br s, OH), $2.26(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.5,6.6,3-\mathrm{HH}), 2.20-2.14\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{HH}\right.$ and $\left.\mathrm{COCH}_{2}\right), 1.99\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.3,7.1,6-\mathrm{H}_{2}\right), 1.60$ $\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.6,7.4, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.35-1.22\left(30 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ to $17-\mathrm{H}_{2}$ and $4 \times$ aliphatic $\left.\mathrm{CH}_{2}\right), 0.87\left(6 \mathrm{H}, \mathrm{t}, J 7.1,18-\mathrm{H}_{3}\right.$ and terminal octanoyl CH_{3}); $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{-}\right) 408.5[\mathrm{M}-\mathrm{H}]^{-} ;\left(\mathrm{ES}^{+}\right) 410.5[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ES ${ }^{+}$) found $[\mathrm{M}+\mathrm{H}]^{+} 410.3999$, $\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{O}_{2} \mathrm{~N}_{1}$ requires $\mathrm{M}^{+} 410.3998$.

26an (R,E)-2-aminooctadec-4-en-1-ol

Yield (62%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.51(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.9,6.5,5-H), 5.38-5.30(1 \mathrm{H}, \mathrm{m}, 4-H), 3.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2,1-\mathrm{HH})$, $3.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2,8.2,1-\mathrm{HH}), 2.97-2.83(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.34\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH} \mathrm{N}_{2}\right.$ and OH$), 2.20-2.10\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$, $1.99\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.5,6.6,6-\mathrm{H}_{2}\right), 1.37-1.20\left(22 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ to $\left.17-\mathrm{H}_{2}\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5,18-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(E S^{+}\right) 284.2$ $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS $\left(E S^{+}\right)$found $[\mathrm{M}+\mathrm{H}]^{+}$284.2947, $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{O}_{1} \mathrm{~N}_{1}$ requires $\mathrm{M}^{+} 284.2953$.

26af (R, E)-2,2,2-trifluoro- \mathbf{N}-(1-hydroxyoctadec-4-en-2-yl)acetamide
Yield (38\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.56(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 7.0, \mathrm{NH}), 5.56(1 \mathrm{H}, \mathrm{dt}, J 15.0,6.8,5-H), 5.35(1 \mathrm{H}, \mathrm{dt}, J 15.0$, $7.2,4-H), 4.05-3.97(1 H, m, 2-H), 3.73\left(2 H, a p p . d, J 3.8,1-H_{2}\right), 2.39-2.25\left(2 H, m, 3-H_{2}\right), 2.00(2 H, d d, J 13.8,6.9$, $\left.6-\mathrm{H}_{2}\right), 1.38-1.20\left(22 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ to $\left.17-\mathrm{H}_{2}\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9,18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{F}}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-75.87 \mathrm{CF}_{3} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{-}\right)$ $378.4[\mathrm{M}-\mathrm{H}]^{-}$; $\left(\mathrm{ES}^{+}\right) 402.4[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS $\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{Na}]^{+} 402.2603, \mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{~N}_{1} \mathrm{~F}_{3}{ }^{23} \mathrm{Na}_{1}$ requires M^{+} 402.2608.

26az (R, E)-N-(1-hydroxyoctadec-4-en-2-yl)acetamide

Yield (88\%); $\delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.82$ (1H, br d, J 14.8, NH), $5.51(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.0,6.7,5-H), 5.34(1 \mathrm{H}$, dt, J 15.1, $7.1,4-H), 3.91(1 H, t d d, J 11.1,7.2,3.6,2-H), 3.65$ (1H, dd, J 11.0, 3.3, 1-HH), 3.58 (1H, dd, J 11.1, 5.7, 1-HH), $3.25(1 \mathrm{H}, \mathrm{br} s, \mathrm{OH}), 2.27-2.22(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{HH}), 2.17(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.1,7.1,3-\mathrm{HH}), 1.98\left(5 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right.$ and $\left.\mathrm{COCH}_{3}\right)$, $1.35-1.30\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 1.30-1.22\left(20 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right.$ to $\left.17-\mathrm{H}_{2}\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,18-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{-}\right) 324.4[\mathrm{M}-\mathrm{H}]^{-}$; $\left(E S^{+}\right) 326.4[M+H]^{+}$; HRMS $\left(E S^{+}\right)$found $[M+H]^{+} 326.3046, \mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{~N}_{1}$ requires $M^{+} 326.3035$.

26ay (R, E)-N-(1-hydroxyoctadec-4-en-2-yl)-2-phenylacetamide

Yield (47\%); $\delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.36-7.33$ (2H, m, ArH), 7.30-7.28 (1H, m, ArH), 7.25-7.22 (2H, m, ArH), 5.58 (1H, br d, J 5.6, NH), $5.32(1 \mathrm{H}, \mathrm{dt}, J 14.7,6.6,5-H), 5.23-5.18(1 \mathrm{H}, \mathrm{m}, 4-H), 3.88(1 \mathrm{H}, \mathrm{dtd}, J 13.2,6.5,3.8,2-H)$, 3.61 (1H, dd, J 11.1, 3.5, 1-HH), 3.58 ($2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}$), 3.54 (1H, dd, J 11.1, 6.2, 1-HH), 2.19-2.14 (1H, m, 3-HH), $2.09-2.04(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{HH}), 1.88\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.2,6.5,6-\mathrm{H}_{2}\right), 1.31-1.23\left(22 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ to $\left.17-\mathrm{H}_{2}\right), 0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0$, $\left.18-\mathrm{H}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{-}\right) 400.5[\mathrm{M}-\mathrm{H}]^{-} ;\left(\mathrm{ES}^{+}\right) 402.4\left[\mathrm{M}+\mathrm{H}^{+}\right.$; $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$found $[\mathrm{M}+\mathrm{H}]^{+} 402.3356, \mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{~N}_{1}$ requires M^{+} 402.3348.

26ax (R, E)-N-(1-hydroxyoctadec-4-en-2-yl)octanamide

Yield (76\%); $\delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.71$ (1 H , br s, NH), 5.52 (1 H , dt, J 14.8, 6.8, $5-H$), $5.37-5.31$ ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 3.91 (1H, tdd, J 10.8, 6.9, 3.6, 2-H), 3.65 (1H, dd, J 10.9, 3.1, 1-HH), 3.58 (1H, dd, J 11.0, 6.0, 1-HH), 3.28 (1H, br $\mathrm{s}, \mathrm{OH}), 2.26(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.5,6.6,3-\mathrm{HH}), 2.20-2.14\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{HH}\right.$ and $\left.\mathrm{COCH}_{2}\right), 1.99\left(2 \mathrm{H}, \mathrm{dd}, J 14.3,7.1,6-\mathrm{H}_{2}\right), 1.60$ $\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.6,7.4, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.35-1.22\left(30 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ to $17-\mathrm{H}_{2}$ and $4 \times$ aliphatic $\left.\mathrm{CH}_{2}\right), 0.87\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,18-\mathrm{H}_{3}\right.$ and terminal octanoyl CH_{3}); m/z (ES $\left.{ }^{-}\right) 408.5[\mathrm{M}-\mathrm{H}]^{-} ;\left(\mathrm{ES}^{+}\right) 410.5[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ES ${ }^{+}$) found $[\mathrm{M}+\mathrm{H}]^{+} 410.3999$, $\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{O}_{2} \mathrm{~N}_{1}$ requires $\mathrm{M}^{+} 410.3998$.

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Biological Methods

Preparation of the Screening Compounds

All compounds were first dissolved in MeOH and 1.0 mM stock solutions were prepared in $\mathrm{DMSO} / \mathrm{MeOH}(9: 1 \mathrm{v} / \mathrm{v})$ and 0.20 mM working solutions in $\mathrm{DMSO} / \mathrm{MeOH}(98: 2)$. All prepared solutions were stored at $-20^{\circ} \mathrm{C}$ until use.

The Assay Protocol of the Inhibition Assays

The hydrophobic nature of most of the synthesised substrate analogues required special attention to ensure their solubility/dispersion in the reaction mixture. For each inhibition reaction, the donor substrate (PI) and test inhibitors were first dried into a reaction Eppendorf tube followed by addition of the reaction buffer, CHAPS and NBD-C ${ }_{6}$ ceramide followed by sonication for 3 minutes and incubation at $30^{\circ} \mathrm{C}$ for 15 minutes. The reaction was started by the addition of $L m j$ IPCS microsomes (0.6 u). Final concentrations of the test compound, PI and $\mathrm{NBD}-\mathrm{C}_{6}$-ceramide were $20 \mu \mathrm{M}, 100 \mu \mathrm{M}$ and $5 \mu \mathrm{M}$ respectively. After 15 minutes the reaction was quenched by the addition of MeOH and the product sphingolipids separated from unreacted NBD-C6-ceramide by ion exchange chromatography. ${ }^{19}$ The amount of fluorescent product was then quantified using a fluorescence plate reader. All reactions were done in triplicates with the inhibitory effect quantified by the change in the formation of the labelled product, NBD-C C_{6}-IPC.

Mass Spectrometry Analyses

Analyses were performed on an LTQFT (ThermoFinnigan Corp); an FTICR MS instrument equipped with a 7.0 T magnet. A different assay protocol ${ }^{20}$ was deployed to minimise CHAPS content using PI-depleted CHAPS-washed microsomal membranes. ${ }^{21}$ The organic extracts were dried and re-suspended in chloroform and introduced into the electrospray ion source by direct infusion from a syringe at a flow rate $3 \mu \mathrm{l} / \mathrm{min}$. Positive ion measurements were made with the source voltage at 4.0 kV and negative ion measurements were made with the source voltage at 3.5 kV . The tube lens was kept at 100 V and the source temperature at $275{ }^{\circ} \mathrm{C}$ for all experiments.

The spectra are presented below in the following format,
A: Full spectrum of the organic extract of the reaction mixture.
B: Expansion of the spectra showing the formation NBD-C C_{6}-IPC.
C: Predicted response of the product that will hypothetically arise if the test compound functions as an alternative substrate.

D: Expansion of the spectra showing the region identified in C above.

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

27a

Negative Ion Spectra

A

Full Spectrum

B
NBD-C ${ }_{6}$-IPC: Detected

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

27a

Negative Ion Spectra

C

Peak [M+241] : 27a-Phosphoryl Inositol

27a-Phosphoryl Inositol: Not Detected

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

18ax

Negative Ion Spectra

A

Full Spectrum

B
NBD-C ${ }_{6}$-IPC: Detected

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

18ax

Negative Ion Spectra

C

Peak [M+241] : 18ax-Phosphoryl Inositol

18ax-Phosphoryl Inositol: Not Detected

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

17ax

Negative Ion Spectra
A
Full Spectrum

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

17ax

Negative Ion Spectra
C
Peak [M+241] : 17ax-Phosphoryl Inositol

17ax-Phosphoryl Inositol: Detected

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

17bx

Negative Ion Spectra

A

Full Spectrum

B
NBD-C 6_{6} IPC: Detected

17bx

Negative Ion Spectra

C

Peak [M+241] : 18bx-Phosphoryl Inositol

18bx-Phosphoryl Inositol: Not Detected

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

26af

Negative Ion Spectra

A

Full Spectrum

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

26af

Negative Ion Spectra

18ax-Phosphoryl Inositol: Detected

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

26an

Negative Ion Spectra

A

Full Spectrum

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

26an

Negative Ion Spectra

C

Peak [M+241] : 26an-Phosphoryl Inositol

26an-Phosphoryl Inositol: Not Detected

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

26ay

Negative Ion Spectra

A
Full Spectrum

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

26ay

Negative Ion Spectra

26ay-Phosphoryl Inositol: Not Detected

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

26ax

Negative Ion Spectra

A

Full Spectrum

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

26ax

Negative Ion Spectra

C
Peak [M+241] : 26ax-Phosphoryl Inositol

26ax-Phosphoryl Inositol: Detected

Cytotoxicity screening

L. major (MHOM/IL/81/Friedlin) promatigotes parasites were maintained at $26{ }^{\circ} \mathrm{C}$ in Schneider’s Drosophila media (Sigma-Aldrich) supplemented with 15\% heat inactivated foetal bovine sera (Biosera). In 96-well plates (Nunc) parasites at $4 \times 10^{5} \mathrm{ml}^{-1}$ were incubated with compounds in triplicate (including miltefosine (Cayman Chemical) as a positive control, and untreated parasites and media as negative controls) for 24 h before incubation with Alamar Blue (Invitrogen) for 4 h prior to assessing cell viability using a fluorescent plate reader (Biotek; 560EX nm/600EMnm).

References

1. L. Kosynkina, W. Wang and T. C. Liang, Tetrahedron Lett., 1994, 35, 5173-5176.
2. T. Yamamoto, H. Hasegawa, T. Hakogi and S. Katsumura, Org. Lett., 2006, 8, 5569-5572.
3. P. K. Chakravarty, W. J. Greenlee, W. H. Parsons, A. A. Patchett, P. Combs, A. Roth, R. D. Busch and T. N. Mellin, J. Med. Chem., 1989, 32, 1886-1890.
4. T. Ibuka, H. Habashita, A. Otaka, N. Fujii, Y. Oguchi, T. Uyehara and Y. Yamamoto, J. Org. Chem., 1991, 56, 4370-4382.
5. M. Toumi, F. Couty and G. Evano, Tetrahedron Lett., 2008, 49, 1175-1179.
6. M. Toumi, F. Couty and G. Evano, Angewandte Chemie-International Edition, 2007, 46, 572-575.
7. R. C. So, R. Ndonye, D. P. Izmirian, S. K. Richardson, R. L. Guerrera and A. R. Howell, J. Org. Chem., 2004, 69, 3233-3235.
8. E. J. Corey, F. Xu and M. C. Noe, Journal of the American Chemical Society, 1997, 119, 1241412415.
9. B. Lygo and P. G. Wainwright, Tetrahedron, 1999, 55, 6289-6300.
10. J. Aires-de-Sousa, S. Prabhakar, A. M. Lobo, A. M. Rosa, M. J. S. Gomes, M. C. Corvo, D. J. Williams and A. J. P. White, Tetrahedron-Asymmetry, 2002, 12, 3349-3365.
11. M. J. Odonnell and R. L. Polt, J. Org. Chem., 1982, 47, 2663-2666.
12. R. Chinchilla, C. Nájera and F. J. Ortega, Tetrahedron-Asymmetry, 2006, 17, 3423-3429.
13. T. Ohshima, T. Shibuguchi, Y. Fukuta and M. Shibasaki, Tetrahedron, 2004, 60, 7743-7754.
14. T. Ohshima, V. Gnanadesikan, T. Shibuguchi, Y. Fukuta, T. Nemoto and M. Shibasaki, J. Am. Chem. Soc., 2003, 125, 11206-11207.
15. S. M. Jones, J. E. Urch, M. Kaiser, R. Brun, J. L. Harwood, C. Berry and I. H. Gilbert, J. Med. Chem., 2005, 48, 5932-5941.
16. H. Matsunaga, T. Ishizuka and T. Kunieda, Tetrahedron, 1997, 53, 1275-1294.
17. B. R. Galan, K. P. Kalbarczyk, S. Szczepankiewicz, J. B. Keister and S. T. Diver, Organic Letters, 2007, 9, 1203-1206.
18. T. Kawate, N. Fukuta, A. Nishida and M. Nakagawa, Chem. Pharm. Bull., 1997, 45, 2116-2118.
19. J. G. Mina, J. A. Mosely, H. Z. Ali, H. Shams-Eldin, R. T. Schwarz, P. G. Steel and P. W. Denny, The International Journal of Biochemistry \& Cell Biology, 2010, 42, 1553-1561.
20. J. M. Figueiredo, W. B. Dias, L. Mendonca-Previato, J. O. Previato and N. Heise, Biochemical Journal, 2005, 387, 519-529.
21. P. A. Aeed, A. E. Sperry, C. L. Young, M. M. Nagiec and A. P. Elhammer, Biochemistry, 2004, 43, 8483-8493.
