Electronic Supplementary Information (ESI)

Substrate specificity of Rv3378c, an enzyme from *Mycobacterium tuberculosis*, and the inhibitory activity of the bicyclic diterpenoids against macrophage phagocytosis

Tsutomu Hoshino,* Chiaki Nakano, Takahiro Ootsuka, Yosuke Shinohara and Takashi Hara,

Department of Applied Biological Chemistry, Faculty of Agriculture and Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan

Contents	page
Fig. S1. EIMS spectra of enzymatic Products 23-28	S2~S4
Fig. S2. NMR data of Product 23 (copalol)	\$5
Fig. S3. NMR data of Product 25 (ent-copalol)	\$5
Fig. S4. NMR data of Product 27 (syn-copalol)	S6
Fig. S5. GC trace of the enzymatic products for testing the substrate specifi	ficity of the
Rv3378c enzyme	S7
Fig, S6. NMR data of Product 24a (manool, 13 <i>R</i>)	S8
Fig. S7. NMR data of Product 24b (13-epi-manool, 13S)	S8
Fig. S8. NMR data of Product 26b (13S-ent-manool)	S9
Fig. S9. Product 28b (major product, 13S-vitexifolin A)	S9
Fig. S10. NMR data of natural 13 <i>R</i> -vitexifolin A 28a, gifted by Prof. Ono	S10
Fig. S11. ¹ H NMR spectra of the three manools measured in C_6D_6 (400 M	Hz).
Solid lines: 13 <i>R</i> -configuration; Dotted lines: 13 <i>S</i> -configuration.	S11~S12
Fig. S12. ¹ H NMR spectrum (600 MHz, CDCl ₃) of <i>ent</i> -manool	
(a mixture of 26a and 26b) obtained by incubating <i>ent</i> -CDP 7	
with Rv3378c.	S12
Table S1. Differences of proton chemical shifts between the isolated ent-m	nanool
(a mixture of 26a and 26b) and authentic <i>ent</i> -13-epi-manool 26	a measured
in CDCl ₃ .	S13
Fig. S13. ¹ H-NMR spectra of vitexifolin A in C_6D_6 . (A) enzymatically	
synthesized vitexifolin A; (B) natural vitexifolin A.	S14
Fig. S14. Relationship between the logarithmic concentration of the	
tested compounds and the phogocytosis effect.	S15
Fig. S15. Inhibition activities of 3 + 4a and 3 + 4b on the phagocytosis	
of FITC-OPZ by macrophage-like U937 cells.	S16

Fig. S1. EIMS spectra of enzymatic products 23-28

The GC and GC-MS traces were inseparable between **24a** and **24b**, between **26a** and **26b**, and between **28a** and **28b** in a ZB-5ms capillary column (30m, Zebron); see Fig. 3 in the text. However, a chiral GC column (CYCLOSILB GC capillary column) gave the complete separation between their diastereomers (see Fig. 5 in the text).

Products 23, 24a & 24b

Products 25, 26a & 26b

S3

Products 27, 28a & 28b

Fig. S2. NMR data of Product 23 copalol

400 MHz in $C_6 D_6 \quad$ referred to the solvent of $C_6 D_6$: $^1 H$; 7.28ppm , $^{13} C$; 128.0ppm

	¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C
1	1.03(m);1.77(m)	39.20	6	1.38(m);1.73(m)	24.74	11	1.60(m);1.72(m)	22.19	16	1.65 (3H, s)	16.30
2	1.53 (2H, m);1.66(m) 19.74	7	2.07(m);2.50(m)	38.68 ^{<i>a</i>}	12	1.97(m);2.35(m)	38.79 ^{<i>a</i>}	17	5.07 (bs); 4.78 (bs)	106.7
3	1.24(m);1.48(m)	42.39	8	—	148.7	13		139.0	18	0.963 (3H, s)	33.71
4		33.64	9	1.69 (m)	56.53	14	5.57 (bt, <i>J</i> =6.8Hz)	124.5	19	0.922 (3H, s)	21.89
5	1.10 (dd, <i>J</i> =12.8, 2.8Hz)	55.60	10		39.87	15	4.13 (2H, d, <i>J</i> =6.4Hz)	59.37	20	0.855 (3H, s)	14.74

a: The assignments of C-7 and C-12 may be interchangeable due to the close chemical shifts.

Fig. S3. NMR data of Product 25

400 MHz in C_6D_6 relative to C_6D_6 : ¹H; 7.28ppm, ¹³C; 128.0ppm

	¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C
1	1.02 (m);1.76 (m) 39.19	6 1.3	37 (m); 1.74 (m)	24.73	11	1.62 (m); 1.73 (m)	22.18	16	1.65 (3H, s)	16.29
2	1.52 (m);1.66(m)) 19.74	7 2.0	07 (m); 2.51 (m)	38.67 ^{<i>a</i>}	12	1.98 (m); 2.33 (m)	38.79 ^{<i>a</i>}	17	5.07 (bs); 4.78 (bs)	106.7
3	1.25 (m); 1.48 (m) 42.38	8	—	148.7	13		139.0	18	0.962 (3H, s)	33.71
4		33.64	9	1.68 (m)	56.53	14	5.57 (bt, <i>J</i> =6.7 Hz)	124.5	19	0.921 (3H, s)	21.89
5	1.10 (dd, <i>J</i> =12.4, 2.8 Hz)	55.59	10	—	39.86	15	4.12 (2H, d, <i>J</i> =6.7 Hz)	59.36	20	0.854 (3H, s)	14.73

a: The assignments of C-7 and C-12 may be interchangeable due to the close chemical shifts.

Fig. S4. NMR data of Product 27

400 MHz in C_6D_6 referred to C_6D_6 : ¹H, 7.28ppm; ¹³C, 128.0ppm

	¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C
1	1.68 (m);1.14 (m)	37.06	6 1.6	5 (m); 1.38 (m)	23.98	11	1.81 (m); 1.58 (m)	24.79	16	1.631 (3H, s)	16.39
2	1.72 (m); 1.55 (m) 19.52	7 2.2	24 (m); 2.14 (m)	31.86	12	2.09 (m); 1.91 (m)	38.52	17	4.94 (bs); 4.76 (bs	s) 110.0
3	1.50 (m); 1.26 (m)) 42.94	8	—	149.3	13		138.9	18	0.935 (3H, s)	22.33
4		33.32	9	1.66 (m)	58.11	14	5.57 (bs)	124.6	19	0.990 (3H, s)	33.67
5	1.41 (m)	46.14	10	—	38.27	15	4.15 (2H, d, <i>J</i> =5.6)	59.38	20	1.112 (3H, s)	22.63

Fig. S5. GC trace of the enzymatic products for testing the substrate specificity of the Rv 3378c enzyme. The incubation mixtures were extracted with hexane. An excess of Triton X-100 included in the hexane-extracts was removed by passing a short SiO₂ column (hexane:EtOAc=100:30). The incubation mixtures were not subjected to phosphatase treatment. Thus, **23**, **25** and **27** were the true enzymatic products, but not the chemical artifacts (see Text).

A: Incubation mixture of GGPP **1** with a mixture of terpentedienyl-PP (**6**) synthase

(CYC1) and the Rv3378c enzyme: no reaction

B: Incubation mixture of **1** with a mixture of (+)-copalyl-PP (**7**) synthase and the Rv3378c enzyme

C: Incubation mixture of **1** with a mixture of (-)-*ent*-copalyl-PP (**8**) synthase and the Rv3378c enzyme

D: Incubation mixture of 1 with a mixture of *syn*-copalyl-PP (9) synthase with the Rv3378c enzyme.

Fig, S6. NMR data of Product 24a (manool, 13R).

manool (13R) from CDP+Rv3378c

400 MHz in C_6D_6 relative to C_6D_6 : ¹H ; 7.28ppm , ¹³C ; 128.0ppm

	¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C
1	1.84 (m);1.05 (m) 39.22*	6 1.3	75 (m); 1.40 (m)	24.71 [*]	11	1.74(m);1.59(m)	18.01 [*]	16	1.257 (3H, s)*	28.53*
2	1.65(m); 1.54 (m) 19.73*	7 (dda	(bd, J=12.8Hz); 2.0 I, J=12.8, 12.8, 4.8 H	⁸ _(z) 38.70	12	1.88 (m); 1.40 (m)	41.74 [*]	17	* 5.08 (bs);4.83 (bs)	106.9 [*]
3	1.48 (m); 1.26 (m) 42.45	8	—	148.8	13		73.24*	18	0.973 (3H, s)	33.74
4		33.64	9	1.62 (m)	57.48	14	5.94 (dd, J=17.2, 10.8) ²	*145.7*	19	0.916 (3H, s)	21.88
5	1.10 (bd, J=12.4 Hz	2) 55.65 *	10		40.08	15	Ha 5.34 (dd, J=17.2, 1.6 Hb 5.10 (dd, J=10.8, 1.6)*111.4)*	20	0.857 (3H, s)*	14.68

The symbol * indicates that the chemical shifts are separable between 13R and 13S-manool

The ¹H and ¹³C chemical shifts listed here are derived from authentic **24a**, purchased from Industrial Research Limited (New Zealand).

Fig. S7. NMR data of Product 24b (13-epi-manool, 13S)

13-epi-manool (13S) from CDP+Rv3378c

400 MHz in C_6D_6 referred to C_6D_6 : ¹H, 7.28ppm; ¹³C, 128.0ppm

	¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C
1	1.84 (m);1.05 (m)	39.23 *	6 1.7	5 (m); 1.40 (m)	24.71*	11	1.74(m);1.59(m)	18.07*	16	1.264 (3H, s) *	28.22*
2	1.65(m); 1.54 (m)) 19.75 *	7 2.51 ((ddd,	bd, J=12.8Hz); 2.08 J=12.8, 12.8, 4.8 Hz)	38.70	12	1.90 (m); 1.38 (m)	41.80*	17	5.08 (s); 4.88 (s)*	107.1*
3	1.48 (m); 1.26 (m)	42.45	8	—	148.7	13		73.14	18	0.973 (3H, s)	33.74
4		33.64	9	1.62 (m)	57.53 [*]	14	5.93 (dd, J=17.2, 10.8)	145.9*	19	0.916 (3H, s)	21.88
5	1.10 (bd, J=12.4 Hz)	55.68*	10		40.09	15	Ha 5.32 (dd, J=17.2, 1.6) Hb 5.09 (dd, J=10.8, 1.6) *	111.2 [*]	20	0.857 (3H, s)	14.68

The symbol * indicates that the chemical shifts are separable between 13R and 13S-manool.

Fig. S8. NMR data of Product 26b

Product 25b (major product from *ent*-CDP + Rv3378c

13(S)-ent-manool

400 MHz in C_6D_6 referred to C_6D_6 : ¹H, 7.28ppm; ¹³C, 128.0ppm

	¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C
1	1.84 (m);1.03 (m) 39.22	6 1.	75 (m); 1.39 (n	n) 24.74	11	1.73(m); 1.55(m)	18.02	16	1.256 (3H, s)	28.54
2	1.65(m); 1.56 (m) 19.74	7 ^{2.5} (dd	1 (bd, J=12.8Hz); 2.0 d, J=12.8, 12.8, 4.8 H	⁾⁸ Hz) 38.70	12	1.85 (m); 1.40 (m)	41.74	17	5.07 (bs); 4.83 (bs)	106.9
3	1.47 (m); 1.25 (m	n) 42.45	8	—	148.8	13		73.25	18	0.971 (3H, s)	33.75
4		33.65	9	1.62 (m)	57.49	14	5.94 (dd, J=17.2, 10.8	8) 145.8	19	0.915 (3H, s)	21.89
5	1.10 (bd, J=12.4 Hz)	55.66	10	—	40.08	15	Ha 5.34 (dd, J=17.2, 1.	^{.6)} 111.4	20	0.857 (3H, s)	14.68
							Hb 5.10 (dd, J=10.8, 1	.6)			

Fig. S9. NMR data of Product 28b (major product; 13S-vitexifolin A), which was produced from *syn*-CDP and the Rv3378c enzyme

400 MHz in C_6D_6 relative to C_6D_6 : ¹H; 7.28ppm, ¹³C; 128.0ppm

	¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C
1	1.75 (m);1.18 (m	a) 37.08	6 1	.63 (m); 1.35 (m)	24.02	11	1.87(m); 1.61(m)	20.41	16	1.246 (3H, s)	28.73
2	1.75 (m); 1.52(m)	19.54	7	2.26 (2H, m)	31.92	12	1.60 (m); 1.37 (m)	41.35	17	4.93 (t, <i>J</i> =2.2); 4.75 (m)	109.7
3	1.46 (m); 1.23 (n	n) 42.82	8	—	149.6	13		72.91	18	0.927 (3H, s)	22.36
4		33.30	9	1.62 (m)	58.76	14	5.89 (dd, <i>J</i> =17.2, 10.8)	145.8	19	0.948 (3H, s)	33.60
5	1.45 (m)	46.10	10		38.39	15	Ha 5.31(dd, J=17.2, 1.6) Hb 5.06 (dd, J=10.8, 1.6)	111.3	20	1.124 (3H, s)	22.70

Fig. S10. NMR data of 13*R*-vitexifolin A 28a, gifted by Prof. Ono

400 MHz in $C_6 D_6 \quad$ relative to $C_6 D_6$: $^1 H$; 7.28ppm , $^{13} C$; 128.0ppm

	¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C		¹ H	¹³ C
1	1.75 (m);1.17 (m)	37.09	6 ¹	.65 (m); 1.42 (m)	24.02	11	1.83(m); 1.63(m)	20.40	16	1.241 (3H, s)	28.36
2	1.75 (m); 1.54(m)	19.54	7	2.25 (2H, m)	31.91	12	1.63 (m); 1.34 (m)	41.34	17	4.93 (t, <i>J</i> =2.2); 4.74 (m)	109.7
3	1.47 (m); 1.24 (m)	42.84	8	—	149.6	13		72.82	18	0.954 (3H, s)	33.60
4		33.30	9	1.63 (m)	58.83	14	5.91 (dd, <i>J</i> =17.2, 10.8)	146.0	19	0.928 (3H, s)	22.36
5	1.46 (m)	46.08	10	—	38.41	15	Ha 5.31(dd, <i>J</i> =17.2, 1.6) Hb 5.07 (dd, <i>J</i> =10.8, 1.6)	111.2	20	1.124 (3H, s)	22.70
									I		

Fig. S11. ¹H NMR spectra of the three manools measured in C_6D_6 (400 MHz). Solid lines: 13*R*-configuration; Dotted lines: 13*S*-configuration.

A) manool (a mixture of 13*R*-24a and 13*S*-configuration 24b, ca 1:1.2), prepared in this experiment.

- B) authentic 13*R*-manool (**24a**) purchased from Industrial Research Limited (New Zealand).
- C) *ent*-manool (a mixture of 13*R* 26a and 13*S*-configuration 26b, ca 1:5), obtained by this incubation experiment. The structures of 24a and 26b are in an enantiomeric relationship; ¹H-NMR spectrum of 26b was be identical to that of authentic 24a (B). Thus, the major product is assigned to be *ent*-13*S*-manool 26b.

Fig. S12. ¹H NMR spectrum (600 MHz, CDCl₃) of *ent*-manool (a mixture of **26a** and **26b**) obtained by incubating *ent*-CDP **8** with the Rv3378c enzyme.

Table S1. Differences of proton chemical shifts between the isolated *ent*-manool and authentic *ent*-13-epi-manool measured in CDCl₃.

	$\delta_{\rm H}$ (ppm) for the isolated product (a mixture of 26a & 26b)	$\delta_{\rm H}$ (ppm) for authentic <i>ent</i> -13-epi-manool (13 <i>R</i>)
Me-20	0.6765	0.6766
	0.6707	
H-17	4.512	4.512
	4.475	
H-17	4.815	4.813
	4.807	
Hb-15	5.055 (<i>J</i> =10.7 Hz)	5.050 (<i>J</i> =10.7 Hz)
	5.067(<i>J</i> =10.7 Hz)	
Ha-15	5.206 (<i>J</i> =17.3 Hz)	5.201 (<i>J</i> =17.1 Hz)
	5.214(<i>J</i> =17.3 Hz)	

As shown in this table, the proton chemical shifts (plain letters) of the minor peaks (ca. 1/5 peak intensities of the major product) were identical to those of authentic *ent*-13*-epi*-manool (13*R*), whose NMR data were kindly provided from Prof. Asakawa (Tokushima Bunri Univ.), thus major peaks (bold letters) indicate *ent*-manool (13*S*). No chemical shift difference of Me-16 was observed between **26a** and **26b** in the CDCl₃ solution.

Fig. S13. ¹H-NMR spectra of vitexifolin A in C_6D_6 . (A), enzymatically synthesized vitexifolin A; (B), natural vitexifolin A.

A: ¹H NMR spectrum (400 MHz) of **28** (a mixture of **28a** and **28b**) in C_6D_6 , which was obtained by incubating *syn*-CDP **9** with the Rv3378c enzyme. The ratio of **28a** to **28b** was 1:17.

B: ¹H NMR spectrum (400 MHz) of **28** isolated from *Vitex rotundifolia* in C₆D₆. (M. Ono, T. Yanaka, M. Yamamoto, Y. Ito and T. Nohara, *J. Nat. Prod.*, 2002, **65**, 537-541). The C(13)-stereochemistry of this natural product has not been reported, but determined to be 13*R* by us (see Fig. 5in the text). However a negligible amount of 13*S*-viterxifolin A was mixed as shown in the ¹H NMR spectrum (B).

Fig. S14. Relationship between the logarithmic concentration of the tested compounds and the phagocytic activity of macrophage-like U937 cells.. R^2 =0.96~0.98

Fig. S15. Inhibition activities of 3+4a and 3+4b on the phagocytosis of FITC-OPZ by macrophage-like U937 cells. The cells were treated with 20 μ M of 3, 4a and 4b, 10 μ M each of 3 and 4a or 4b (3+4a, 3+4b) for 15 min and exposed to FITC-OPZ for 60 min at 37°C. The cells engulfing FITC-OPZ were counted by fluorescence microscopy. The data are normalized using the value of untreated cells (control) as 100% and expressed as mean \pm SD (n=4). The synergistic inhibition was observed for 3+4b with significantly lower percentage (32 \pm 2.4%) compared to 3 (57 \pm 3.2%), 4a (68 \pm 6.4%), 4b (53 \pm 3.3%) and 3+4a (54 \pm 2.1%) (*P*<0.01, Student's *t*-test).

