SUPPORTING INFORMATION FOR:

Design, Synthesis and Cyclization of 4-Aminobutyric Acid Derivatives: Potential Candidates as Self-Immolative Spacers

Matthew A. DeWit[†] and *Elizabeth R. Gillies*^{†‡*}

[†]Department of Chemistry, [‡]Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, ON N6A 5B7, Canada

Table of Contents:

1.	Syntheses of compounds 6b, 8c, 9b, 9c, 10b, 10c, 11c, 12b, 12c, 12d, 13b,	
	13c, 13d, 17b	S2-S8
3.	¹ H NMR spectra of all synthesis products	
4.	¹³ C NMR spectra of all synthesis products	S24-S39
5.	¹ H NMR spectra of compounds 3a-k prior to and after cyclization	S40-S47
6.	Kinetics data	S48-S54

Synthesis of phenyl ester 6b. The same procedure described above for the preparation of compound **6a** was followed except that **5** was used as a starting material. The product was purified by column chromatography (9:1 cyclohexane:EtOAc) to provide **6b** (0.128 g, 79%) as a clear, colorless oil. v_{max}/cm^{-1} 3103, 3074, 3045, 3014, 2979, 2937, 2873, 1762, 1697, 1596, 1494, 1477, 1396, 1366. ¹H NMR (CDCl₃): δ 7.42 – 7.36 (m, 2H), 7.26 – 7.21 (m, 2H), 7.12 – 7.07 (m, 1H), 3.35 (t, J = 6.6 Hz, 2H), 2.89 (s, 3H), 2.58 (t, J = 7.4 Hz, 2H), 1.97 (quint, J = 7.0 Hz. 2H), 1.48 (s, 9H). ¹³C NMR (CDCl₃): δ 171.6, 155.7, 150.6, 129.3, 125.7, 121.4, 79.4, 48.0 & 47.4 (rotamers), 34.1, 31.3, 28.4, 23.0 & 22.8 (rotamers). HRMS: calc'd [M+H]⁺ (C₁₆H₂₄NO₄): 294.1705. Found: (EI) 294.1711.

Synthesis of α-benzyl *tert*-butyl ester 8c. The same procedure described above for the preparation of compound 8a was followed except that benzyl bromide was used as the alkyl halide and only 1.2 equiv. of LHMDS was used. The product was purified by column chromatography (99:1 cyclohexane:EtOAc → 19:1 cyclohexane:EtOAc) to provide 8c (0.188 g, 70%) as a thick, colorless oil. v_{max}/cm^{-1} 3090, 3066, 3031, 3006, 2978, 2932, 2892, 1727, 1699, 1483, 1456, 1394, 1367. ¹H NMR (CDCl₃): δ 7.32 – 7.24 (m, 2H), 7.23 – 7.15 (m, 3H), 3.43 – 3.08 (m, 2H), 2.99 – 2.67 (m, 2H), 2.81 (s, 3H), 1.93 – 1.79 (m, 1H), 1.73 – 1.60 (m, 1H), 1.54 – 1.38 (m, 9H), 1.38 – 1.28 (m, 9H). ¹³C NMR (CDCl₃): δ 174.2, 155.5, 139.1, 128.9, 128.2, 126.2, 80.3, 79.2, 47.2, 45.6, 38.5, 34.1, 29.9, 28.3, 27.9. HRMS: calc'd [M]⁺ (C₂₁H₃₃NO₄): 363.2410. Found: (EI) 363.1924.

Synthesis of acid 9b. The same procedure described above for the preparation of compound **9a** was followed except that **8b** was used as a starting material. The product was purified by column

chromatography (5:1 cyclohexane:EtOAc) to provide **9b** (0.122 g, 99%) as a thick, colorless oil. v_{max}/cm^{-1} 3450, 2980, 2941, 1700, 1670, 1489, 1457, 1401, 1368. ¹H NMR (CDCl₃): δ 10.77 (s, 1H), 5.80 – 5.67 (m, 1H), 5.14 – 5.10 (m, 2H), 3.40 – 3.16 (m, 2H), 2.81 (s, 3H), 2.46 – 2.35 (m, 2H), 2.33 – 2.22 (m, 1H), 1.90 – 1.78 (m, 1H), 1.75 – 1.64 (m, 1H), 1.43 (s, 9H). ¹³C NMR (CDCl₃): δ 180.2, 155.9, 134.7, 117.3, 80.0, 46.9 & 46.5 (rotamers), 42.2, 36.1, 34.1, 29.9, 28.3. HRMS: calc'd [M]⁺ (C₁₃H₂₃NO₄): 257.1627. Found: (EI) 257.1634.

Synthesis of acid 9c. The same procedure described above for the preparation of compound **9a** was followed except that **8c** was used as a starting material. The product was purified by column chromatography (3:1 cyclohexane:EtOAc) to provide **9c** (143 mg, 96%) as a thick, colorless oil. v_{max}/cm^{-1} 3092, 3180, 3067, 3032, 2980, 2938, 1735, 1700, 1667, 1488, 1456, 1404, 1368. ¹H NMR (CDCl₃): δ 10.90 (s, 1H), 7.34 – 7.15 (m, 5H), 3.45 – 3.19 (m, 2H), 3.14 – 3.00 (m, 1H), 2.84 – 2.73 (m, 1H), 2.77 (s, 3H), 2.73 – 2.64 (m, 1H), 1.94 – 1.82 (m, 1H), 1.78 – 1.67 (m, 1H), 1.54 – 1.34 (m, 9H). ¹³C NMR (CDCl₃): δ 180.2, 156.3, 138.6, 128.8, 128.4, 126.5, 80.5, 47.1 & 46.6 (rotamers), 44.4, 38.0, 34.1, 29.0, 28.2. HRMS: calc'd [M]⁺ (C₁₇H₂₅NO₄): 307.1784. Found: (EI) 307.1783.

Synthesis of phenyl ester 10b. The same procedure described above for the preparation of compound **10a** was followed except that **9b** was used as a starting material. The product was purified by column chromatography (93:7 cyclohexane:EtOAc) to provide **10b** (0.128 g, 86%) as a colorless oil. v_{max}/cm^{-1} 3080, 3009, 2979, 2936, 2871, 1758, 1698, 1594, 1493, 1457, 1396, 1367. ¹H NMR (CDCl₃): δ 7.37 (t, J = 7.4 Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), 7.08 (d, J = 7.8 Hz, 2H), 5.94 – 5.80 (m, 1H), 5.22 – 5.08 (m, 2H), 3.48 – 3.21 (m, 2H), 2.87 (s, 3H), 2.75 – 2.65 (m,

1H), 2.60 – 2.39 (m, 2H), 2.04 (sextet, J = 7.4 Hz, 1H), 1.80 (sextet, J = 7.4 Hz, 1H), 1.46 (s, 9H). ¹³C NMR (CDCl₃): δ 173.4, 155.6, 150.6, 134.7, 129.3, 125.7, 121.5, 117.5, 79.5, 47.0 & 46.4 (rotamers), 42.5, 36.5, 34.1, 29.4, 28.4. IR (cm⁻¹): HRMS: calc'd [M]⁺ (C₁₉H₂₇NO₄): 333.1940. Found: (EI) 333.1932.

Synthesis of phenyl ester 10c. The same procedure described above for the preparation of compound **10a** was followed except that **9c** was used as a starting material. The product was purified by column chromatography (93:7 cyclohexane:EtOAc) to provide **10c** (0.146 g, 82%) as a colorless oil. v_{max}/cm^{-1} 3091, 3068, 3033, 2993, 2978, 2931, 2867, 1756, 1696, 1594, 1494, 1481, 1396, 1367. ¹H NMR (CDCl₃): δ 7.33 – 7.26 (m, 4H), 7.25 – 7.19 (m, 3H), 7.15 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 7.4 Hz, 2H), 3.52 – 3.18 (m, 2H), 3.13 – 2.84 (m, 3H), 2.81 (s, 3H), 2.04 (sextet, J = 7.8 Hz, 1H), 1.89 – 1.73 (m, 1H), 1.52 – 1.35 (m, 9H). ¹³C NMR (CDCl₃): δ 173.5, 155.6, 150.4, 138.5, 129.2, 129.0, 128.4, 126.6, 125.7, 121.4, 79.4, 47.1 & 46.3 (rotamers), 45.0, 38.5, 34.1, 29.8, 28.3. HRMS: calc'd [M+H]⁺ (C₂₃H₃₀NO₄): 384.2169. Found: (EI) 384.2167.

Synthesis of α-dibenzyl *tert*-butyl ester 11c. The same procedure described above for the preparation of compound 11b was followed except that benzyl bromide was used as the alkyl halide. The product was purified by column chromatography (93:7 cyclohexane:EtOAc) to provide 11c (0.384 g, 93%) as a thick, colorless oil. v_{max} /cm⁻¹ 3088, 3065, 3032, 3006, 2978, 2935, 1698, 1496, 1482, 1455, 1395, 1366. ¹H NMR (CDCl₃): δ 7.27 – 7.14 (m, 10H), 3.50 – 3.30 (br m, 2H), 3.02 (d, J=14.1 Hz, 2H), 2.83 (d, J=14.1 Hz, 2H), 2.66 (s, 3H), 1.78 – 1.65 (br m, 2H), 1.45 (s, 9H), 1.34 (s, 9H). ¹³C NMR (CDCl₃): δ 174.5, 155.5, 137.3, 130.4, 128.0,

126.4, 81.1, 79.5, 50.2, 44.6 & 43.9 (rotamers), 42.0, 33.6, 31.1 & 30.4 (rotamers), 28.5, 27.9. HRMS: calc'd [M]⁺ (C₂₈H₃₉NO₄): 453.2879 Found: (EI) 453.2866.

Synthesis of acid 12a. The same procedure described above for the preparation of compound 9a was followed except that 11a was used as a starting material. The product was purified by column chromatography (85:15 cyclohexane:EtOAc) to provide 12a (0.166 g, 97%) as a thick, colorless oil. v_{max}/cm^{-1} 3454, 3200, 2980, 2935, 1700, 1694, 1481, 1405, 1368. ¹H NMR (CDCl₃): δ 3.24 (br t, J = 7.8 Hz, 2H), 2.83 (s, 3H), 1.82 – 1.74 (m, 2H), 1.46 (s, 9H), 1.25 (s, 6H). ¹³C NMR (CDCl₃): δ 182.9, 155.6, 79.4, 45.4 & 44.9 (rotamers), 40.6, 37.7, 34.0, 28.3, 24.9. HRMS: calc'd [M]⁺ (C₁₂H₂₃NO₄): 245.1627. Found: (EI) 245.1618.

Synthesis of acid 12b. The same procedure described above for the preparation of compound **9a** was followed except that **11b** was used as a starting material. The product was purified by column chromatography (5:1 cyclohexane:EtOAc) to provide **12b** (0.092 g, 90%) as a thick, colorless oil. v_{max}/cm^{-1} 3430, 3270, 3080, 3010, 2980, 2935, 1730, 1700, 1488, 1454, 1404, 1368. ¹H NMR (CDCl₃): δ 5.84 – 5.70 (m, 2H), 5.19 – 5.11 (m, 4H), 3.25 (br t, J = 7.4 Hz, 2H), 2.82 (s, 3H), 2.38 (d, J = 7.4 Hz, 4H), 1.84 – 1.76 (m, 2H), 1.46 (s, 9H). ¹³C NMR (CDCl₃): δ 181.0, 155.6, 132.6, 118.8, 80.3, 47.6, 38.7, 34.1, 32.1, 28.3. HRMS: calc'd [M]⁺ (C₁₆H₂₇NO₄): 297.1940. Found: (EI) 297.1949.

Synthesis of acid 12c. The same procedure described above for the preparation of compound **9a** was followed except that **11c** was used as a starting material. The product was purified by column chromatography (85:15 cyclohexane:EtOAc) to provide **12c** (0.139 g, 94%) as a sticky

white solid. v_{max}/cm^{-1} 3460, 3210, 3090, 3067, 3031, 2979, 2935, 1697, 1665, 1497, 1456, 1404, 1368. ¹H NMR (CDCl₃): δ 7.33 – 7.19 (m, 10H), 3.55 – 3.31 (m, 2H), 3.13 (d, J = 13.7 Hz), 2.93 (d, J = 14.0 Hz), 2.69 (s, 3H), 1.80 – 1.70 (m, 2H), 1.47 (s, 9H). ¹³C NMR (CDCl₃): δ 181.2, 155.9, 136.8, 130.2, 128.2, 126.8, 80.1, 50.3, 44.8 & 43.9 (rotamers), 42.1, 43.7, 30.6 & 29.4 (rotamers), 28.5. HRMS: calc'd [M]⁺ (C₂₄H₃₁NO₄): 397.2253. Found: (EI) 397.2241.

Synthesis of acid 12d. The same procedure described above for the preparation of compound **9a** was followed except that **11d** was used as a starting material. The product was purified by column chromatography (85:15 cyclohexane:EtOAc) to provide **12d** (0.095 g, 88%) as a thick, colorless oil. v_{max}/cm^{-1} 3470, 2975, 2876, 1698, 1674, 1468, 1454, 1403, 1368. ¹H NMR (CDCl₃): δ 3.30 – 3.13 (m, 2H), 2.83 (s, 3H), 2.22 – 2.10 (m, 2H), 1.92 – 1.80 (m, 2H), 1.76 – 1.63 (m, 4H), 1.62 – 1.50 (m, 2H), 1.45 (s, 9H). ¹³C NMR (CDCl₃): δ 182.4, 155.5, 79.3, 51.7, 46.2 & 45.7 (rotamers), 36.4, 36.1, 34.0, 28.3, 24.9. HRMS: calc'd [M]⁺ (C₁₄H₂₅NO₄): 271.1784. Found: (EI) 271.1776.

Synthesis of phenyl ester 13b. The same procedure described above for the preparation of compound **13a** was followed except that **12b** was used as a starting material. The product was purified by column chromatography (97:3 cyclohexane:EtOAc) to provide **13b** (0.085 g, 74%) as a colorless oil. v_{max} /cm⁻¹ 3080, 2979, 2934, 1752, 1697, 1642, 1594, 1494, 1457, 1396, 1367. ¹H NMR (CDCl₃): δ 7.38 (t, J = 7.4 Hz, 2H), 7.23 (t, J = 7.4 Hz, 1H), 7.06 (br d, J = 7.4 Hz, 2H), 5.94 – 5.78 (m, 2H), 5.26 – 5.16 (m, 4H), 3.42 – 3.26 (m, 2H), 2.86 (s, 3H), 2.52 (d, J = 7.8 Hz, 4H), 1.98 – 1.87 (m, 2H), 1.47 (s, 9H). ¹³C NMR (CDCl₃): δ 174.0, 155.5, 150.7, 132.8, 129.4,

125.8, 121.6, 119.1, 79.6, 48.0, 44.7 & 44.3 (rotamers), 39.1, 34.1, 32.2 & 31.9 (rotamers), 28.5. HRMS: calc'd [M]⁺ (C₂₂H₃₁NO₄): 373.2253. Found: (EI) 373.2267.

Synthesis of phenyl ester 13c. The same procedure described above for the preparation of compound **13a** was followed except that **12c** was used as a starting material. The product was purified by column chromatography (97:3 cyclohexane:EtOAc) to provide **13c** (0.092 g, 60%) as a colorless oil. v_{max}/cm^{-1} 3091, 3066, 3032, 2980, 2934, 2874, 1750, 1693, 1594, 1495, 1456, 1398, 1367. ¹H NMR (CDCl₃): δ 7.44 – 7.26 (m, 12H), 7.23 (t, J = 7.4 Hz, 1H), 6.88 (d, J = 7.4 Hz), 3.66 – 3.44 (m, 2H), 3.28 (d, J = 13.7 Hz, 2H), 3.05 (d, J = 14.0 Hz, 2H), 2.73 (s, 3H), 2.02 – 1.86 (m, 2H), 1.49 (s, 9H). ¹³C NMR (CDCl₃): δ 173.9, 155.5, 150.5, 136.8, 130.3, 129.3, 128.3, 126.9, 125.8, 121.4, 79.6, 50.8, 44.7 & 43.7 (rotamers), 42.3, 36.7, 30.5 & 29.5 (rotamers), 28.5. HRMS: calc'd [M]⁺ (C₃₀H₃₅NO₄): 473.2566. Found: (EI) 473.2557.

Synthesis of phenyl ester 13d. The same procedure described above for the preparation of compound 13a was followed except that 12d was used as a starting material. The product was purified by column chromatography (98:2 cyclohexane:EtOAc → 97:3 cyclohexane:EtOAc) to provide 13d (0.135 g, 76%) as a colorless oil. v_{max} /cm⁻¹ 3103, 3095, 3047, 2974, 2934, 2878, 1750, 1699, 1597, 1494, 1458, 1399, 1367. ¹H NMR (CDCl₃): δ 7.38 (t, J = 7.8 Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), 7.07 (br d, J = 7.4 Hz, 2H), 3.38 – 3.24 (m, 2H), 2.87 (s, 3H), 2.38 – 2.26 (m, 2H), 2.00 (br t, J = 7.8 Hz, 2H), 1.83 – 1.60 (m, 6H), 1.46 (s, 9H). ¹³C NMR (CDCl₃): δ 175.8, 155.5, 150.9, 129.3, 125.6, 121.4, 79.4, 52.3, 46.3 & 45.9 (rotamers), 36.6 & 36.2 (rotamers), 36.4, 34.2, 28.4, 25.0. HRMS: calc'd [M+H]⁺ (C₂₀H₃₀NO₄): 348.2169. Found: (EI) 348.2169.

Synthesis of phenyl ester 17b. The same procedure described above for the preparation of compound **17a** was followed except that **16b** was used as a starting material. The product was purified by column chromatography (93:7 cyclohexane:EtOAc) to provide **17b** (0.096 g, 58%) as a colorless oil. v_{max}/cm^{-1} 3120, 3084, 3024, 3008, 2982, 2938, 2898, 1778, 1747, 1698, 1593, 1493, 1476, 1396, 1369. ¹H NMR (CDCl₃): δ 7.38 (t, J = 7.8 Hz, 2H), 7.23 (t, J = 7.4 Hz, 1H), 7.11 (d, J = 7.8 Hz, 2H), 5.05 (dd, J = 4.3 & 8.6 Hz, 1H), 3.64 – 3.48 (m, 1H), 3.43 – 3.29 (m, 1H), 2.89 (s, 3H), 2.38 – 2.13 (m, 2H), 1.51 (s, 9H), 1.46 (s, 9H). ¹³C NMR (CDCl₃): δ 168.7, 155.6, 152.8, 150.2, 129.5, 126.1, 121.2, 83.3, 79.8, 72.2, 45.0, 34.5, 29.7, 28.4, 27.7. HRMS: calc'd [M+H]⁺ (C₂₁H₃₁NO₇): 410.2173. Found: (EI) 410.2173.

Figure S1. ¹H NMR Spectrum of Compound 5 (400 MHz, CDCl₃)

Figure S2. ¹H NMR Spectrum of Compound 6a (400 MHz, CDCl₃)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

0.35 0.30 0.25 0.20 0.15

0.10

7.5

7.0

6.5

Figure S14. ¹H NMR Spectrum of Compound **10c** (400 MHz, CDCl₃)

5.0 4.5 4.0 Chemical Shift (ppm) 3.04

3.0

2.5

2.0

3.5

1.5

1.0

CH2Cl2

5.5

6.0

Figure 64. ¹H NMR Spectrum of **18a** (400 MHz, CDCl₃). HRMS calc'd $[M]^+$ (C₄H₇NO): 85.0528. Found: (EI) 85.0530.

Figure S66. ¹H NMR Spectrum of a) Commercial NMP and b) **18b** (400 MHz, CDCl₃). HRMS calc'd $[M]^+$ (C₅H₉NO): 99.0684. Found: (EI) 99.0681.

Figure S67. ¹H NMR Spectrum of **3c**·TFA (400 MHz, CDCl₃). Upon addition of H₂O immediately prior to freeze drying, some material cyclized to form **18c** and PhOH.

Figure S68. ¹H NMR Spectrum of 18c (400 MHz, CDCl₃). HRMS calc'd $[M]^+$ (C₆H₁₁NO): 113.0841. Found: (EI) 113.0841.

Figure S70. ¹H NMR Spectrum of **18d** (400 MHz, CDCl₃). HRMS calc'd $[M+H]^+$ (C₈H₁₄NO)⁺: 140.1070. Found: (EI) 140.1079.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Figure S72. ¹H NMR Spectrum of **18e** (400 MHz, CDCl₃). HRMS calc'd [M]⁺ (C₁₂H₁₅NO): 189.1154. Found: (EI) 181.1156.

Figure S74. ¹H NMR Spectrum of **18f** (400 MHz, CDCl₃). HRMS calc'd [M+H]⁺ (C₇H₁₄NO): 128.1070. Found: (EI) 128.1079.

Figure S76. ¹H NMR Spectrum of **18g** (400 MHz, CDCl₃). HRMS calc'd [M]⁺ (C₁₁H₁₇NO): 179.1310. Found: (EI) 179.1308.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Figure S78. ¹H NMR Spectrum of **18h** (400 MHz, CDCl₃). HRMS calc'd $[M]^+$ (C₁₉H₂₁NO): 279.1623. Found: (EI) 279.1623.

Figure S80. ¹H NMR Spectrum of **18i** (400 MHz, CDCl₃). HRMS calc'd $[M]^+$ (C₉H₁₅NO): 153.1154. Found: (EI) 153.1156.

Figure S82. ¹H NMR Spectrum of **18***j* (400 MHz, Acetone- d_6). HRMS calc'd [M]⁺ (C₄H₇NO₂): 101.0477. Found: (EI) 101.0479.

Figure S83. ¹H NMR Spectrum of **3k** TFA (400 MHz, Acetone- d_6). Upon addition of H₂O immediately prior to freeze drying, some material cyclized to form **18k** and PhOH.

Figure S84. ¹H NMR Spectrum of **18k** (400 MHz, Acetone- d_6). HRMS calc'd [M]⁺ (C₅H₉NO₂): 115.0633. Found: (EI) 115.0633.

Figure 86. Determination of first order rate constant by $\ln[A]_0/[A]$ vs t graph for compounds **3a** and **3b**.

Figure S87. Cyclization kinetics for compounds 3c, 3d, and 3e.

Figure 88. Determination of first order rate constant by ln[A]₀/[A] vs t graph for compounds **3c**, **3d**, and **3e**.

Figure S89. Cyclization kinetics for compounds 3f, 3g, 3h, and 3i.

Figure 90. Determination of first order rate constant by ln[A]₀/[A] vs t graph for compounds **3f**, **3g**, and **3i**.

Figure 91. Determination of first order rate constant by $\ln[A]_0/[A]$ vs t graph for compound **3h**.

Figure S92. Cyclization kinetics for compounds 3j and 3k.

Figure 93. Determination of first order rate constant by $\ln[A]_0/[A]$ vs t graph for compounds **3j** and **3k**.

Figure S94. Cyclization rate of 3i at pH 7.0 and 6.0.

Figure 95. Determination of first order rate constant by $\ln[A]_0/[A]$ vs t graph for compounds **3i** at pH 7.0 and 6.0.

Figure 96. Cyclization of 3i and pH 5.0 and 4.0.

Figure 97. Determination of first order rate constant by $\ln[A]_0/[A]$ vs t graph for compounds **3i** at pH 5.0 and 4.0.

Figure S98. pH dependence of the cyclization rate of 3i.