Supporting Information

Stannylated allyl carbonates as versatile building blocks for the diversity oriented synthesis of allylic amines and amides

Christian Bukovec and Uli Kazmaier*

Institut für Organische Chemie, Universität des Saarlandes, D-66123 Saarbrücken, Germany. Fax: +49 681 302 2409; Tel: +49 681 302 3409; E-mail: <u>u.kazmaier@mx.uni-saarland.de</u>

Table of contents

Synthetic procedure and Analytical / Spectroscopic Data:

Ethyl 2-(tributylstannyl)allyl carbonate (1a)	S3
1-(2-(Tributylstannyl)allyl)morpholine (2b)	S3
1-(2-(Tributylstannyl)allyl)pyrrolidine (2c)	S3
<i>N</i> , <i>N</i> -Diethyl-1-(2-(Tributylstannyl)allyl)-amine (2d)	S4
<i>N</i> , <i>N</i> -Diallyl-1-(2-(Tributylstannyl)allyl)-amine (2e)	S4
N,N-Dibenzyl-1-(2-(Tributylstannyl)allyl)-amine (2f)	S4
N,N-Dicyclohexyl-1-(2-(Tributylstannyl)allyl)-amine (2g)	S5
1-(2-(Tributylstannyl)allyl)aniline (2h)	S5
1-(2-(Tributylstannyl)allyl)-4-methoxy-aniline (2i)	S5
<i>N</i> -Benzyl-1-(2-(Tributylstannyl)allyl)-amine (2k)	S6
<i>N</i> -Cylcohexyl-1-(2-(Tributylstannyl)allyl)-amine (21)	S6
<i>N</i> -(1-Phenylethyl)-1-(2-(Tributylstannyl)allyl)-amine (2m)	S7
<i>N</i> -(2-Benzylallyl)piperidin (3c)	S7
Z-Ethyl 4-(piperidin-1-ylmethyl)penta-2,4-dienoate (3d)	S7
1-(2-(4-Nitrophenyl)allyl)piperidine (3e)	S8
4-(3-(Piperidin-1-yl)prop-1-en-2-yl)benzaldehyde (3f)	S8
1-(2-(Naphthalen-2-yl)allyl)piperidine (3g)	S8
5-(3-(Piperidin-1-yl)prop-1-en-2-yl)pyrimidine (3h)	S9
1-(2-(4-Methoxyphenyl)allyl)piperidine (3i)	S9
1-(2-Methylene-4-phenylbut-3-enyl)piperidine (3k)	S9
Ethyl 2-(3-(piperidin-1-yl)prop-1-en-2-yl)benzoate (3p)	S10
1-(2-Phenylallyl)morpholine (4a)	S10
1-(2-Phenylallyl)pyrrolidine (5a)	S10
<i>N</i> , <i>N</i> -Diethyl-2-phenylprop-2-en-1-amine (6a)	S11
<i>N</i> , <i>N</i> -Diallyl-2-phenylprop-2-en-1-amine (7 a)	S11
<i>N-tert</i> -Butyl-2-phenylprop-2-en-1-amine (8a)	S11
2-Phenyl-N-(1-phenylethyl)prop-2-en-1-amine (9a)	S11

NMR Spectra product 1a	S13
NMR Spectra product 2a	S14
NMR Spectra product 2b	S15
NMR Spectra product 2 c	S16
NMR Spectra product 2d	S17
NMR Spectra product 2e	S18
NMR Spectra product 2f	S19
NMR Spectra product 2 g	S20
NMR Spectra product 2h	S21
NMR Spectra product 2i	S22
NMR Spectra product 2 k	S23
NMR Spectra product 2k '	S24
NMR Spectra product 21	S25
NMR Spectra product 2 I'	S26
NMR Spectra product 2m	S27
NMR Spectra product 3a	S28
NMR Spectra product 3b	S29
NMR Spectra product 3c	S30
NMR Spectra product 3d	S31
NMR Spectra product 3e	S32
NMR Spectra product 3f	S33
NMR Spectra product 3 g	S34
NMR Spectra product 3h	S35
NMR Spectra product 3i	S36
NMR Spectra product 3 k	S37
NMR Spectra product 3 I	S38
NMR Spectra product 3m	S39
NMR Spectra product 3n	S40
NMR Spectra product 30	S41
NMR Spectra product 3 p	S42
NMR Spectra product 4a	S43
NMR Spectra product 5a	S44
NMR Spectra product 6a	S45
NMR Spectra product 7a	S46
NMR Spectra product 8a	S47
NMR Spectra product 9a	S48
NMR Spectra product 9b	S49
NMR Spectra product 9c	S50
NMR Spectra product 10a	S51
NMR Spectra product 10b	S52
NMR Spectra product 11a	S53

Ethyl 2-(tributylstannyl)allyl carbonate (1a): In a flame-dried 100 mL three-necked flask equipped with a reflux condenser with connection to high vacuum and nitrogen via a Schlenk line, a dropping funnel, a septum and a magnetic stir bar were placed tris-(tert-butylisonitri)tricarbonyl-molybdän (258 mg, 0.6 mmol, 3 mol%) and hydroquinone (220 mg, 2.0 mmol, 10 mol%) under nitrogen. Then the nitrogen atmosphere was evacuated and CO was added via a ballon and a syringe. Subsequently THF and ethyl propargyl carbonate (2.56 g, 20 mmol, 1 equiv) were added and the resuting mixture was stirred for 15 min vigorously. Tributyl tin hydride (11.6g, 40 mmol, 2 equiv) was then added via the dropping funnel and the reaction mixture was heated to 60° C for 4 h. After evaporation of the solvent in vacuo and flash chromatography (hexanes/EtOAc/NEt₃ 99:0:1–98:1:1) the pure product was obtained in 89 % yield (7.46 g, 17.8 mmol) with a regioisomeric ratio: α/β -(*E*)/ β -(*Z*) = 95/4/1. ¹H NMR: δ = 5.91 (ddt, $J_{Sn} = 122.2$ Hz, J = 1.9 Hz, J = 1.9 Hz, 1 H), 5.31 (ddt, $J_{Sn} = 58.9$ Hz, J = 2.1 Hz, J = 1.7 Hz, 1 H), 4.74 (ddd, $J_{Sn} = 28.4$ Hz, J = 1.7 Hz, 2 H), 4.20 (q, J = 7.1 Hz, 2 H), 1.60 -1.40 (m, 6 H), 1.36 - 1.27 (m, 9 H), 0.96 - 0.92 (m, 6 H), 0.89 (t, J = 7.3 Hz, 9 H). ¹³C NMR: $\delta = 155.1, 148.8, 125.6, 74.0, 63.8, 29.0 (J_{sn} = 20.2 \text{ Hz}), 27.3 (J_{sn} = 58.3 \text{ Hz}), 14.3, 13.6, 9.5$ $(J_{\text{Sn}} = 335.3 \text{ Hz})$. ¹¹⁹Sn NMR: $\delta = -41.9$. (*E*)-Ethyl 3-(tributylstannyl)allyl carbonate (β -*E*-1) (selected signals): ¹H NMR: $\delta = 6.31$ (dt, J = 19.1 Hz, J = 1.4 Hz, 1H), 6.05 (dt, J = 19.1Hz, J = 5.3 Hz, 1H), 4.63 (dd, J = 5.3 Hz, J = 1.4 Hz, 2H). HRMS (CI) m/z calcd for $C_{14}H_{27}O_3Sn (M-Bu)^+$: 363.0982, found: 363.0986.

1-(2-(Tributylstannyl)allyl)morpholine (2b): Following the general procedure for allylic aminations **2b** was obtained from morpholine (24 mg, 0.275 mmol, 1.1 equiv) and methyl 2-(tributylstannyl)allyl carbonate **1b** (101 mg, 0.25 mmol, 1 equiv) after 2 h at 0° C. After evaporation of the solvent *in vacuo* and flash chromatography (hexanes/EtOAc/NEt₃ 99 : 0 : 1 – 97 : 2 : 1) the desired product could be isolated in 87 % yield (91 mg, 0.219 mmol) as a colorless oil. ¹H NMR: δ = 5.79 (dt, J_{Sn} = 135.6 Hz, J = 2.8, J = 1.4 Hz, 1 H), 5.22 (dt, J_{Sn} = 61.5 Hz, J = 2.8, J = 1.4 Hz, 1 H), 3.67 (t, J = 4.6 Hz, 4 H), 3.05 (dd, J_{Sn} = 46.5 Hz, J = 1.2 Hz, 2 H), 2.36 (m, 4 H), 1.47 (m, 6 H), 1.32 (tq, J = 7.4, J = 7.2 Hz, 6 H), 0.81 – 0.98 (m, 15 H). ¹³C NMR: δ = 154.1, 126.3, 69.4, 67.1, 53.7, 29.2 (J_{Sn} = 19.4 Hz), 27.5 (J_{Sn} = 57.3 Hz), 13.7, 9.6 (J_{Sn} = 328.8 Hz). ¹¹⁹Sn NMR: δ = -48.9. HRMS (CI) *m/z* calcd for C₁₉H₃₉NOSn¹²⁰ [M]⁺: 417.2054, found: 417.2044.

1-(2-(Tributylstannyl)allyl)pyrrolidine (2c): Following the general procedure for allylic aminations **2c** was obtained from pyrollidine (20 mg, 0.275 mmol, 1.1 equiv) and methyl 2-(tributylstannyl)allyl carbonate **1b** (101 mg, 0.25 mmol, 1 equiv) after 2 h at 0° C. After evaporation of the solvent *in vacuo* and flash chromatography (hexanes/EtOAc/NEt₃ 99 : 0 : 1 – 97 : 2 : 1) the desired product could be isolated in 86 % yield (86 mg, 0.215 mmol) as a colorless oil. ¹H NMR: δ = 5.79 (dt, J_{Sn} = 139.1 Hz, J = 2.7, J = 1.3 Hz, 1 H), 5.14 (dt, J_{Sn} = 63.3 Hz, J = 2.6 Hz, J = 1.3 Hz, 1 H), 3.17 (m, J_{Sn} = 44.9 Hz, 2 H), 2.39 (m, 4 H), 1.71 (m, 4

H), 1.49 (m, 6 H), 1.31 (tq, J = 7.4, J = 7.2 Hz, 6 H), 0.79–0.96 (m, 15 H). ¹³C NMR: $\delta = 152.5$, 123.8, 66.1, 54.0, 29.2, 27.5, 23.6, 13.7, 9.5. ¹¹⁹Sn NMR: $\delta = -49.0$. HRMS (CI) calcd for C₁₉H₃₉NSn¹²⁰ [M]⁺: 401.2104, found: 401.2152.

N,*N*-Diethyl-1-(2-(Tributylstannyl)allyl)-amine (2d): Following the general procedure for allylic aminations 2d was obtained from diethylamine (20 mg, 0.275 mmol, 1.1 equiv) and methyl 2-(tributylstannyl)allyl carbonate 1b (101 mg, 0.25 mmol, 1 equiv) after 2 h at 0° C. After evaporation of the solvent *in vacuo* and flash chromatography (hexanes/EtOAc/NEt₃ 99 : 0 : 1 – 97 : 2 : 1) the desired product could be isolated in 90 % yield (90 mg, 0.224 mmol) as a colorless oil. ¹H NMR: δ = 5.79 (m, *J*_{Sn} = 138.7 Hz, 1 H), 5.18 (m, *J*_{Sn} = 63.0 Hz, 1 H), 3.11 (dd, *J*_{Sn} = 47.1 Hz, *J* = 1.4 Hz = 1.4 Hz, 2 H), 2.43 (q, *J* = 7.1 Hz, 4 H), 1.49 (m, 6 H), 1.31 (tq, *J* = 7.3, 7.2 Hz, 6 H), 0.96 (t, *J* = 7.1 Hz, 6 H), 0.80–0.94 (m, 15 H). ¹³C NMR: δ = 156.2, 124.9 (*J*_{Sn} = 27 Hz), 64.1 (*J*_{Sn} = 34 Hz), 45.9, 29.2 (*J*_{Sn} = 19 Hz), 27.5 (*J*_{Sn} = 58 Hz), 13.7, 11.0, 9.5 (*J*_{Sn} = 328 Hz). ¹¹⁹Sn NMR: δ = -49.4. HRMS (CI) calcd for C₁₉H₄₁NSn¹²⁰ [M]⁺: 403.2261, found: 403.2265.

N,*N*-**Diallyl-1-(2-(Tributylstannyl)allyl)-amine (2e):** Following the general procedure for allylic aminations **2e** was obtained from diallylamine (27 mg, 0.275 mmol, 1.1 equiv) and methyl 2-(tributylstannyl)allyl carbonate **1b** (101 mg, 0.25 mmol, 1 equiv) after 2 h at 0° C. After evaporation of the solvent *in vacuo* and flash chromatography (hexanes/EtOAc/NEt₃ 99 : 0 : 1 – 97 : 2 : 1) the desired product could be isolated in 84 % yield (90 mg, 0.211 mmol) as a colorless oil. ¹H NMR: δ = 5.64 – 5.98 (m, 3 H), 5.22 (dt, J_{Sn} = 60.5 Hz, J = 2.9, J = 1.5 Hz, 1 H), 5.10–5.15 (m, 4 H), 3.13 (dd, J_{Sn} = 46.4 Hz, J = 1.3 Hz = 1.3 Hz, 2 H), 2.00 (ddd, J = 6.5, J = 1.6, J = 1.6 Hz, 4 H), 1.49 (m, 6 H), 1.31 (tq, J = 7.3, J = 7.2 Hz, 6 H), 0.81 – 0.98 (m, 15 H). ¹³C NMR: δ = 155.2, 135.9, 126.0, 117.2, 64.1 (J_{Sn} = 34 Hz), 56.3, 29.2 (J_{Sn} = 19 Hz), 27.5 (J_{Sn} = 58 Hz), 13.7, 9.5 (J_{Sn} = 329 Hz). ¹¹⁹Sn NMR: δ = –48.3. HRMS (CI) calcd for C₂₁H₄₁NSn¹²⁰ [M]⁺: 427.2261, found: 427.2293.

N,*N*-**Dibenzyl-1-(2-(Tributylstannyl)allyl)-amine (2f):** Following the general procedure for allylic aminations **2f** was obtained from dibenzylamine (54 mg, 0.275 mmol, 1.1 equiv) and methyl 2-(tributylstannyl)allyl carbonate **1b** (101 mg, 0.25 mmol, 1 equiv) after warming up from 0° C to r.t. over 16 h. After evaporation of the solvent *in vacuo* and flash chromatography (hexanes/EtOAc/NEt₃ 99 : 0 : 1 – 97 : 2 : 1) the desired product could be isolated in 53 % yield (70 mg, 0.133 mmol) as a colorless oil. ¹H NMR: δ = 7.41 – 7.30 (m, 8 H), 7.26 (m, 2 H), 6.01 (dt, *J*_{Sn} = 134.2 Hz, *J* = 2.9, 1.4 Hz, 1 H), 5.34 (m, *J*_{Sn} = 61.6 Hz, 1 H), 3.53 (s, 4 H), 3.20 (m, *J*_{Sn} = 43.5 Hz, 2 H), 1.45 (m, 6 H), 1.28 (tq, *J* = 7.3, 7.1 Hz, 6 H), 0.97 – 0.81 (m, 15 H). ¹³C NMR: δ = 153.8, 139.0, 129.1, 128.1, 127.2 (*J*_{Sn} = 25 Hz), 126.8 (*J*_{Sn} = 27 Hz), 64.2 (*J*_{Sn} = 34 Hz), 57.9, 29.1 (*J*_{Sn} = 19 Hz), 27.4 (*J*_{Sn} = 58 Hz), 13.7, 9.5 (*J*_{Sn} = 335

Hz). ¹¹⁹Sn NMR: $\delta = -46.0$. HRMS (CI) calcd for C₂₉H₄₅NSn¹²⁰ [M]⁺: 527.2574, found: 527.2602.

N,*N*-Dicyclohexyl-1-(2-(Tributylstannyl)allyl)-amine (2g): Following the general procedure for allylic aminations 2g was obtained from dicyclohexylamine (50 mg, 0.275 mmol, 1.1 equiv) and methyl 2-(tributylstannyl)allyl carbonate 1b (101 mg, 0.25 mmol, 1 equiv) after warming up from 0° C to r.t. over 16 h. After evaporation of the solvent in vacuo and flash chromatography (hexanes/EtOAc/NEt₃ 99 : 0 : 1 - 97 : 2 : 1) the desired product could be isolated in 17 % yield (22 mg, 0.043 mmol) as a colorless oil. ¹H NMR: $\delta = 5.88$ (dt, $J_{\text{Sn}} = 139.2 \text{ Hz}, J = 3.1, J = 1.5 \text{ Hz}, 1 \text{ H}), 5.17 \text{ (dt}, J_{\text{Sn}} = 63.2 \text{ Hz}, J = 3.1, J = 1.5 \text{ Hz}, 1 \text{ H}),$ $3.33 (dd, J_{Sn} = 43.8 Hz, J = 1.4 = 1.4 Hz, 2 H), 2.49 (m, 2 H), 1.80 - 1.54 (m, 12 H), 1.46 (m, 12 H), 1.$ 6 H), 1.31 (tq, J = 7.3, J = 7.2 Hz, 6 H), 1.19 (m, 8 H), 0.98 – 0.81 (m, 15 H). ¹³C NMR: $\delta =$ 156.2, 125.2, 56.8, 55.7 ($J_{Sn} = 41$ Hz), 31.6, 29.2 ($J_{Sn} = 19$ Hz), 27.5 ($J_{Sn} = 58$ Hz), 26.5, 26.3, 13.7, 9.5 ($J_{\text{Sn}} = 332 \text{ Hz}$). ¹¹⁹Sn NMR: $\delta = -46.7$. HRMS (CI) calcd for $C_{27}H_{53}\text{NSn}^{120}$ [M]⁺: 511.3200, found: 511.3161.

1-(2-(Tributylstannyl)allyl)aniline (2h): Following the general procedure for allylic aminations **2h** was obtained from aniline (26 mg, 0.275 mmol, 1.1 equiv) and methyl 2-(tributylstannyl)allyl carbonate **1b** (101 mg, 0.25 mmol, 1 equiv) after warming up from 0° C to r.t. over 16 h. After evaporation of the solvent *in vacuo* and flash chromatography (hexanes/EtOAc/NEt₃ 99 : 0 : 1 – 97 : 2 : 1) the desired product could be isolated in 25 % yield (26 mg, 0.062 mmol) as a colorless oil. ¹H NMR: δ = 7.16 (m, 2 H), 6.69 (tt, *J* = 7.3, *J* = 1.0 Hz, 1 H), 6.60 (m, 2H), 5.95 (dt, *J*_{Sn} = 131.0 Hz, *J* = 2.2, *J* = 1.7 Hz, 1 H), 5.29 (dt, *J*_{Sn} = 60.9 Hz, *J* = 2.3, *J* = 1.5 Hz, 1 H), 3.90 (dd, *J*_{Sn} = 32.8 Hz, *J* = 1.6 = 1.6 Hz, 2 H), 3.77 (bs, 1 H), 1.49 (m, 6 H), 1.30 (tq, *J* = 7.3, 7.2 Hz, 6 H), 1.00 – 0.83 (m, 15 H). ¹³C NMR: δ = 153.0, 148.3, 129.1, 125.3 (*J*_{Sn} = 23 Hz), 117.3, 113.0, 53.1, 29.2 (*J*_{Sn} = 20 Hz), 27.4 (*J*_{Sn} = 58 Hz), 13.7, 9.5 (*J*_{Sn} = 329 Hz). ¹¹⁹Sn NMR: δ = -44.9. HRMS (CI) calcd for C₂₁H₃₇NSn¹²⁰ [M]⁺: 366.1244, found: 366.1252.

1-(2-(Tributylstannyl)allyl)-4-methoxy-aniline (2i): Following the general procedure for allylic aminations **2i** was obtained from 4-methoxyaniline (34 mg, 0.275 mmol, 1.1 equiv) and methyl 2-(tributylstannyl)allyl carbonate **1b** (101 mg, 0.25 mmol, 1 equiv) after warming up from 0° C to r.t. over 16 h. After evaporation of the solvent *in vacuo* and flash chromatography (hexanes/EtOAc/NEt₃ 99 : 0 : 1 – 97 : 2 : 1) the desired product could be isolated in 58 % yield (66 mg, 0.146 mmol) as a colorless oil. ¹H NMR: δ = 6.77 (m, 2 H), 6.57 (m, 2H), 5.95 (dt, J_{Sn} = 131.7 Hz, J = 2.2, 1.8 Hz, 1 H), 5.29 (dt, J_{Sn} = 61.2 Hz, J = 2.3, 1.6 Hz, 1 H), 3.86 (dd, J_{Sn} = 33.6 Hz, J = 1.6, 1.6 Hz, 2 H), 3.75 (s, 3 H), 3.63 (bs, 1 H), 1.48 (m, 6 H), 1.30 (tq, J = 7.3, 7.2 Hz, 6 H), 0.99 – 0.82 (m, 15 H). ¹³C NMR: δ = 153.6; 152.1, 142.5, 125.1 (J_{Sn} = 23 Hz), 114.8, 114.3, 55.8, 54.1 (J_{Sn} = 42 Hz), 29.1 (J_{Sn} = 20 Hz), 27.4

 $(J_{\text{Sn}} = 58 \text{ Hz}), 13.7, 9.6 (J_{\text{Sn}} = 330 \text{ Hz}).$ ¹¹⁹Sn NMR: $\delta = -45.2$. HRMS (CI) calcd for $C_{22}H_{39}\text{NOSn}^{120} \text{ [M]}^+$: 453.2054, found: 453.2060.

N-Benzyl-1-(2-(Tributylstannyl)allyl)-amine (2k): Following the general procedure for allylic aminations 2k was obtained from benzylamine (29 mg, 0.275 mmol, 1.1 equiv) and 2-(tributylstannyl)allyl carbonate **1b** (101 mg, 0.25 mmol, 1 equiv) after warming up from 0° C to r.t. over 16 h. After evaporation of the solvent in vacuo and flash chromatography (hexanes/EtOAc/NEt₃ 99 : 0 : 1 - 97 : 2 : 1) the desired product could be isolated in 51 % vield (56 mg, 0.128 mmol) as a colorless oil. In addition 34 % (32 mg, 0.042 mmol) of the diallylated product **2k**' were obtained as a colorless oil. Analysis data **2k**: ¹H NMR: $\delta = 7.29$ -7.34 (m, 4 H), 7.24 (m, 1 H), 5.84 (dt, $J_{\text{Sn}} = 135.8$ Hz, J = 2.6, J = 1.6 Hz, 1 H), 5.23 (dt, J_{Sn} = 62.6 Hz, J = 2.6, J = 1.4 Hz, 1 H), 3.76 (s, 2 H), 3.41 (dd, $J_{\text{Sn}} = 39.7$ Hz, J = 1.5 = 1.5 Hz, 2 H), 1.49 (m, 6 H), 1.31 (tg, J = 7.3, J = 7.1 Hz, 6 H), 0.96 – 0.83 (m, 15 H). ¹³C NMR: $\delta =$ 154.8, 140.6, 128.2, 128.1, 126.8, 124.6 (J_{Sn} = 25 Hz), 58.7, 53.5, 29.2 (J_{Sn} = 20 Hz), 27.4 $(J_{\rm Sn} = 57 \text{ Hz}), 13.7, 9.5 (J_{\rm Sn} = 329 \text{ Hz}).$ ¹¹⁹Sn NMR: $\delta = -47.2$. HRMS (CI) calcd for $C_{22}H_{39}NSn^{120}$ [M]⁺: 437.2104, found: 437.2117. Analysis data 2k': $\delta = 7.33 - 7.27$ (m, 4 H), 7.22 (m, 1 H), 6.07 (dt, $J_{\text{Sn}} = 137.3$ Hz, J = 3.0, J = 1.5 Hz, 2 H), 5.31 (dt, $J_{\text{Sn}} = 64.6$ Hz, J =3.0, J = 1.5 Hz, 2 H, $3.54 \text{ (s, 2 H)}, 3.11 \text{ (m, } J_{\text{Sn}} = 31.0 \text{ Hz}, 4 \text{ H}$), 1.44 (m, 12 H), 1.29 (tq, J = 1.5 Hz, 2 Hz), 1.29 (tq, J =7.3, J = 7.1 Hz, 12 H), 0.96 – 0.79 (m, 30 H). ¹³C NMR: $\delta = 152.4$, 139.2, 129.2, 128.0, 126.7, 125.8 (J_{Sn} = 25 Hz), 62.8, 58.2, 29.1 (J_{Sn} = 20 Hz), 27.4 (J_{Sn} = 57 Hz), 13.7, 9.3 (J_{Sn} = 329 Hz). ¹¹⁹Sn NMR: $\delta = -45.8$. HRMS (CI) calcd for C₃₇H₆₉NSn₂¹²⁰ [M]⁺: 767.3474, found: 767.3474.

N-Cylcohexyl-1-(2-(Tributylstannyl)allyl)-amine (21): Following the general procedure for allylic aminations 21 was obtained from cyclohexylamine (27 mg, 0.275 mmol, 1.1 equiv) and methyl 2-(tributylstannyl)allyl carbonate 1b (101 mg, 0.25 mmol, 1 equiv) after warming up from 0° C to r.t. over 16 h. After evaporation of the solvent in vacuo and flash chromatography (hexanes/EtOAc/NEt₃ 99 : 0 : 1 - 97 : 2 : 1) the desired product could be isolated in 65 % yield (70 mg, 0.163 mmol) as a colorless oil. In addition 19 % (18 mg, 0.024 mmol) of the diallylated product **2l**' were obtained as a colorless oil. Analysis data **2l**: ¹H NMR: $\delta = 5.79$ (dt, $J_{\text{Sn}} = 137.8$ Hz, J = 2.6, J = 1.7 Hz, 1 H), 5.17 (dt, $J_{\text{Sn}} = 63.6$ Hz, J = 2.7, J= 1.4 Hz, 1 H), 3.39 (m, J_{Sn} = 39.9 Hz, 2 H), 1.88 – 1.57 (m, 6 H), 2.41 (m, 1 H), 1.49 (m, 6 H), 1.31 (tg, J = 7.3, J = 7.2 Hz, 6 H), 1.24 – 1.00 (m, 4 H), 0.98 – 0.81 (m, 15 H), 0.76 (m, 1 H). ¹³C NMR: $\delta = 155.5$, 123.7 ($J_{Sn} = 25$ Hz), 56.0, 56.0 ($J_{Sn} = 20$ Hz), 33.7, 29.2 ($J_{Sn} = 20$ Hz), 27.4 ($J_{\text{Sn}} = 57$ Hz), 26.3, 25.0, 13.7, 9.8 ($J_{\text{Sn}} = 328$ Hz). ¹¹⁹Sn NMR: $\delta = -47.8$. HRMS (CI) calcd for $C_{21}H_{43}NSn^{120}$ [M]⁺: 429.2417, found: 429.2463. Analysis data **21**': δ = 5.95 (m, $J_{\text{Sn}} = 139.2 \text{ Hz}, 2 \text{ H}$), 5.22 (m, $J_{\text{Sn}} = 64.9 \text{ Hz}, 2 \text{ H}$), 3.16 (m, $J_{\text{Sn}} = 33.0 \text{ Hz}, 4 \text{ H}$), 2.56 (m, 1 H), 1.88 - 1.75 (m, 4 H), 1.48 (m, 12 H), 1.30 (tq, J = 7.3, J = 7.2 Hz, 12 H), 1.21 - 1.03 (m, 6 H), 0.98 – 0.81 (m, 30 H). ¹³C NMR: δ = 153.3, 125.2 (J_{Sn} = 25 Hz), 58.6, 57.8 (J_{Sn} = 20

Hz), 29.2 ($J_{\text{Sn}} = 20$ Hz), 28.2, 27.4 ($J_{\text{Sn}} = 57$ Hz), 26.6, 26.4, 13.7, 9.4 ($J_{\text{Sn}} = 325$ Hz). ¹¹⁹Sn NMR: $\delta = -46.3$. HRMS (CI) calcd for $C_{36}H_{73}NSn_2^{120}$ [M]⁺: 759.3787, found: 759.3780.

N-(1-Phenylethyl)-1-(2-(Tributylstannyl)allyl)-amine (2m): Following the general procedure for allylic aminations 2m was obtained from 1-phenylethyl amine (33 mg, 0.275 mmol, 1.1 equiv) and methyl 2-(tributylstannyl)allyl carbonate 1b (101 mg, 0.25 mmol, 1 equiv) after warming up from 0° C to r.t. over 16 h. After evaporation of the solvent *in vacuo* and flash chromatography (hexanes/EtOAc/NEt₃ 99 : 0 : 1 – 97 : 2 : 1) the desired product could be isolated in 84 % yield (94 mg, 0.209 mmol) as a colorless oil. ¹H NMR: δ = 7.34 – 7.29 (m, 4 H), 7.23 (m, 1 H), 5.77 (dt, *J*_{Sn} = 136.5 Hz, *J* = 2.5, *J* = 1.5 Hz, 1 H), 5.18 (dt, *J*_{Sn} = 62.8 Hz, *J* = 2.6, *J* = 1.3 Hz, 1 H), 3.75 (q, *J* = 6.6 Hz, 1 H), 3.23 (dd, *J*_{Sn} = 40.7 Hz, *J* = 1.3 = 1.3 Hz, 2 H), 1.49 (m, 6 H), 1.35 – 1.27 (m, 9 H), 0.99 – 0.82 (m, 15 H). ¹³C NMR: δ = 154.9, 145.9, 128.3, 126.8, 126.6, 124.4 (*J*_{Sn} = 25 Hz), 57.8, 57.2, 29.2 (*J*_{Sn} = 20 Hz), 27.4 (*J*_{Sn} = 57 Hz), 24.2, 13.7, 9.7 (*J*_{Sn} = 329 Hz). ¹¹⁹Sn NMR: δ = -46.8. HRMS (CI) calcd for C₂₃H₄₁NSn¹²⁰ [M]⁺: 451.2261, found: 451.2271.

N-(2-Benzylallyl)piperidin (3c): In a Schlenk flask [allylPdCl]₂ (2.0 mg, 5.0 µmol, 2 mol%) and PPh₃ (3.0 mg, 11 µmol, 4 mol%) were dissolved in dry THF (1 mL) under nitrogen and stirred for 15 min at r.t. after wich a yellow solution was obtained. In a second Schlenk flask compound **2a** (83 mg, 0.20 mmol, 1 equiv) and benzylbromide (86 mg, 0.4 mmol, 2 equiv) were dissolved in dry THF (1 mL). This solution was heated to 60 °C, then the catalyst solution was added and the resulting mixture was stirred at 60 °C for 3 d. The reaction mixture was allowed to cool to r.t. before KF (58 mg, 1 mmol, 4 equiv) and water (5 mL) were added. The mixture was stirred for 16 h and then diluted with ethylacetate. The organic phase was separated, the aqueous phase was extracted with ethylacetate (3 times) and the combined organic phase were dried over Na₂SO₄ and concentrated in vacuo. The desired product could be isolated after flash chromatography (hexanes/EtOAc 95: 5 - 80: 20) in 37 % yield (20 mg, 0.093 mmol) as a colorless oil. ¹H NMR: δ = 7.28 (m, 2 H), 7.17–7.23 (m, 3 H), 4.97 (m, 1 H), 4.82 (m, 1 H), 3.39 (s, 2 H), 2.77 (s, 2 H), 2.30 (m, 4 H), 1.58 (tt, J = 5.5 Hz = 5.5 Hz, 4 H), 1.43 (m, 2 H). ¹³C NMR: δ = 146.8, 140.0, 129.2, 128.1, 125.9, 113.1, 63.9, 54.5, 41.0, 26.1, 24.5. MS (CI) *m/z* 216 (100, M₊+1), 137 (2), 124 (9), 98 (91), 84 (4). HRMS (CI) m/z calcd for C₁₅H₂₁N (M)⁺: 215.1674, found: 215.1676.

Z-Ethyl 4-(piperidin-1-ylmethyl)penta-2,4-dienoate (3d): Following the general procedure for one-pot allylic aminations/Stille couplings 3d was obtained from piperidine (21.3 mg, 0.25 mmol, 1.0 equiv), ethyl 2-(tributylstannyl)allyl carbonate 1a (109 mg, 0.26 mmol, 1.05 equiv) and *cis*-3-iodoacrylate (59 mg, 0.26 mmol, 1.05 equiv) with Pd(PPh₃)₄ (5.2 mg, 20 μ mol, 8 mol%) as catalyst and dry DMF as solvent. For the Stille coupling the reaction mixture was stirred at room temperature for 3 h. After work-up and flash chromatography

(hexanes/EtOAc 9 : 1 – 1 : 1) the product could be isolated in 96 % yield (50 mg, 0.240 mmol) as a colorless oil with an *(E/Z)*-ratio of 9:91. ¹H NMR: $\delta = 6.45$ (dd, J = 12.5 Hz, J = 1.0 Hz, 1H), 5.80 (d, J = 12.5 Hz, 1H), 5.33 (m, 2H), 4.17 (q, J = 7.1 Hz, 2H), 3.10 (s, 2H), 2.32 (m, 4H), 1.52 (m, 4H), 1.40 (m, 2H, 1-H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR: $\delta = 167.4$, 145.4, 141.4, 124.7, 119.2, 61.0, 60.3, 54.6, 26.0, 24.4, 14.3. Selected signals of the *E*-isomer: ¹H NMR: $\delta = 7.30$ (d, J = 15.9 Hz, 1H), 6.21 (d, J = 15.9 Hz, 1H), 5.46 (s, 2H). MS (CI) *m/z* 223 (30, M₊), 194 (2), 178 (7), 136 (17), 98 (100). HRMS (CI) *m/z* calcd for C₁₃H₂₁NO₂ (M)⁺: 223.1572, found: 223.1526.

1-(2-(4-Nitrophenyl)allyl)piperidine (3e): Following the general procedure for one-pot allylic aminations/Stille couplings **3e** was obtained from piperidine (21.3 mg, 0.25 mmol, 1.0 equiv), ethyl 2-(tributylstannyl)allyl carbonate **1a** (109 mg, 0.26 mmol, 1.05 equiv) and 1-bromo-4-nitrobenzene (101 mg, 0.50 mmol, 2 equiv) with Pd(PPh₃)₄ as catalyst. For the Stille coupling the reaction mixture was heated up to 65 °C for 1 h and then to 90 °C for 1h. After work-up and flash chromatography (hexanes/EtOAc 9 : 1 – 1 : 1) the product could be isolated in 80 % yield (49 mg, 0.199 mmol) as a yellow oil. ¹H NMR: δ = 8.16 (m, 2H), 7.70 (m, 2H), 5.59 (d, *J* = 1.1, 1H), 5.38 (dd, *J* = 1.1 Hz = 1.1 Hz, 1H), 3.30 (d, *J* = 1.1, 2H), 2.37 (m, 4H), 1.52 (m, 4H), 1.41 (m, 2H). ¹³C NMR: δ = 147.1, 147.0, 143.2, 127.2, 123.3, 118.5, 63.7, 54.4, 26.0, 24.4. MS (CI) *m/z* 246 (10, M₊), 199 (1), 148 (2), 115 (2), 98 (100). HRMS (CI) *m/z* calcd for C₁₄H₁₈N₂O₂ (M)⁺: 246.1368, found: 246.1362. Elemental analysis calcd (%) for C₁₄H₁₈N₂O₂: C 68.27, H 7.37, N 11.37 and found: C 67.83, H 7.27, N 11.37.

4-(3-(Piperidin-1-yl)prop-1-en-2-yl)benzaldehyde (3f): Following the general procedure for one-pot allylic aminations/Stille couplings **3f** was obtained from piperidine (21.3 mg, 0.25 mmol, 1.0 equiv), ethyl 2-(tributylstannyl)allyl carbonate **1a** (109 mg, 0.26 mmol, 1.05 equiv) and 4-bromobenzaldehyde (56 mg, 0.30 mmol, 1.2 equiv) with [allylPdCl]₂ (0.9 mg, 2.5 μ mol, 1 mol%) and PPh₃ (5.2 mg, 20 μ mol, 8 mol%) as catalyst. For the Stille coupling the reaction mixture was heated up to 65 °C for 16 h. After work-up and flash chromatography (hexanes/EtOAc 9 : 1 – 1 : 1) the product could be isolated in 95 % yield (54 mg, 0.238 mmol) as a colorless oil. ¹H NMR: δ = 10.00 (s, 1H), 7.84 – 7.81 (m, 2H), 7.71 – 7.68 (m, 2H), 5.58 (d, *J* = 1.3 Hz, 1H), 5.37 (d, *J* = 1.2 Hz, 1H), 3.32 (s, 2H), 2.40 (bs, 4H), 1.56 – 1.51 (m, 4H), 1.44 – 1.39 (m, 2H). ¹³C NMR: δ = 191.9, 146.8, 143.8, 135.3, 129.6, 127.0, 117.7, 63.5, 54.4, 25.9, 24.4. MS (CI) *m/z* 229 (10, M₊), 201 (1), 115 (3), 98 (100). HRMS (CI) *m/z* calcd for C₁₅H₁₉NO (M)⁺: 229.1467, found: 229.1446.

1-(2-(Naphthalen-2-yl)allyl)piperidine (3g): Following the general procedure for one-pot allylic aminations/Stille couplings **3g** was obtained from piperidine (21.3 mg, 0.25 mmol, 1.0 equiv), ethyl 2-(tributylstannyl)allyl carbonate **1a** (109 mg, 0.26 mmol, 1.05 equiv) and 4-bromobenzaldehyde (104 mg, 0.50 mmol, 2 equiv) with [allylPdCl]₂ (0.9 mg, 2.5 μmol, 1

mol%) and PPh₃ (5.2 mg, 20 μmol, 8 mol%) as catalyst. For the Stille coupling the reaction mixture was heated up to 65 °C for 16 h. After work-up and flash chromatography (hexanes/EtOAc 9 : 1 – 1 : 1) the product could be isolated in 62 % yield (39 mg, 0.155 mmol) as a colorless oil. ¹H NMR: δ = 8.00 (m, 1H), 7.85 – 7.77 (m, 3H), 7.67 (dd, *J* = 8.6 Hz, *J* = 1.8 Hz, 1H), 7.48 – 7.42 (m, 2H), 5.60 (m, 1H), 5.35 (m, 1H), 3.41 (s, 2H), 2.46 (m, 4H), 1.56 (m, 4H), 1.43 (m, 2H). ¹³C NMR: δ = 144.4,; 138.0, 133.3, 132.8, 128.2, 127.4, 125.9, 125.6, 125.0, 124.8, 115.4, 63.7, 54.6, 26.0, 24.4. MS (CI) *m/z* 251 (25, M₊), 168 (14), 152 (6), 98 (100). HRMS (CI) *m/z* calcd for C₁₈H₂₁N (M)⁺: 251.1674, found: 251.1662.

5-(3-(Piperidin-1-yl)prop-1-en-2-yl)pyrimidine (3h): Following the general procedure for one-pot allylic aminations/Stille couplings **3h** was obtained from piperidine (21.3 mg, 0.25 mmol, 1.0 equiv), ethyl 2-(tributylstannyl)allyl carbonate **1a** (109 mg, 0.26 mmol, 1.05 equiv) and 5-bromopyrimidine (79 mg, 0.50 mmol, 2 equiv) with [allylPdCl]₂ (0.9 mg, 2.5 µmol, 1 mol%) and PPh₃ (5.2 mg, 20 µmol, 8 mol%) as catalyst. For the Stille coupling the reaction mixture was heated up to 90 °C for 16 h. After work-up and flash chromatography (hexanes/EtOAc 9 : 1 – 1 : 1) the product could be isolated in 97 % yield (49 mg, 0.243 mmol) as a colorless oil. ¹H NMR: δ = 9.09 (s, 1H), 8.91 (s, 2H), 5.55 (m, 1H), 5.34 (m, 1H), 3.27 (m, 2H), 2.37 (m, 4H), 1.50 (m, 4H), 1.41 (m, 2H). ¹³C NMR: δ = 157.4, 154.6, 139.4, 133.3, 117.8, 63.4, 54.1, 25.9, 24.3. MS (CI) *m/z* 204 (43, M₊+1), 98 (100). HRMS (CI) *m/z* calcd for C₁₂H₁₇N₃ (M)⁺: 203.1422, found: 203.1400. Elemental analysis calcd (%) for C₁₂H₁₇N₃: C 70.90, H 8.43, N 20.67 and found: C 70.54, H 8.31, N 20.25.

1-(2-(4-Methoxyphenyl)allyl)piperidine (3i): Following the general procedure for one-pot allylic aminations/Stille couplings **3i** was obtained from piperidine (21.3 mg, 0.25 mmol, 1.0 equiv), ethyl 2-(tributylstannyl)allyl carbonate **1a** (109 mg, 0.26 mmol, 1.05 equiv) and 1-bromo-4-methoxybenzene (94 mg, 0.50 mmol, 2 equiv) with [allylPdCl]₂ (0.9 mg, 2.5 µmol, 1 mol%) and PPh₃ (5.2 mg, 20 µmol, 8 mol%) as catalyst. For the Stille coupling the reaction mixture was heated up to 100 °C for 6 h. After work-up and flash chromatography (hexanes/EtOAc 9 : 1 – 1 : 1) the product could be isolated in 69 % yield (40 mg, 0.173 mmol) as a slightly yellow oil. ¹H NMR: δ = 7.49 (d, *J* = 8.9 Hz, 2H), 6.85 (d, *J* = 8.9 Hz, 2H), 5.38 (m, 1H), 5.14 (m, 1H), 3.81 (s, 3H), 3.26 (s, 2H), 2.40 (m, 4H), 1.55 (m, 4H), 1.41 (m, 2H). ¹³C NMR: δ = 158.9, 133.2, 128.0, 127.4, 126.3, 113.3, 63.9, 55.2, 54.5, 26.0, 24.4. MS (CI) *m/z* 232 (100, M₊+1), 201 (19), 148 (14), 98 (100). HRMS (CI) *m/z* calcd for C₁₅H₂₁NO (M)⁺: 231.1623, found: 231.1636. Elemental analysis calcd (%) for C₁₅H₂₁NO: C 77.88, H 9.15, N 6.05 and found: C 77.70, H 9.04, N 5.72.

1-(2-Methylene-4-phenylbut-3-enyl)piperidine (3k): Following the general procedure for one-pot allylic aminations/Stille couplings **3k** was obtained from piperidine (21.3 mg, 0.25 mmol, 1.0 equiv), ethyl 2-(tributylstannyl)allyl carbonate **1a** (109 mg, 0.26 mmol, 1.05 equiv)

and β-bromostyrene (55 mg, 0.30 mmol, 1.2 equiv) with [allylPdCl]₂ (0.9 mg, 2.5 μmol, 1 mol%) and PPh₃ (5.2 mg, 20 μmol, 8 mol%) as catalyst. For the Stille coupling the reaction mixture was heated up to 65 °C for 16h. After work-up and flash chromatography (hexanes/EtOAc 9 : 1 – 1 : 1) the product was isolated in 95 % yield (54 mg, 0.238 mmol) as a yellow oil. ¹H NMR: δ = 7.44 (m, 2H), 7.33 (m, 2H), 7.23 (m, 1H), 6.90 (d, *J* = 16.3 Hz, 1H), 6.82 (d, *J* = 16.3 Hz, 1H), 5.26 (m, 1H), 5.24 (m, 1H), 3.18 (s, 2H), 2.41 (m, 4H), 1.59 (m, 4H), 1.45 (m, 2H). ¹³C NMR: δ = 142.3, 137.6, 130.0, 128.9, 128.5, 127.4, 126.5, 118.1, 61.2, 54.6, 25.9, 24.4. MS (CI) *m/z* 228 (50, M₊+1), 136 (14), 98 (100). HRMS (CI) *m/z* calcd for C₁₆H₂₁N (M)⁺: 227.1674, found: 227.1662.

Ethyl 2-(3-(piperidin-1-yl)prop-1-en-2-yl)benzoate (3p): Following the general procedure for one-pot allylic aminations/Stille couplings **3p** was obtained from piperidine (21.3 mg, 0.25 mmol, 1.0 equiv), ethyl 2-(tributylstannyl)allyl carbonate **1a** (109 mg, 0.26 mmol, 1.05 equiv) and ethyl 2-iodobenzoate (138 mg, 0.50 mmol, 2 equiv) [allylPdCl]₂ (0.9 mg, 2.5 µmol, 1 mol%) and PPh₃ (5.2 mg, 20 µmol, 8 mol%) as catalyst. For the Stille coupling the reaction mixture was heated up to 100 °C for 5 h. After work-up and flash chromatography (hexanes/EtOAc 9 : 1 – 1 : 1) the product could be isolated in 60 % yield (41 mg, 0.150 mmol) as a colorless oil. ¹H NMR: δ = 7.76 (dd, *J* = 7.7 Hz, *J* = 1.2 Hz, 1H), 7.42 (dt, *J* = 7.5 Hz = 7.5 Hz, *J* = 1.4 Hz, 1H), 7.31 (dt, *J* = 7.6 Hz = 7.6 Hz, *J* = 1.3 Hz, 1H), 7.26 (dd, *J* = 7.7 Hz, *J* = 1.1 Hz, 1H), 5.30 (s, 1H), 5.06 (s, 1H), 4.30 (q, *J* = 7.1, 2H), 3.20 (s, 2H), 2.40 (m, 4H), 1.52 (m, 4H), 1.42 (m, 2H), 1.35 (t, *J* = 7.1, 3H). ¹³C NMR: δ = 168.1, 143.2, 131.0, 130.5, 130.2, 129.4, 126.8, 115.0, 64.5, 60.9, 54.6, 26.0, 24.4, 14.1. MS (CI) *m/z* 273 (60, M₊), 200 (10), 110 (19), 98 (100). HRMS (CI) *m/z* calcd for C₁₇H₂₃NO₂ (M)⁺: 273.1729, found: 273.1696. Elemental analysis calcd (%) for C₁₇H₂₃NO₂: C 74.69, H 8.48, N 5.12 and found: C 74.68, H 8.21, N 5.50.

1-(2-Phenylallyl)morpholine (4a): Following the general procedure for one-pot allylic aminations/Stille couplings **4a** was obtained from morpholine (21.8 mg, 0.25 mmol, 1.0 equiv), ethyl 2-(tributylstannyl)allyl carbonate **1a** (109 mg, 0.26 mmol, 1.05 equiv) and phenyliodide (102 mg, 0.5 mmol, 2 equiv) with [allylPdCl]₂ (0.9 mg, 2.5 μ mol, 1 mol%) and PPh₃ (5.2 mg, 20 μ mol, 8 mol%) as catalyst. For the Stille coupling the reaction mixture was heated up to 65 °C for 16 h. After work-up and flash chromatography (hexanes/EtOAc 9 : 1 – 1 : 1) the product could be isolated in 96 % yield (48 mg, 0.235 mmol) as a colorless oil. ¹H NMR: δ = 7.54 (m, 2H), 7.35 – 7.27 (m, 3H), 5.50 (m, 1H), 5.25 (m, 1H), 3.68 (t, *J* = 4.6 Hz, 4H), 3.34 (s, 2H), 2.48 (m, 4H). ¹³C NMR: δ = 143.6, 140.2, 128.1, 127.5, 126.2, 115.5, 67.0, 63.5, 53.5. MS (CI) *m/z* 203 (34, M₊), 118 (13), 100 (100). HRMS (CI) *m/z* calcd for C₁₃H₁₇NO (M)⁺: 203.1310, found: 203.1300.

1-(2-Phenylallyl)pyrrolidine (5a): Following the general procedure for one-pot allylic aminations/Stille couplings **5a** was obtained from pyrrolidine (17.8 mg, 0.25 mmol, 1.0 equiv), ethyl 2-(tributylstannyl)allyl carbonate **1a** (109 mg, 0.26 mmol, 1.05 equiv) and phenyliodide (102 mg, 0.5 mmol, 2 equiv) with [allylPdCl]₂ (0.9 mg, 2.5 μ mol, 1 mol%) and PPh₃ (5.2 mg, 20 μ mol, 8 mol%) as catalyst. For the Stille coupling the reaction mixture was heated up to 65 °C for 16 h. After work-up and flash chromatography (hexanes/EtOAc 9 : 1 – 1 : 1) the product could be isolated in 91 % yield (43 mg, 0.228 mmol) as a colorless oil. ¹H NMR: δ = 7.51 (m, 2H), 7.34 – 7.24 (m, 3H), 5.42 (m, 1H), 5.28 (m, 1H), 3.48 (s, 2H), 2.54 (m, 4H), 1.76 (m, 4H). ¹³C NMR: δ = 143.7, 140.6, 128.2, 127.4, 126.2, 114.6, 60.6, 54.2, 23.6. MS (CI) *m/z* 187 (23, M₊+1), 118 (9), 84 (100), 70 (4). HRMS (CI) *m/z* calcd for C₁₃H₁₇N (M)⁺: 187.1361, found: 187.1385.

N,N-Diethyl-2-phenylprop-2-en-1-amine (6a): Following the general procedure for one-pot allylic aminations/Stille couplings 6a was obtained from diethylamine (18.3 mg, 0.25 mmol, 1.0 equiv), ethyl 2-(tributylstannyl)allyl carbonate 1a (109 mg, 0.26 mmol, 1.05 equiv) and phenyliodide (102 mg, 0.5 mmol, 2 equiv) with [allylPdCl]₂ (0.9 mg, 2.5 µmol, 1 mol%) and PPh₃ (5.2 mg, 20 µmol, 8 mol%) as catalyst. For the Stille coupling the reaction mixture was heated up to 65 °C for 16 h. After work-up and flash chromatography (hexanes/EtOAc 9 : 1 – 1 : 1) the product could be isolated in 74 % yield (35 mg, 0.185 mmol) as a colorless oil. ¹H NMR: δ = 7.50 (m, 2H), 7.33 – 7.24 (m, 3H), 5.42 (m, 1H), 5.28 (m, 1H), 3.41 (s, 2H), 2.54 (q, *J* = 7.1 Hz, 4H), 1.01 (t, *J* = 7.1 Hz, 6H). ¹³C NMR: δ = 146.0, 140.7, 128.0, 127.3, 126.3, 114.6, 57.6, 46.7, 11.5. MS (CI) *m/z* 189 (14, M₊), 172 (30), 86 (100). HRMS (CI) *m/z* calcd for C₁₃H₁₉N (M)⁺: 189.1517, found: 189.1497.

N,N-Diallyl-2-phenylprop-2-en-1-amine (7a): Following the general procedure for one-pot allylic aminations/Stille couplings 7a was obtained from diallylamine (24.3 mg, 0.25 mmol, 1.0 equiv), ethyl 2-(tributylstannyl)allyl carbonate 1a (109 mg, 0.26 mmol, 1.05 equiv) and phenyliodide (102 mg, 0.5 mmol, 2 equiv) with [allylPdCl]₂ (0.9 mg, 2.5 µmol, 1 mol%) and PPh₃ (5.2 mg, 20 µmol, 8 mol%) as catalyst. For the Stille coupling the reaction mixture was heated up to 65 °C for 16 h. After work-up and flash chromatography (hexanes/EtOAc 9 : 1 – 1 : 1) the product could be isolated in 66 % yield (35 mg, 0.165 mmol) as a colorless oil. ¹H NMR: δ = 7.47 (m, 2H), 7.33 – 7.24 (m, 3H), 5.84 (ddt, *J* = 17.1 Hz, *J* = 10.3 Hz, *J* = 6.4 Hz, 2H), 5.43 (m, 1H), 5.29 (m, 1H), 5.18 (m, 1H), 5.14 (m, 1H), 3.42 (s, 2H), 3.10 (m, 4H). ¹³C NMR: δ = 145.6, 140.5, 135.8, 128.0, 127.3, 126.4, 117.2, 114.9, 57.6, 56.4. MS (CI) *m/z* 213 (24, M₊), 110 (100). HRMS (CI) *m/z* calcd for C₁₅H₁₉N (M)⁺: 213.1517, found: 213.1542.

N-tert-Butyl-2-phenylprop-2-en-1-amine (8a): Following the general procedure for one-pot allylic aminations/Stille couplings 8a was obtained from *tert*-butylamine (18.3 mg, 0.25 mmol, 1.0 equiv), ethyl 2-(tributylstannyl)allyl carbonate 1a (109 mg, 0.26 mmol, 1.05 equiv)

and phenyliodide (102 mg, 0.5 mmol, 2 equiv) with [allylPdCl]₂ (0.9 mg, 2.5 μ mol, 1 mol%) and PPh₃ (5.2 mg, 20 μ mol, 8 mol%) as catalyst. For the Stille coupling the reaction mixture was heated up to 65 °C for 16h. After work-up and flash chromatography (hexanes/EtOAc 9 : 1 – 1 : 1) the product was isolated in 89 % yield (42 mg, 0.223 mmol) as a colorless oil. ¹H NMR: δ = 7.47 (m, 2H), 7.36 (m, 2H), 7.30 (m, 1H), 5.39 (m, 1H), 5.25 (m, 1H), 3.64 (m, 2H), 1.15 (s, 9H), 1.12 (bs, 1H). ¹³C NMR: δ = 147.2, 140.2, 128.3, 127.5, 126.1, 113.0, 50.5, 46.6, 29.0. MS (CI) *m*/*z* 190 (42, M₊+2), 174 (100), 117 (11), 86 (6). HRMS (CI) *m*/*z* calcd for C₁₃H₁₉N (M)⁺: 189.1517, found: 189.1500.

2-Phenyl-*N***-(1-phenylethyl)prop-2-en-1-amine (9a):** Following the general procedure for one-pot allylic aminations/Stille couplings **9a** was obtained from 1-phenylethanamine (43 mg, 0.25 mmol, 1.0 equiv), ethyl 2-(tributylstannyl)allyl carbonate **1a** (109 mg, 0.26 mmol, 1.05 equiv) and phenyliodide (102 mg, 0.5 mmol, 2 equiv) with [allylPdCl]₂ (0.9 mg, 2.5 µmol, 1 mol%) and PPh₃ (5.2 mg, 20 µmol, 8 mol%) as catalyst. For the Stille coupling the reaction mixture was heated up to 65 °C for 16h. After work-up and flash chromatography (hexanes/EtOAc 9 : 1 – 1 : 1) the product was isolated in 73 % yield (43 mg, 0.183 mmol) as a colorless oil. ¹H NMR: δ = 7.40 – 7.22 (m, 10H), 5.39 (m, 1H), 5.21 (m, 1H), 3.82 (q, *J* = 6.6 Hz, 1H), 3.56 (d, *J* = 14.3 Hz, 1H), 3.47 (d, *J* = 14.1 Hz, 1H), 1.75 (bs, 1H), 1.33 (d, *J* = 6.6 Hz, 3H). ¹³C NMR: δ = 146.5, 145.4, 139.9, 128.4, 128.4, 127.6, 126.9, 126.8, 126.2, 113.3, 57.4, 51.3, 24.2. MS (CI) *m/z* 238 (88, M₊+1), 222 (100), 134 (17), 105 (70), 98 (82). HRMS (CI) *m/z* calcd for C₁₇H₁₉N (M)⁺: 237.1517, found: 237.1538.

S15

S17

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

NMR Spectra of product 2h.

S23

NMR Spectra of product 2k'.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

S26

NMR Spectra of product 3a.

NMR Spectra of product 3c.

NMR Spectra of product 3d.

NMR Spectra of product **3e**.

NMR Spectra of product **3f**.

NMR Spectra of product 3g.

1,56 1,43 8,00 7,85 7,84 7,82 7,79 7,69 7,68 7,66 7,66 7,45 7,26 5,60 5,60 5,35 5,35 3,41 1 3g **4 4** 1.01 **44** 2.09 **₩└┯₩ └┯** 1.01 1.01 **¥** 2.03 **J** 4.02 Т T 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 ppm (t1) 132,8 128,3 127,5 125,9 144,4 138,1 133,4 125,7 124,9 115,4 125,1 26,0 24,5 63,7 54,6 ppm (200 150 100 50 0

NMR Spectra of product **3h**.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

NMR Spectra of product 3k.

7,42 3,24 1,54 1,53 1,51 5,44 5,43 1,43 1,42 1,41 1,40 5,23 5,22 2,37 **H** 1.00 **** 4.02 **J** 2.00 1 - 4.01 - 4.01 0.0 80 ppm (t1) 2.0 6.0 5.0 4.0 3.0 1.0 7.0 143,6 139,5 115,5 131,1 128,1 121,3 54,5 26,0 24,4 63,7 ppm (200 150 100 50 0

NMR Spectra of product **31**.

NMR Spectra of product **3n**.

NMR Spectra of product **3p**.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

S45

NMR Spectra of product 7a. 7,48 7,46 3,11 3,09 5,18 3,42 5,89 5,85 5,79 5,43 5,29 5,14 5,11 5,87 5,83 5,81 7,24 ŝ ń 7a **₩ ₩ ₩** 1.04 **₽** 2.07 **₩ ₩** 4.14 **–** 2.01 ₽ 4.12 Т 6.0 5.0 4.0 2.0 1.0 0.0 7.0 3.0 ppm (t1) 145,7 140,5 115,0 135,8 128,1 117,3 126,4 57,6 56,5 127, an an is a choracter and a feature of the second stands And a state of the produced states of the 200 ppm (t1) 150 100 50 0

NMR Spectra of product 8a.

NMR Spectra of product 9a.

NMR Spectra of product 9b.

