Highly stereoselective double (*R*)-phenylglycinol-induced cyclocondensation reactions of symmetric aryl bis(oxoacids)

Mercedes Amat,*^a Carlos Arróniz,^a Elies Molins,^b Carmen Escolano,*^a and Joan Bosch^a

 ^a Laboratory of Organic Chemistry, Faculty of Pharmacy, and Institute of Biomedicine (IBUB), 08028-Barcelona, Spain. E-mail: <u>amat@ub.edu</u>; <u>cescolano@ub.edu</u>
 ^b Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193-Cerdanyola, Spain. E-mail:elies@icmab.es

Table of contents

1. Cartesian coordinates and total energies for compound <i>trans</i> -phenyl- 8 at HF/6-31G(d) level:	S2
2. Cartesian coordinates and total energies for compound <i>trans</i> -phenyl- 8 at B3LYP/6-31G(d) level:	S4
3. Cartesian coordinates and total energies for compound 8 at HF/6-31G(d) level:	S6
4. Cartesian coordinates and total energies for compound 8 at B3LYP/6-31G(d) level:	S8
5. X-ray crystallographic data for compounds 9-11, 18 and 21:	S10
6. ¹³ C NMR and ¹ H NMR spectra for compounds 1-7 and 9-22 :	S40

1. Cartesian coordinates (Å) for compound *trans*-phenyl-8 at HF/6-31G(d) level

Center Number	Atomic Numl	c Ato ber	omic Type	Coordinates X Y	(Angstroms) Z
1	6	0	0.396368	1.780620	0.169028
2	6	0	-0.470206	2.415007	-0.911400
3	6	0	-0.934686	1.219457	-1.755036
4	6	0	-0.961455	0.071957	-0.733107
5	8	0	-0.460481	-1.129999	-1.240658
6	6	0	0.136071	-1.795092	-0.149512
7	6	0	0.825509	-0.679289	0.679814
8	7	0	0.036297	0.466261	0.239914
9	8	0	1.220721	2.324553	0.836982
10	6	0	-4.010539	0.217112	1.580946
11	6	0	-2.725158	0.403268	1.087924
12	6	0	-2.350510	-0.148477	-0.127331
13	6	0	-3.282713	-0.898545	-0.841134
14	6	0	-4.560899	-1.085909	-0.350044
15	6	0	-4.930373	-0.525401	0.865166
16	6	0	2.809545	-0.494181	-0.889570
17	6	0	2.315902	-0.555433	0.410646
18	6	0	3.212258	-0.536046	1.466685
19	6	0	4.578027	-0.458111	1.236504
20	6	0	5.060051	-0.396570	-0.057926
21	6	0	4.169945	-0.414069	-1.122229
22	1	0	0.104181	3.149217	-1.459457
23	1	0	-1.302880	2.928442	-0.440/14
24	1	0	-1.886608	1.3/3888	-2.243355
25	1	0	-0.193151	0.977370	-2.507518
26	1	0	-0.624064	-2.296701	0.439347
27	1	0	0.829585	-2.525494	-0.533970
28	1	0	0.677226	-0.856802	1.737349
29	1	0	-4.284597	0.650276	2.526400
30	1	0	-2.016440	0.970415	1.661980
31	1	0	-2.997600	-1.343715	-1.776942
3Z	1	0	-5.208357	-1.670445	-0.910891
33	1	0	-5.924532	-0.671741	1.248108
34 25	1	0	2.12/009	-0.514822	-1.721234
30 36	1	0	2.040933	-0.5/0500	2.411510
30 27	1	0	0.209200	-U.44UJJU	2.000342
<i>১।</i> ३८	1	0	0.110133	-0.333003	-U.239401 2 122072
	I 		4.557 100	-0.307209	-2.132073

Total energy (Hartrees) for compound trans-phenyl-8 at HF/6-31G(d) level.

Zero-point correction=	0.336829 (Hartree/Particle)
Thermal correction to Energy=	0.352107
Thermal correction to Enthalpy=	0.353051
Thermal correction to Gibbs Free Ene	ergy= 0.292293
Sum of electronic and zero-point Ene	rgies= -895.385373
Sum of electronic and thermal Energi	es= -895.370095
Sum of electronic and thermal Enthal	pies= -895.369151
Sum of electronic and thermal Free E	nergies= -895.429910

2. Cartesian coordinates (Å) for compound *trans*-phenyl-8 at B3LYP/6-31G(d) level

Center Number	Atomic Numt	: At ber	omic Type	Coordinates X Y	(Angstroms) Z
1	6	0	0.438433	1.794512	0.174497
2	6	0	-0.443270	2.457124	-0.894492
3	6	0	-0.959912	1.276642	-1.738676
4	6	0	-0.977924	0.101457	-0.734224
5	8	0	-0.458350	-1.103479	-1.294319
6	6	0	0.120938	-1.797216	-0.183612
7	6	0	0.817656	-0.694612	0.677436
8	7	0	0.030383	0.476730	0.257742
9	8	0	1.315737	2.316153	0.834458
10	6	0	-4.051289	0.248806	1.571973
11	6	0	-2.759499	0.445034	1.076760
12	6	0	-2.364940	-0.145451	-0.127883
13	6	0	-3.281629	-0.942903	-0.827262
14	6	0	-4.569249	-1.141395	-0.331306
15	6	0	-4.959342	-0.543241	0.869697
16	6	0	2.807548	-0.498551	-0.894245
17	6	0	2.309699	-0.569964	0.414161
18	6	0	3.211720	-0.567005	1.481344
19	6	0	4.586625	-0.494105	1.252101
20	6	0	5.074337	-0.422260	-0.052643
21	6	0	4.179923	-0.424552	-1.125923
22	1	0	0.146090	3.185539	-1.456367
23	1	0	-1.261138	3.001039	-0.405865
24	1	0	-1.936130	1.451905	-2.195839
25	1	0	-0.243650	1.025967	-2.528072
26	1	0	-0.660864	-2.304147	0.397678
27	1	0	0.821579	-2.535023	-0.576045
28	1	0	0.661820	-0.897786	1.742706
29	1	0	-4.343146	0.711831	2.510961
30	1	0	-2.051019	1.049180	1.635518
31	1	0	-2.973126	-1.416340	-1.754737
32	1	0	-5.268302	-1.766362	-0.881009
33	1	0	-5.963142	-0.698087	1.256205
34	1	0	2.114297	-0.506526	-1.731428
35	1	0	2.835008	-0.611436	2.500496
36	1	0	5.274378	-0.488544	2.093523
37	1	0	6.144278	-0.363502	-0.233652
38	1	0	4.552353	-0.370118	-2.145610

Standard orientation:

Total energy (Hartrees) for compound trans-phenyl-8 at B3LYP/6-31G(d) level.

13536 (Hartree/Particle) 0.330013
0.330957
0.267925
-901.043759
-901.027283
-901.026338
es= -901.089371
1

3. Cartesian coordinates (Å) for compound 8 at HF/6-31G(d) level

Standard orientation:

Center	Atomic	At	omic	Coordinates	(Angstroms)
Number	Numb	er	Type	X Y	Z
Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	Atomic Numb 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	At er 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	omic Type 0.117658 -1.309121 -2.035579 -1.238645 -0.943168 0.312046 1.136206 0.061704 1.119353 -2.505866 -1.795541 -1.944750 -2.818581 -3.524971 -3.372301 3.527584 2.185269 1.845027 2.827067 4.167217 4.515164 -1.693058 -1.338168 -1.937950 -3.085527 0.735443 0.204841 1.634564	Coordinates X Y 2.231144 2.684257 2.226078 0.982870 1.030162 0.416136 0.858423 1.138376 2.734519 -2.054217 -0.910075 -0.323863 -0.904203 -2.048268 -2.626726 0.199029 -0.137532 -1.400072 -2.300723 -1.956211 -0.703637 2.190457 3.751151 2.973821 2.018115 0.758107 -0.661945 1.795009	 Angstroms) Z -0.993775 -1.243978 0.027038 0.475066 1.841956 2.012312 0.784874 -0.165681 -1.399357 -1.467133 -1.135169 0.115030 1.028514 0.698228 -0.552110 0.428309 0.335058 -0.142318 -0.512181 -0.409228 0.061565 -2.131339 -1.414775 0.805215 -0.121780 2.944921 2.046279 1.001981
20 29 30 21	1 1 1	0 0	-2.375665 -1.110687	-2.497938 -0.487492	-2.438123 -1.846712
30	1	0	-1.110687	-0.487492	-1.846712
31	1	0	-2.937192	-0.461971	1.999945
32	1	0	-4.192454	-2.488437	1.417559
33	1	0	-3.920168	-3.515939	-0.808017
34	1	0	3.808220	1.176903	0.778171
35	1	0	0.811451	-1.678722	-0.233327
36	1	0	2.547827	-3.271460	-0.881722
37	1	0	4.929485	-2.657640	-0.698173
38	1	0	5.550329	-0.422559	0.138255

Total energy (Hartrees) for compound 8 at HF/6-31G(d) level.

36947 (Hartree/Particle) 0.352231
0.353175
0.292273
-895.389567
-895.374283
-895.373339
es= -895.434241

4. Cartesian coordinates (Å) for compound 8 at B3LYP/6-31G(d) level

Standard orientation:

Center Number	Atomic Numbe	At er	omic Type	Coordinates X Y	(Angstroms) Z
1 2 3	6 6 6	0 0 0	0.086843 -1.361404 -2 105942	2.313968 2.735098 2.206827	-0.976386 -1.232001 0.007766
4	6	0	-1.263424	0.985390	0.466281
5	8	0	-0.970769	1.066002	1.861205
6	6	0	0.310871	0.454770	2.021240
7	6	0	1.135269	0.890827	0.775105
8	7	0	0.046868	1.181193	-0.175717
9	8	0	1.102566	2.861012	-1.359997
10	6	0	-2.448679	-2.094269	-1.490484
11	6	0	-1.777224	-0.915818	-1.158570
12	6	0	-1.919963	-0.351647	0.115057
13	6	0	-2.745397	-0.986809	1.051320
14	6	0	-3.412427	-2.166903	0.720576
15	6	0	-3.268453	-2.723079	-0.552016
16	6	0	3.528944	0.195179	0.426682
17	6	0	2.169970	-0.121626	0.325480
18	6	0	1.806444	-1.385990	-0.158312
19	6	0	2.782790	-2.309609	-0.529255
20	6	0	4.137275	-1.985832	-0.418414
21	6	0	4.508451	-0.729645	0.060633
22	1	0	-1.723430	2.268266	-2.156430
23	1	0	-1.416282	3.817906	-1.363074
24	1	0	-2.072150	2.942393	0.817706
25	1	0	-3.148830	1.944526	-0.181136
26	1	0	0.739894	0.811889	2.959862
27	1	0	0.219494	-0.638907	2.059363
28	1	0	1.648950	1.838016	0.975026
29	1	0	-2.325306	-2.522855	-2.481644
30	1	0	-1.123924	-0.440927	-1.884/10
31 22	1	0	-2.851931	-0.000000	2.041038
ఎ∠ ఎఎ	1	0	-4.044149	-2.0002224	1.409007
33 24	1	0	-3.700103	-3.042140	-0.009103
34 25	1	0	3.022019	1.1/0941	0.700422
36	1	0	0.1009/4	-1.044127	-U.200494 0.007060
37	1	0	2.400220 1 206210	-J.Z04J97 2 706211	-0.907009
38 38	1	0	4.090040 5 550059	-2.700041	-0.700740
50	I	0	5.559050	-0.404077	0.142000

Total energy (Hartrees) for compound 8 at B3LYP /6-31G(d) level.

Zero-point correction=	0.313675 (Hartree/Particle)
Thermal correction to Energy=	0.330132
Thermal correction to Enthalpy=	0.331076
Thermal correction to Gibbs Free Ener	rgy= 0.268134
Sum of electronic and zero-point Energy	gies= -901.047275
Sum of electronic and thermal Energie	es= -901.030818
Sum of electronic and thermal Enthalp	ies= -901.029874
Sum of electronic and thermal Free Er	nergies= -901.092815

5. X-ray crystallographic data for compounds 9-11, 18 and 21

Fig S1 ORTEP view of molecular structure of 9.

Table 1. Crystal data and structure refinement for 9.

Identification code	Jb62	
Empirical formula	C58 H54 N6 O8	
Formula weight	963.07	
Temperature	294(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 10.613(4) Å	α= 90°.
	b = 10.186(3) Å	β= 91.90(4)°.
	c = 23.142(12) Å	γ= 90°.
Volume	2500.4(18) Å ³	
Z	2	
Density (calculated)	1.279 Mg/m ³	
Absorption coefficient	0.086 mm ⁻¹	
F(000)	1016	
Crystal size	0.46 x 0.38 x 0.33 mm ³	
Theta range for data collection	1.76 to 25.00°.	

Index ranges	-12<=h<=12, 0<=k<=12, 0<=l<=27
Reflections collected	4777
Independent reflections	4657 [R(int) = 0.0345]
Completeness to theta = 25.00°	99.7 %
Max. and min. transmission	0.9721 and 0.9614
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4657 / 1 / 649
Goodness-of-fit on F ²	1.119
Final R indices [I>2sigma(I)]	R1 = 0.0653, wR2 = 0.1386
R indices (all data)	R1 = 0.0968, wR2 = 0.1580
Largest diff. peak and hole	0.284 and -0.223 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **9**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	Z	U(eq)
N(1)	3046(5)	-1063(6)	4727(2)	47(1)
N(25)	1299(5)	-1563(6)	5615(3)	53(2)
N(65)	2738(5)	-468(6)	3533(2)	50(1)
O(24)	-813(5)	-1289(6)	5419(3)	71(2)
O(28)	2668(5)	-3031(6)	6019(2)	62(1)
O(64)	859(6)	-453(7)	3023(3)	92(2)
O(68)	4428(4)	860(5)	3605(2)	58(1)
C(2)	3372(6)	-1723(7)	5214(3)	46(2)
C(3)	4615(6)	-1725(8)	5432(3)	53(2)
C(4)	5503(7)	-1023(8)	5155(3)	57(2)
C(5)	5167(6)	-306(7)	4660(3)	50(2)
C(6)	3918(6)	-387(7)	4464(3)	42(2)
C(21)	2286(6)	-2444(7)	5474(3)	50(2)
C(22)	1692(7)	-3451(8)	5054(3)	63(2)
C(23)	463(7)	-2779(9)	4848(3)	65(2)
C(24)	207(7)	-1782(8)	5319(3)	56(2)
C(26)	1394(7)	-1149(8)	6215(3)	56(2)
C(27)	2501(8)	-2018(10)	6443(3)	71(2)
C(29)	1579(7)	297(9)	6315(3)	58(2)
C(30)	971(11)	906(12)	6740(5)	109(4)
C(31)	1153(14)	2232(13)	6848(6)	145(6)
C(32)	1907(11)	2947(12)	6512(5)	103(4)
C(33)	2488(10)	2349(10)	6076(4)	86(3)
C(34)	2357(8)	1028(9)	5987(4)	72(2)
C(61)	3416(6)	375(7)	3939(3)	46(2)

C(62)	2493(6)	1450(8)	4089(3)	57(2)
C(63)	1218(7)	913(10)	3876(4)	77(3)
C(64)	1526(7)	-61(8)	3419(3)	60(2)
C(66)	3594(7)	-982(8)	3100(3)	58(2)
C(67)	4801(8)	-240(9)	3254(3)	66(2)
C(69)	3704(8)	-2475(8)	3114(3)	64(2)
C(70)	2824(10)	-3237(10)	3360(4)	81(3)
C(71)	2951(11)	-4609(11)	3365(5)	100(3)
C(72)	3955(11)	-5158(10)	3106(5)	95(3)
C(73)	4866(9)	-4403(10)	2876(4)	80(3)
C(74)	4750(8)	-3049(9)	2865(3)	68(2)
N(1A)	-1955(5)	99(6)	284(2)	43(1)
N(25A)	-2020(5)	-504(6)	1505(2)	47(1)
N(65A)	-3826(5)	570(6)	-606(3)	50(2)
O(24A)	-3665(5)	-624(7)	2107(2)	85(2)
O(28A)	-355(4)	-1838(5)	1397(2)	53(1)
O(64A)	-5939(5)	337(6)	-423(3)	71(2)
O(68A)	-2517(5)	2013(5)	-1019(2)	58(1)
C(2A)	-1030(5)	-580(7)	555(3)	39(1)
C(3A)	175(6)	-628(8)	354(3)	50(2)
C(4A)	444(6)	71(8)	-137(3)	53(2)
C(5A)	-497(6)	783(7)	-414(3)	49(2)
C(6A)	-1685(6)	756(7)	-196(3)	45(2)
C(21A)	-1424(6)	-1328(7)	1086(3)	45(2)
C(22A)	-2398(6)	-2400(8)	940(3)	56(2)
C(23A)	-3572(8)	-2000(11)	1243(4)	87(3)
C(24A)	-3147(7)	-972(8)	1683(3)	59(2)
C(26A)	-1059(7)	38(8)	1903(3)	52(2)
C(27A)	109(7)	-768(8)	1746(3)	61(2)
C(29A)	-908(8)	1510(8)	1862(3)	58(2)
C(30A)	113(9)	2123(9)	2128(4)	72(2)
C(31A)	232(10)	3480(10)	2115(4)	85(3)
C(32A)	-660(10)	4230(10)	1816(4)	86(3)
C(33A)	-1681(10)	3623(10)	1555(5)	91(3)
C(34A)	-1791(9)	2288(9)	1574(4)	80(3)
C(61A)	-2805(6)	1483(7)	-467(3)	48(2)
C(62A)	-3374(7)	2484(8)	-65(3)	63(2)
C(63A)	-4581(7)	1837(9)	140(4)	67(2)
C(64A)	-4906(7)	820(8)	-318(3)	53(2)
C(66A)	-3813(7)	145(8)	-1205(3)	54(2)
C(67A)	-2716(8)	981(9)	-1427(3)	65(2)
C(69A)	-3659(7)	-1314(8)	-1291(3)	55(2)
C(70A)	-4480(9)	-1973(11)	-1650(4)	84(3)
C(71A)	-4378(12)	-3329(12)	-1737(4)	102(4)

C(72A)	-3428(13)	-4019(12)	-1424(5)	104(4)
C(73A)	-2644(11)	-3359(10)	-1070(5)	92(3)
C(74A)	-2734(8)	-2032(9)	-993(4)	71(2)

Table 3. Bond lengths [Å] and angles [°] for ${\bf 9}.$

N(1)-C(6)	1.318(8)	C(66)-C(67)	1.519(11)
N(1)-C(2)	1.349(8)	C(66)-C(69)	1.526(11)
N(25)-C(24)	1.345(9)	C(69)-C(70)	1.353(12)
N(25)-C(21)	1.426(9)	C(69)-C(74)	1.396(11)
N(25)-C(26)	1.451(9)	C(70)-C(71)	1.404(14)
N(65)-C(64)	1.368(9)	C(71)-C(72)	1.359(14)
N(65)-C(61)	1.447(8)	C(72)-C(73)	1.358(13)
N(65)-C(66)	1.471(9)	C(73)-C(74)	1.385(13)
O(24)-C(24)	1.223(9)	N(1A)-C(2A)	1.340(8)
O(28)-C(27)	1.439(10)	N(25A)-C(24A)	1.364(9)
O(28)-C(21)	1.442(8)	N(25A)-C(21A)	1.444(8)
O(64)-C(64)	1.207(8)	N(25A)-C(26A)	1.459(9)
O(68)-C(61)	1.431(8)	N(65A)-C(64A)	1.370(8)
O(68)-C(67)	1.447(9)	N(65A)-C(66A)	1.454(9)
C(2)-C(3)	1.396(9)	N(65A)-C(61A)	1.455(9)
C(2)-C(21)	1.508(9)	O(24A)-C(24A)	1.195(8)
C(3)-C(4)	1.360(10)	O(28A)-C(21A)	1.421(8)
C(4)-C(5)	1.395(9)	O(28A)-C(27A)	1.434(9)
C(5)-C(6)	1.389(8)	O(64A)-C(64A)	1.219(8)
C(6)-C(61)	1.524(9)	O(68A)-C(67A)	1.424(10)
C(6A)-N(1A)	1.336(8)	O(68A)-C(61A)	1.429(8)
C(6A)-C(5A)	1.372(9)	C(2A)-C(3A)	1.376(8)
C(6A)-C(61A)	1.518(9)	C(2A)-C(21A)	1.516(9)
C(21)-C(22)	1.534(10)	C(3A)-C(4A)	1.379(9)
C(22)-C(23)	1.534(10)	C(4A)-C(5A)	1.376(9)
C(23)-C(24)	1.522(11)	C(21A)-C(22A)	1.533(9)
C(26)-C(29)	1.503(11)	C(22A)-C(23A)	1.506(10)
C(26)-C(27)	1.550(12)	C(23A)-C(24A)	1.517(12)
C(29)-C(30)	1.346(12)	C(26A)-C(29A)	1.511(11)
C(29)-C(34)	1.362(11)	C(26A)-C(27A)	1.540(10)
C(30)-C(31)	1.386(16)	C(29A)-C(30A)	1.377(11)
C(31)-C(32)	1.348(15)	C(29A)-C(34A)	1.382(12)
C(32)-C(33)	1.346(14)	C(30A)-C(31A)	1.388(13)
C(33)-C(34)	1.368(13)	C(31A)-C(32A)	1.384(13)
C(61)-C(62)	1.517(10)	C(32A)-C(33A)	1.370(13)
C(62)-C(63)	1.526(10)	C(33A)-C(34A)	1.365(13)
C(63)-C(64)	1.494(11)	C(61A)-C(62A)	1.519(10)

Supplementary Material (ESI) for Organic & Biomolecular Che	emistry
This journal is (c) The Royal Society of Chemistry 2010	

C(62A)-C(63A)	1.530(10)	N(25)-C(26)-C(27)	100.8(6)
C(63A)-C(64A)	1.514(11)	C(29)-C(26)-C(27)	114.4(7)
C(66A)-C(69A)	1.509(11)	O(28)-C(27)-C(26)	106.6(6)
C(66A)-C(67A)	1.543(11)	C(30)-C(29)-C(34)	118.0(9)
C(69A)-C(70A)	1.361(11)	C(30)-C(29)-C(26)	120.1(9)
C(69A)-C(74A)	1.388(11)	C(34)-C(29)-C(26)	121.9(8)
C(70A)-C(71A)	1.401(15)	C(29)-C(30)-C(31)	120.9(11)
C(71A)-C(72A)	1.409(15)	C(32)-C(31)-C(30)	120.3(11)
C(72A)-C(73A)	1.331(15)	C(33)-C(32)-C(31)	119.0(11)
C(73A)-C(74A)	1.367(13)	C(32)-C(33)-C(34)	120.7(10)
		C(29)-C(34)-C(33)	121.0(9)
C(6)-N(1)-C(2)	118.8(6)	O(68)-C(61)-N(65)	102.7(5)
C(24)-N(25)-C(21)	114.0(6)	O(68)-C(61)-C(62)	112.1(6)
C(24)-N(25)-C(26)	124.5(6)	N(65)-C(61)-C(62)	105.4(5)
C(21)-N(25)-C(26)	112.0(6)	O(68)-C(61)-C(6)	111.0(5)
C(64)-N(65)-C(61)	112.9(6)	N(65)-C(61)-C(6)	111.7(6)
C(64)-N(65)-C(66)	125.0(6)	C(62)-C(61)-C(6)	113.3(6)
C(61)-N(65)-C(66)	110.4(6)	C(61)-C(62)-C(63)	103.9(6)
C(27)-O(28)-C(21)	105.2(6)	C(64)-C(63)-C(62)	104.7(6)
C(61)-O(68)-C(67)	105.1(5)	O(64)-C(64)-N(65)	124.7(8)
N(1)-C(2)-C(3)	121.0(6)	O(64)-C(64)-C(63)	128.4(7)
N(1)-C(2)-C(21)	113.4(6)	N(65)-C(64)-C(63)	106.9(6)
C(3)-C(2)-C(21)	125.6(6)	N(65)-C(66)-C(67)	101.4(6)
C(4)-C(3)-C(2)	119.4(7)	N(65)-C(66)-C(69)	112.8(7)
C(3)-C(4)-C(5)	119.9(7)	C(67)-C(66)-C(69)	115.3(7)
C(6)-C(5)-C(4)	116.9(7)	O(68)-C(67)-C(66)	105.8(6)
N(1)-C(6)-C(5)	123.9(6)	C(70)-C(69)-C(74)	120.2(9)
N(1)-C(6)-C(61)	113.7(5)	C(70)-C(69)-C(66)	121.8(8)
C(5)-C(6)-C(61)	122.3(6)	C(74)-C(69)-C(66)	118.0(8)
N(1A)-C(6A)-C(5A)	122.6(6)	C(69)-C(70)-C(71)	120.5(10)
N(1A)-C(6A)-C(61A)	113.6(5)	C(72)-C(71)-C(70)	118.8(11)
C(5A)-C(6A)-C(61A)	123.7(6)	C(73)-C(72)-C(71)	121.2(10)
N(25)-C(21)-O(28)	104.4(6)	C(72)-C(73)-C(74)	120.5(10)
N(25)-C(21)-C(2)	111.2(6)	C(73)-C(74)-C(69)	118.7(9)
O(28)-C(21)-C(2)	110.7(5)	C(6A)-N(1A)-C(2A)	118.3(5)
N(25)-C(21)-C(22)	106.0(6)	C(24A)-N(25A)-C(21A)	114.0(6)
O(28)-C(21)-C(22)	112.0(6)	C(24A)-N(25A)-C(26A)	122.9(6)
C(2)-C(21)-C(22)	112.2(6)	C(21A)-N(25A)-C(26A)	109.4(5)
C(21)-C(22)-C(23)	103.1(6)	C(64A)-N(65A)-C(66A)	123.7(6)
C(24)-C(23)-C(22)	104.2(6)	C(64A)-N(65A)-C(61A)	113.7(6)
O(24)-C(24)-N(25)	126.1(8)	C(66A)-N(65A)-C(61A)	111.7(5)
O(24)-C(24)-C(23)	126.1(7)	C(21A)-O(28A)-C(27A)	105.1(5)
N(25)-C(24)-C(23)	107.7(7)	C(67A)-O(68A)-C(61A)	106.3(6)
N(25)-C(26)-C(29)	115.9(7)	N(1A)-C(2A)-C(3A)	122.4(6)

N(1A)-C(2A)-C(21A)	114.9(5)	C(34A)-C(33A)-C(32A)	120.2(10)
C(3A)-C(2A)-C(21A)	122.7(6)	C(33A)-C(34A)-C(29A)	122.0(10)
C(2A)-C(3A)-C(4A)	118.6(7)	O(68A)-C(61A)-N(65A)	103.0(5)
C(5A)-C(4A)-C(3A)	119.3(6)	O(68A)-C(61A)-C(6A)	111.4(5)
C(6A)-C(5A)-C(4A)	118.7(6)	N(65A)-C(61A)-C(6A)	110.3(6)
O(28A)-C(21A)-N(25A)	103.4(5)	O(68A)-C(61A)-C(62A)	113.2(6)
O(28A)-C(21A)-C(2A)	110.9(5)	N(65A)-C(61A)-C(62A)	104.8(5)
N(25A)-C(21A)-C(2A)	113.0(5)	C(6A)-C(61A)-C(62A)	113.3(6)
O(28A)-C(21A)-C(22A)	111.8(6)	C(61A)-C(62A)-C(63A)	104.8(6)
N(25A)-C(21A)-C(22A)	104.7(5)	C(64A)-C(63A)-C(62A)	104.5(6)
C(2A)-C(21A)-C(22A)	112.4(6)	O(64A)-C(64A)-N(65A)	126.1(7)
C(23A)-C(22A)-C(21A)	105.5(6)	O(64A)-C(64A)-C(63A)	126.8(7)
C(22A)-C(23A)-C(24A)	105.5(7)	N(65A)-C(64A)-C(63A)	107.0(6)
O(24A)-C(24A)-N(25A)	125.2(8)	N(65A)-C(66A)-C(69A)	115.0(6)
O(24A)-C(24A)-C(23A)	128.4(8)	N(65A)-C(66A)-C(67A)	100.6(6)
N(25A)-C(24A)-C(23A)	106.5(6)	C(69A)-C(66A)-C(67A)	114.4(7)
N(25A)-C(26A)-C(29A)	114.2(7)	O(68A)-C(67A)-C(66A)	106.5(6)
N(25A)-C(26A)-C(27A)	101.5(6)	C(70A)-C(69A)-C(74A)	118.1(9)
C(29A)-C(26A)-C(27A)	115.2(7)	C(70A)-C(69A)-C(66A)	119.7(8)
O(28A)-C(27A)-C(26A)	105.9(6)	C(74A)-C(69A)-C(66A)	122.2(8)
C(30A)-C(29A)-C(34A)	117.8(8)	C(69A)-C(70A)-C(71A)	121.5(11)
C(30A)-C(29A)-C(26A)	120.4(8)	C(70A)-C(71A)-C(72A)	118.4(10)
C(34A)-C(29A)-C(26A)	121.8(8)	C(73A)-C(72A)-C(71A)	119.1(11)
C(29A)-C(30A)-C(31A)	120.8(10)	C(72A)-C(73A)-C(74A)	122.3(11)
C(32A)-C(31A)-C(30A)	120.0(10)	C(73A)-C(74A)-C(69A)	120.5(10)
C(33A)-C(32A)-C(31A)	119.2(10)		

Table 4. Anisotropic displacement parameters (Å²x 10³) for **9**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	41(3)	46(3)	53(3)	-1(3)	-3(3)	-2(3)
N(25)	45(3)	48(4)	67(4)	-3(3)	2(3)	-11(3)
N(65)	56(4)	52(4)	41(3)	-7(3)	-11(3)	5(3)
O(24)	50(3)	68(4)	95(4)	7(3)	3(3)	8(3)
O(28)	67(3)	57(3)	61(3)	11(3)	-4(3)	2(3)
O(64)	89(4)	97(5)	87(4)	-18(4)	-50(3)	8(4)
O(68)	62(3)	58(3)	52(3)	1(3)	5(2)	-7(3)
C(2)	47(4)	45(4)	46(4)	-1(3)	-6(3)	-2(3)
C(3)	43(4)	54(5)	60(4)	8(4)	-12(3)	-1(4)
C(4)	46(4)	58(5)	67(5)	8(4)	-10(3)	-3(4)

C(5)	43(4)	51(4)	55(4)	3(4)	2(3)	1(3)
C(6)	44(4)	42(4)	38(3)	-5(3)	-1(3)	-4(3)
C(6A)	53(4)	38(4)	45(4)	-4(3)	11(3)	-1(3)
C(21)	53(4)	46(4)	51(4)	2(3)	-7(3)	3(4)
C(22)	66(5)	52(5)	70(5)	-8(4)	-2(4)	-12(4)
C(23)	56(5)	72(6)	66(5)	-4(5)	-13(4)	-11(4)
C(24)	53(5)	51(4)	63(5)	11(4)	-3(4)	-11(4)
C(26)	60(5)	57(5)	52(4)	-1(4)	7(4)	-13(4)
C(27)	86(6)	78(6)	51(5)	9(5)	-3(4)	-4(5)
C(29)	52(4)	70(5)	53(4)	-10(4)	1(4)	-8(4)
C(30)	123(9)	99(9)	109(8)	-35(7)	49(7)	-26(8)
C(31)	197(15)	91(9)	153(12)	-60(9)	92(11)	-31(10)
C(32)	125(10)	74(7)	111(9)	-24(7)	13(7)	-10(7)
C(33)	98(8)	72(7)	88(7)	-10(6)	10(6)	-22(6)
C(34)	71(6)	72(6)	75(6)	-12(5)	16(4)	-24(5)
C(61)	53(4)	43(4)	40(4)	-6(3)	-4(3)	-5(3)
C(62)	61(5)	52(4)	55(4)	-6(4)	-16(3)	7(4)
C(63)	53(5)	79(6)	97(6)	-20(6)	-18(4)	15(5)
C(64)	55(4)	71(6)	53(4)	0(4)	-19(4)	2(4)
C(66)	68(5)	65(5)	43(4)	-1(4)	7(4)	0(4)
C(67)	75(5)	68(6)	55(4)	-6(4)	14(4)	1(5)
C(69)	78(6)	57(5)	58(5)	-6(4)	8(4)	5(5)
C(70)	94(7)	68(6)	81(6)	-3(5)	21(5)	6(5)
C(71)	122(9)	68(7)	110(9)	-12(6)	16(7)	0(7)
C(72)	133(10)	55(6)	95(7)	-11(6)	-7(7)	4(6)
C(73)	86(7)	80(7)	75(6)	-18(5)	-6(5)	12(6)
C(74)	74(6)	69(6)	60(5)	-10(4)	4(4)	2(5)
N(1A)	37(3)	50(3)	43(3)	-2(3)	1(2)	-5(3)
N(25A)	51(3)	49(3)	41(3)	-2(3)	10(2)	2(3)
N(65A)	41(3)	50(4)	60(4)	0(3)	4(3)	6(3)
O(24A)	88(4)	90(5)	79(4)	-4(4)	50(3)	5(4)
O(28A)	56(3)	52(3)	51(3)	1(2)	-2(2)	13(3)
O(64A)	47(3)	68(4)	98(4)	7(3)	3(3)	-5(3)
O(68A)	66(3)	52(3)	56(3)	13(3)	4(2)	-7(3)
C(2A)	37(3)	43(4)	39(3)	-9(3)	7(3)	2(3)
C(3A)	38(4)	56(4)	57(4)	-4(4)	8(3)	-3(3)
C(4A)	38(4)	62(5)	58(4)	4(4)	11(3)	3(4)
C(5A)	50(4)	47(4)	50(4)	9(4)	15(3)	7(4)
C(21A)	45(4)	45(4)	47(4)	-2(3)	8(3)	4(3)
C(22A)	56(4)	51(5)	62(5)	-2(4)	9(4)	-10(4)
C(23A)	70(6)	91(7)	102(7)	-27(6)	34(5)	-13(5)
C(24A)	51(4)	65(5)	63(5)	0(4)	21(4)	4(4)
C(26A)	57(4)	61(5)	38(4)	-5(3)	3(3)	0(4)
C(27A)	60(5)	65(5)	56(4)	-13(4)	0(4)	5(4)

C(29A)	72(5)	56(5)	47(4)	-10(4)	7(4)	-8(4)
C(30A)	86(6)	68(6)	62(5)	0(5)	-5(5)	-5(5)
C(31A)	100(7)	77(7)	78(6)	-19(6)	5(5)	-27(6)
C(32A)	124(9)	63(6)	71(6)	2(5)	6(6)	-12(6)
C(33A)	97(8)	62(6)	112(8)	6(6)	-17(6)	0(6)
C(34A)	93(7)	57(6)	89(7)	5(5)	-15(5)	3(5)
C(61A)	44(4)	46(4)	54(4)	1(4)	5(3)	-1(3)
C(62A)	70(5)	55(5)	66(5)	-9(4)	5(4)	8(4)
C(63A)	59(5)	64(5)	80(6)	0(5)	18(4)	9(4)
C(64A)	49(4)	49(4)	60(5)	12(4)	7(3)	7(4)
C(66A)	51(4)	60(5)	52(4)	1(4)	-6(3)	1(4)
C(67A)	76(6)	67(5)	52(5)	4(4)	2(4)	-4(5)
C(69A)	53(4)	58(5)	53(4)	-1(4)	3(4)	-7(4)
C(70A)	89(7)	85(7)	78(6)	1(6)	-14(5)	-13(6)
C(71A)	141(10)	92(9)	74(7)	-22(6)	-1(7)	-44(8)
C(72A)	145(11)	69(7)	102(9)	-14(7)	37(8)	-1(8)
C(73A)	105(8)	60(7)	112(9)	-8(6)	14(7)	23(6)
C(74A)	73(6)	73(6)	65(5)	-15(5)	3(4)	18(5)

Fig S2 ORTEP view of molecular structure of 10.

Table 1. Crystal data and structure refinement for 10.

Identification code	Jb61	
Empirical formula	C62 H64 N6 O9 (2 C31 H31 N3	3 O4 · H2O)
Formula weight	1037.19	
Temperature	294(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 9.102(2) Å	α= 90°.
	b = 18.341(5) Å	β= 90°.
	c = 32.012(8) Å	γ= 90°.
Volume	5344(2) Å ³	
Z	4	
Density (calculated)	1.289 Mg/m ³	
Absorption coefficient	0.087 mm ⁻¹	
F(000)	2200	

Crystal size	0.47 x 0.36 x 0.22 mm ³
Theta range for data collection	2.22 to 25.72°.
Index ranges	-11<=h<=0, -22<=k<=0, 0<=l<=38
Reflections collected	5627
Independent reflections	5627
Completeness to theta = 25.72°	99.0 %
Max. and min. transmission	0.9811 and 0.9602
Refinement method	Full-matrix least-squares on F ²
Refinement method Data / restraints / parameters	Full-matrix least-squares on F ² 5627 / 3 / 701
Refinement method Data / restraints / parameters Goodness-of-fit on F ²	Full-matrix least-squares on F ² 5627 / 3 / 701 1.088
Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)]	Full-matrix least-squares on F ² 5627 / 3 / 701 1.088 R1 = 0.1037, wR2 = 0.2595
Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	Full-matrix least-squares on F ² 5627 / 3 / 701 1.088 R1 = 0.1037, wR2 = 0.2595 R1 = 0.2333, wR2 = 0.3356
Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	Full-matrix least-squares on F ² 5627 / 3 / 701 1.088 R1 = 0.1037, wR2 = 0.2595 R1 = 0.2333, wR2 = 0.3356 0.009(2)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **10**. U(eq) is defined as one third of the trace of the orthogonalized U^{jj} tensor.

	х	у	Z	U(eq)
C(2)	3931(11)	5493(5)	8203(3)	52(2)
C(2A)	8164(11)	4858(5)	10671(3)	56(2)
C(3)	5336(11)	5217(6)	8296(3)	61(3)
C(3A)	9682(12)	4884(7)	10692(4)	86(4)
C(4)	6012(12)	4773(6)	8018(3)	67(3)
C(4A)	10463(13)	5100(9)	10340(5)	107(5)
C(5)	5242(11)	4549(7)	7661(3)	68(3)
C(5A)	9737(13)	5182(8)	9970(5)	91(4)
C(6)	3832(10)	4820(5)	7612(3)	48(2)
C(6A)	8210(10)	5107(5)	9959(3)	55(2)
C(21)	3151(13)	6027(5)	8484(3)	60(3)
C(21A)	7219(11)	4691(5)	11042(3)	61(3)
C(22)	1949(16)	5697(6)	8747(3)	86(4)
C(22A)	6707(14)	3960(6)	11056(4)	79(3)
C(23)	577(14)	5561(9)	8488(4)	93(4)
C(23A)	5534(14)	3816(7)	10728(4)	79(3)
C(24)	-7(15)	6230(8)	8318(4)	91(4)
C(24A)	4246(12)	4330(6)	10788(4)	66(3)
C(25)	1104(15)	6761(8)	8157(4)	82(4)
C(25A)	4569(12)	5059(7)	10925(3)	62(3)
C(27)	3714(13)	7167(6)	8142(3)	70(3)
C(27A)	6343(12)	5910(6)	11261(3)	66(3)
C(28)	4818(16)	6966(7)	8486(4)	91(4)

C(28A)	7724(15)	5645(7)	11507(4)	86(4)
C(30)	4248(13)	7136(6)	7693(4)	76(3)
C(30A)	6469(14)	6567(7)	10979(4)	73(3)
C(31)	3623(14)	7647(6)	7418(3)	78(3)
C(31A)	5318(17)	7015(7)	10936(5)	90(4)
C(32)	4054(16)	7613(10)	6995(5)	111(5)
C(32A)	5430(30)	7615(9)	10650(7)	132(7)
C(33)	5117(19)	7088(9)	6859(5)	106(5)
C(33A)	6650(30)	7754(10)	10416(6)	124(6)
C(34)	5756(16)	6630(7)	7133(5)	98(4)
C(34A)	7790(20)	7254(8)	10474(5)	110(5)
C(35)	5324(14)	6632(6)	7549(4)	78(3)
C(35A)	7737(17)	6711(7)	10755(4)	86(4)
C(61)	2837(11)	4548(6)	7254(3)	63(3)
C(61A)	7315(11)	5213(6)	9567(3)	60(3)
C(62)	2732(14)	5104(7)	6912(3)	78(3)
C(62A)	6667(13)	5975(6)	9551(3)	69(3)
C(63)	1765(16)	5735(6)	7047(3)	85(4)
C(63A)	5386(12)	6053(6)	9863(3)	68(3)
C(64)	217(14)	5502(6)	7176(4)	81(4)
C(64A)	4236(12)	5532(5)	9767(4)	68(3)
C(65)	130(15)	4783(7)	7372(4)	79(3)
C(65A)	4705(13)	4777(6)	9603(3)	61(3)
C(67)	1294(12)	3570(6)	7523(4)	68(3)
C(67A)	6678(14)	4035(6)	9271(3)	71(3)
C(68)	2727(14)	3297(6)	7337(4)	80(3)
C(68A)	8187(17)	4340(8)	9151(4)	101(5)
C(70)	1101(12)	3388(6)	7979(3)	65(3)
C(70A)	6669(14)	3330(6)	9458(3)	69(3)
C(71)	-4(14)	2947(7)	8095(4)	84(4)
C(71A)	5883(16)	2756(7)	9288(4)	96(4)
C(72)	-203(17)	2765(10)	8504(6)	125(6)
C(72A)	5933(17)	2070(7)	9450(6)	101(5)
C(73)	692(17)	3055(7)	8811(5)	92(4)
C(73A)	6743(16)	1944(7)	9780(5)	91(4)
C(74)	1817(15)	3475(6)	8697(4)	83(4)
C(74A)	7548(16)	2445(9)	9969(5)	93(4)
C(75)	1993(15)	3670(7)	8287(4)	84(4)
C(75A)	7500(15)	3137(7)	9804(4)	89(4)
N(1)	3182(8)	5265(4)	7870(2)	48(2)
N(1A)	7452(8)	4957(4)	10306(2)	50(2)
N(26)	2553(10)	6625(4)	8224(2)	57(2)
N(26A)	5932(9)	5220(4)	11052(2)	56(2)
N(66)	1361(9)	4354(5)	7412(3)	60(2)

N(66A)	6144(10)	4665(4)	9533(2)	56(2)
O(1W)	1353(13)	6498(10)	11200(4)	160(5)
O(25)	776(11)	7358(7)	7984(3)	128(4)
O(25A)	3587(8)	5516(5)	10932(3)	83(2)
O(29)	4182(10)	6412(4)	8740(2)	78(2)
O(29A)	7931(10)	4882(5)	11424(2)	91(3)
O(65)	-1067(10)	4504(7)	7479(3)	112(3)
O(65A)	3771(10)	4306(5)	9522(3)	92(3)
O(69)	3324(8)	3881(4)	7082(2)	71(2)
O(69A)	8158(10)	5109(4)	9203(2)	85(2)

Table 3. Bond lengths [Å] and angles [°] for ${\bf 10}.$

C(2)-N(1)	1.335(12)	C(25A)-O(25A)	1.224(13)
C(2)-C(3)	1.407(14)	C(25A)-N(26A)	1.338(13)
C(2)-C(21)	1.506(13)	C(27)-N(26)	1.474(13)
C(2A)-N(1A)	1.347(12)	C(27)-C(30)	1.517(16)
C(2A)-C(3A)	1.384(15)	C(27)-C(28)	1.536(17)
C(2A)-C(21A)	1.499(14)	C(27A)-N(26A)	1.479(13)
C(3)-C(4)	1.353(14)	C(27A)-C(30A)	1.509(16)
C(3A)-C(4A)	1.390(19)	C(27A)-C(28A)	1.562(16)
C(4)-C(5)	1.403(14)	C(28)-O(29)	1.423(14)
C(4A)-C(5A)	1.367(19)	C(28A)-O(29A)	1.436(14)
C(5)-C(6)	1.385(14)	C(30)-C(31)	1.407(16)
C(5A)-C(6A)	1.397(15)	C(30)-C(35)	1.424(16)
C(6)-N(1)	1.303(11)	C(30A)-C(31A)	1.337(17)
C(6)-C(61)	1.542(14)	C(30A)-C(35A)	1.384(17)
C(6A)-N(1A)	1.338(12)	C(31)-C(32)	1.411(19)
C(6A)-C(61A)	1.507(14)	C(31A)-C(32A)	1.44(2)
C(21)-O(29)	1.432(13)	C(32)-C(33)	1.43(2)
C(21)-N(26)	1.480(12)	C(32A)-C(33A)	1.37(3)
C(21)-C(22)	1.508(16)	C(33)-C(34)	1.346(19)
C(21A)-C(22A)	1.419(15)	C(33A)-C(34A)	1.39(2)
C(21A)-O(29A)	1.427(13)	C(34)-C(35)	1.390(18)
C(21A)-N(26A)	1.522(13)	C(34A)-C(35A)	1.343(19)
C(22)-C(23)	1.519(18)	C(61)-O(69)	1.414(12)
C(22A)-C(23A)	1.520(16)	C(61)-N(66)	1.479(13)
C(23)-C(24)	1.445(19)	C(61)-C(62)	1.498(15)
C(23A)-C(24A)	1.517(16)	C(61A)-O(69A)	1.410(12)
C(24)-C(25)	1.495(18)	C(61A)-N(66A)	1.469(13)
C(24A)-C(25A)	1.438(15)	C(61A)-C(62A)	1.517(15)
C(25)-O(25)	1.265(15)	C(62)-C(63)	1.518(16)
C(25)-N(26)	1.358(15)	C(62A)-C(63A)	1.541(16)

C(63)-C(64)	1.529(18)	N(1A)-C(6A)-C(5A)	120.9(11)
C(63A)-C(64A)	1.451(14)	N(1A)-C(6A)-C(61A)	116.1(8)
C(64)-C(65)	1.461(17)	C(5A)-C(6A)-C(61A)	123.0(11)
C(64A)-C(65A)	1.541(15)	O(29)-C(21)-N(26)	101.4(7)
C(65)-O(65)	1.252(16)	O(29)-C(21)-C(2)	110.6(9)
C(65)-N(66)	1.376(15)	N(26)-C(21)-C(2)	108.8(8)
C(65A)-O(65A)	1.240(12)	O(29)-C(21)-C(22)	110.7(9)
C(65A)-N(66A)	1.345(14)	N(26)-C(21)-C(22)	110.1(10)
C(67)-N(66)	1.482(13)	C(2)-C(21)-C(22)	114.4(9)
C(67)-C(70)	1.508(15)	C(22A)-C(21A)-O(29A)	110.8(9)
C(67)-C(68)	1.520(16)	C(22A)-C(21A)-C(2A)	114.0(9)
C(67A)-C(70A)	1.423(15)	O(29A)-C(21A)-C(2A)	111.6(8)
C(67A)-N(66A)	1.509(13)	C(22A)-C(21A)-N(26A)	110.4(9)
C(67A)-C(68A)	1.532(19)	O(29A)-C(21A)-N(26A)	100.0(8)
C(68)-O(69)	1.452(13)	C(2A)-C(21A)-N(26A)	109.2(8)
C(68A)-O(69A)	1.421(15)	C(21)-C(22)-C(23)	111.1(9)
C(70)-C(71)	1.342(15)	C(21A)-C(22A)-C(23A)	112.0(10)
C(70)-C(75)	1.376(15)	C(24)-C(23)-C(22)	111.6(12)
C(70A)-C(75A)	1.387(17)	C(24A)-C(23A)-C(22A)	110.3(9)
C(70A)-C(71A)	1.385(17)	C(23)-C(24)-C(25)	115.7(12)
C(71)-C(72)	1.36(2)	C(25A)-C(24A)-C(23A)	117.4(9)
C(71A)-C(72A)	1.360(18)	O(25)-C(25)-N(26)	117.2(13)
C(72)-C(73)	1.38(2)	O(25)-C(25)-C(24)	123.7(13)
C(72A)-C(73A)	1.308(19)	N(26)-C(25)-C(24)	119.0(12)
C(73)-C(74)	1.333(18)	O(25A)-C(25A)-N(26A)	121.4(10)
C(73A)-C(74A)	1.32(2)	O(25A)-C(25A)-C(24A)	119.5(9)
C(74)-C(75)	1.370(16)	N(26A)-C(25A)-C(24A)	119.1(11)
C(74A)-C(75A)	1.38(2)	N(26)-C(27)-C(30)	111.9(9)
		N(26)-C(27)-C(28)	100.3(9)
N(1)-C(2)-C(3)	121.3(9)	C(30)-C(27)-C(28)	117.4(11)
N(1)-C(2)-C(21)	116.1(8)	N(26A)-C(27A)-C(30A)	115.7(8)
C(3)-C(2)-C(21)	122.5(9)	N(26A)-C(27A)-C(28A)	99.5(8)
N(1A)-C(2A)-C(3A)	121.3(11)	C(30A)-C(27A)-C(28A)	119.3(10)
N(1A)-C(2A)-C(21A)	116.0(8)	O(29)-C(28)-C(27)	108.3(10)
C(3A)-C(2A)-C(21A)	122.7(11)	O(29A)-C(28A)-C(27A)	108.3(9)
C(4)-C(3)-C(2)	119.4(10)	C(31)-C(30)-C(35)	120.5(12)
C(2A)-C(3A)-C(4A)	118.7(12)	C(31)-C(30)-C(27)	116.0(11)
C(3)-C(4)-C(5)	119.0(10)	C(35)-C(30)-C(27)	123.5(11)
C(5A)-C(4A)-C(3A)	119.2(11)	C(31A)-C(30A)-C(35A)	118.9(12)
C(6)-C(5)-C(4)	116.7(10)	C(31A)-C(30A)-C(27A)	119.5(12)
C(4A)-C(5A)-C(6A)	119.5(12)	C(35A)-C(30A)-C(27A)	121.6(11)
N(1)-C(6)-C(5)	125.0(9)	C(30)-C(31)-C(32)	117.3(14)
N(1)-C(6)-C(61)	113.9(8)	C(30A)-C(31A)-C(32A)	118.7(16)
C(5)-C(6)-C(61)	120.8(9)	C(31)-C(32)-C(33)	120.7(14)

C(33A)-C(32A)-C(31A)	123.5(17)	O(69)-C(68)-C(67)	107.4(9)
C(34)-C(33)-C(32)	120.8(15)	O(69A)-C(68A)-C(67A)	108.5(11)
C(32A)-C(33A)-C(34A)	113.9(18)	C(71)-C(70)-C(75)	118.2(11)
C(33)-C(34)-C(35)	120.1(14)	C(71)-C(70)-C(67)	119.1(10)
C(35A)-C(34A)-C(33A)	123.6(17)	C(75)-C(70)-C(67)	122.7(10)
C(34)-C(35)-C(30)	120.5(12)	C(75A)-C(70A)-C(71A)	113.6(12)
C(34A)-C(35A)-C(30A)	121.1(15)	C(75A)-C(70A)-C(67A)	124.4(11)
O(69)-C(61)-N(66)	102.1(8)	C(71A)-C(70A)-C(67A)	122.0(11)
O(69)-C(61)-C(62)	108.8(8)	C(70)-C(71)-C(72)	120.7(13)
N(66)-C(61)-C(62)	110.8(9)	C(72A)-C(71A)-C(70A)	122.5(13)
O(69)-C(61)-C(6)	112.7(8)	C(71)-C(72)-C(73)	120.7(13)
N(66)-C(61)-C(6)	111.0(7)	C(73A)-C(72A)-C(71A)	119.3(13)
C(62)-C(61)-C(6)	111.1(9)	C(74)-C(73)-C(72)	118.7(13)
O(69A)-C(61A)-N(66A)	103.9(8)	C(72A)-C(73A)-C(74A)	124.0(13)
O(69A)-C(61A)-C(6A)	112.2(9)	C(73)-C(74)-C(75)	120.2(13)
N(66A)-C(61A)-C(6A)	111.5(8)	C(73A)-C(74A)-C(75A)	116.5(14)
O(69A)-C(61A)-C(62A)	107.9(8)	C(74)-C(75)-C(70)	121.2(12)
N(66A)-C(61A)-C(62A)	110.2(9)	C(74A)-C(75A)-C(70A)	124.1(13)
C(6A)-C(61A)-C(62A)	110.9(8)	C(6)-N(1)-C(2)	118.1(8)
C(61)-C(62)-C(63)	110.4(9)	C(6A)-N(1A)-C(2A)	120.0(8)
C(61A)-C(62A)-C(63A)	111.0(8)	C(25)-N(26)-C(27)	123.0(9)
C(62)-C(63)-C(64)	113.3(10)	C(25)-N(26)-C(21)	125.5(10)
C(64A)-C(63A)-C(62A)	110.3(9)	C(27)-N(26)-C(21)	109.6(8)
C(65)-C(64)-C(63)	114.8(10)	C(25A)-N(26A)-C(27A)	124.0(9)
C(63A)-C(64A)-C(65A)	117.6(9)	C(25A)-N(26A)-C(21A)	124.6(9)
O(65)-C(65)-N(66)	116.6(11)	C(27A)-N(26A)-C(21A)	111.1(8)
O(65)-C(65)-C(64)	122.4(12)	C(65)-N(66)-C(61)	124.7(9)
N(66)-C(65)-C(64)	120.8(12)	C(65)-N(66)-C(67)	123.0(10)
O(65A)-C(65A)-N(66A)	121.8(10)	C(61)-N(66)-C(67)	110.7(8)
O(65A)-C(65A)-C(64A)	120.5(10)	C(65A)-N(66A)-C(61A)	126.2(9)
N(66A)-C(65A)-C(64A)	117.6(9)	C(65A)-N(66A)-C(67A)	121.6(9)
N(66)-C(67)-C(70)	116.9(9)	C(61A)-N(66A)-C(67A)	109.4(8)
N(66)-C(67)-C(68)	101.0(9)	C(28)-O(29)-C(21)	106.9(8)
C(70)-C(67)-C(68)	114.0(10)	C(21A)-O(29A)-C(28A)	109.9(8)
C(70A)-C(67A)-N(66A)	117.5(8)	C(61)-O(69)-C(68)	107.6(7)
C(70A)-C(67A)-C(68A)	116.2(11)	C(61A)-O(69A)-C(68A)	103.9(8)
N(66A)-C(67A)-C(68A)	98.5(9)		

Table 4. Anisotropic displacement parameters (Å²x 10³) for **10**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

U ¹¹ U ²² U ³³ U ²³ U ¹³	U ¹²
---	-----------------

C(2)	57(6)	48(5)	50(5)	3(4)	-1(5)	7(5)
C(2A)	42(6)	54(6)	72(7)	3(5)	-5(5)	-1(5)
C(3)	55(6)	66(6)	63(6)	7(5)	-18(5)	1(6)
C(3A)	43(7)	115(10)	102(9)	14(8)	-18(6)	18(7)
C(4)	48(6)	80(7)	72(7)	-17(6)	-4(6)	11(6)
C(4A)	27(6)	172(15)	123(12)	2(11)	-5(7)	4(8)
C(5)	49(6)	93(8)	61(7)	3(6)	10(5)	9(6)
C(5A)	53(7)	110(10)	109(11)	-12(8)	34(7)	-16(7)
C(6)	48(5)	49(5)	46(5)	2(4)	1(4)	1(5)
C(6A)	34(5)	61(6)	70(6)	5(5)	12(5)	3(5)
C(21)	81(7)	52(5)	48(5)	-4(5)	-4(6)	13(6)
C(21A)	52(6)	62(6)	67(6)	8(5)	-6(5)	-1(5)
C(22)	145(12)	67(7)	47(6)	-3(5)	34(8)	6(8)
C(22A)	75(8)	87(8)	74(7)	17(6)	5(7)	4(7)
C(23)	77(9)	126(12)	75(8)	3(8)	40(7)	-13(9)
C(23A)	86(9)	83(8)	66(7)	9(6)	-2(6)	-33(7)
C(24)	76(9)	115(11)	82(8)	6(8)	17(7)	-1(9)
C(24A)	58(6)	60(6)	81(7)	2(5)	-8(6)	-8(6)
C(25)	83(9)	104(10)	58(7)	0(7)	3(7)	24(8)
C(25A)	47(7)	93(8)	47(6)	1(5)	-3(5)	-10(6)
C(27)	81(8)	61(6)	68(7)	-15(5)	4(6)	0(6)
C(27A)	70(7)	66(7)	63(6)	-10(5)	-11(6)	-1(6)
C(28)	100(10)	86(9)	88(9)	-2(7)	-26(8)	-20(8)
C(28A)	94(10)	91(9)	72(7)	-10(6)	-26(7)	6(8)
C(30)	68(8)	76(7)	83(8)	3(6)	-2(7)	-18(7)
C(30A)	67(8)	81(8)	72(7)	-18(6)	-13(6)	1(7)
C(31)	78(8)	83(8)	72(7)	19(6)	-7(6)	-25(7)
C(31A)	96(10)	59(7)	116(11)	-13(7)	-8(8)	13(8)
C(32)	73(9)	152(14)	108(12)	60(10)	-3(9)	-25(11)
C(32A)	144(17)	81(11)	173(19)	-37(12)	-76(15)	34(12)
C(33)	100(11)	121(12)	98(10)	25(10)	9(10)	-31(11)
C(33A)	150(17)	79(10)	144(16)	-29(10)	-42(15)	-14(13)
C(34)	92(10)	85(8)	118(11)	-1(8)	37(9)	-11(8)
C(34A)	139(14)	80(9)	111(11)	-9(9)	13(10)	-50(11)
C(35)	80(8)	66(7)	88(8)	8(6)	17(7)	-9(7)
C(35A)	104(10)	68(7)	86(8)	-1(7)	-10(8)	-15(8)
C(61)	65(7)	77(7)	47(6)	-4(5)	5(5)	10(6)
C(61A)	57(6)	74(7)	50(6)	0(5)	15(5)	-18(6)
C(62)	78(8)	94(8)	61(6)	-4(6)	-12(6)	0(7)
C(62A)	78(8)	69(7)	61(6)	11(5)	-15(6)	-14(6)
C(63)	121(11)	74(7)	60(6)	17(6)	-24(7)	3(8)
C(63A)	72(7)	63(6)	68(6)	7(5)	-14(6)	9(6)
C(64)	88(9)	67(7)	88(8)	2(6)	-25(7)	23(7)

C(64A)	64(7)	55(6)	85(7)	-8(5)	-5(6)	-3(6)
C(65)	67(8)	95(9)	76(8)	1(7)	-20(7)	10(7)
C(65A)	67(8)	56(6)	59(6)	0(5)	-8(5)	-10(6)
C(67)	52(7)	69(7)	83(8)	-11(6)	-15(6)	-4(5)
C(67A)	85(8)	74(7)	53(6)	2(5)	12(6)	-4(6)
C(68)	87(9)	68(7)	87(8)	-10(6)	-3(7)	4(7)
C(68A)	112(11)	122(12)	68(8)	-17(7)	39(8)	0(10)
C(70)	54(6)	60(6)	81(7)	-5(5)	-10(6)	6(6)
C(70A)	75(7)	82(7)	50(6)	-8(5)	1(6)	6(7)
C(71)	76(8)	80(8)	96(9)	29(7)	-16(7)	-25(7)
C(71A)	97(10)	90(9)	100(9)	-11(8)	-23(8)	-24(8)
C(72)	83(10)	143(14)	148(15)	52(12)	-5(10)	-50(11)
C(72A)	98(11)	52(7)	154(13)	-12(8)	-13(11)	-12(7)
C(73)	104(11)	66(7)	105(10)	18(7)	14(9)	14(8)
C(73A)	85(9)	51(7)	139(12)	0(8)	30(10)	9(7)
C(74)	99(9)	66(7)	83(8)	13(6)	-13(8)	-25(7)
C(74A)	106(11)	86(9)	86(8)	6(7)	-3(8)	13(9)
C(75)	84(9)	90(8)	78(8)	-3(7)	-14(7)	-20(8)
C(75A)	94(9)	79(8)	93(9)	-13(7)	4(8)	-9(8)
N(1)	47(4)	50(4)	47(4)	5(4)	1(4)	0(4)
N(1A)	39(4)	60(4)	51(5)	-3(3)	-5(4)	2(4)
N(26)	70(6)	47(4)	53(5)	3(4)	2(4)	9(4)
N(26A)	53(5)	67(5)	50(4)	-5(4)	-2(4)	4(4)
N(66)	51(5)	64(5)	66(5)	-6(4)	-8(4)	0(4)
N(66A)	66(6)	45(4)	57(5)	-9(4)	13(4)	-10(4)
O(1W)	132(9)	199(13)	149(11)	-25(11)	-13(8)	61(10)
O(25)	100(7)	173(10)	111(8)	53(7)	9(6)	58(8)
O(25A)	51(4)	89(6)	108(6)	-15(5)	0(4)	9(5)
O(29)	109(6)	68(4)	56(4)	-15(4)	-17(4)	6(5)
O(29A)	85(6)	132(8)	57(4)	16(4)	-28(4)	0(6)
O(65)	54(5)	167(10)	114(7)	22(7)	-2(5)	10(6)
O(65A)	78(6)	100(6)	97(6)	-14(5)	-17(5)	-28(5)
O(69)	69(5)	79(5)	65(4)	-25(4)	9(4)	11(4)
O(69A)	107(6)	75(5)	71(5)	-8(4)	38(5)	-20(5)

Fig S3 ORTEP view of molecular structure of 11.

Table 1. Crystal data and structure refinement for 11	l.	
Identification code	Jb78	
Empirical formula	C30 H28 N2 O4	
Formula weight	240.27	
Temperature	294(2) K	
Wavelength	0.71073 Å	
Crystal system	Tetragonal	
Space group	P 41 21 2	
Unit cell dimensions	a = 9.727(3) Å	= 90°.
	b = 9.727(3) Å	= 90°.
	c = 25.904(32) Å	= 90°.
Volume	2450.9 Å ³	
Z	4	
Density (calculated)	1.302 Mg/m ³	
Absorption coefficient	0.087 mm ⁻¹	
F(000)	1016	
Crystal size	0.42 x 0.38 x 0.33 mm ³	
Theta range for data collection	2.24 to 29.95°.	

Index ranges	-9<=h<=9, 0<=k<=13, 0<=l<=36
Reflections collected	3567
Independent reflections	3567
Completeness to theta = 29.95°	100.0 %
Max. and min. transmission	0.9719 and 0.9645
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3567 / 0 / 165
Goodness-of-fit on F ²	1.059
Final R indices [I>2sigma(I)]	R1 = 0.0542, wR2 = 0.1488
R indices (all data)	R1 = 0.1108, wR2 = 0.1717
Largest diff. peak and hole	0.105 and -0.101 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for **11**. U(eq) is defined as one third of the trace of the orthogonalized U^{jj} tensor.

	х	У	Z	U(eq)
C(1)	-1043(2)	2640(2)	7692(1)	58(1)
C(2)*	-1341(2)	1341(2)	7500	59(1)
C(3)*	-3326(2)	3326(2)	7500	81(1)
C(4)	-2055(3)	3630(2)	7695(1)	69(1)
C(11)	402(3)	2991(3)	7881(1)	72(1)
C(12)	1241(3)	3787(3)	7480(2)	100(1)
C(13)	2369(3)	2843(3)	7322(1)	93(1)
C(14)	2432(3)	1759(3)	7734(1)	70(1)
C(16)	1055(3)	1409(3)	8537(1)	76(1)
C(17)	210(4)	2637(4)	8737(1)	112(1)
C(19)	424(2)	15(3)	8634(1)	71(1)
C(20)	809(3)	-1106(3)	8342(1)	86(1)
C(21)	304(4)	-2422(3)	8447(2)	102(1)
C(22)	-597(4)	-2624(5)	8840(2)	114(1)
C(23)	-995(4)	-1547(6)	9130(2)	124(1)
C(24)	-502(3)	-233(5)	9030(1)	109(1)
N(15)	1219(2)	1783(2)	7991(1)	67(1)
O(14)	3370(2)	965(2)	7826(1)	93(1)
O(18)	345(3)	3694(2)	8359(1)	104(1)

* at special position

Table 3. Bond lengths [Å] and angles [°] for 11.

C(1)-C(4)	1.376(3)	C(3)-C(4)-C(1)	119.6(3)
C(1)-C(2)	1.388(3)	O(18)-C(11)-N(15)	104.0(2)
C(1)-C(11)	1.527(4)	O(18)-C(11)-C(1)	110.6(2)
C(2)-C(1)#1	1.388(3)	N(15)-C(11)-C(1)	112.8(2)
C(3)-C(4)#1	1.368(3)	O(18)-C(11)-C(12)	111.7(2)
C(3)-C(4)	1.368(3)	N(15)-C(11)-C(12)	104.5(2)
C(11)-O(18)	1.415(3)	C(1)-C(11)-C(12)	112.7(2)
C(11)-N(15)	1.447(3)	C(13)-C(12)-C(11)	105.5(2)
C(11)-C(12)	1.532(4)	C(12)-C(13)-C(14)	105.6(3)
C(12)-C(13)	1.488(4)	O(14)-C(14)-N(15)	124.5(3)
C(13)-C(14)	1.502(4)	O(14)-C(14)-C(13)	127.9(3)
C(14)-O(14)	1.219(3)	N(15)-C(14)-C(13)	107.6(2)
C(14)-N(15)	1.355(3)	N(15)-C(16)-C(19)	115.2(2)
C(16)-N(15)	1.470(4)	N(15)-C(16)-C(17)	100.9(2)
C(16)-C(19)	1.510(4)	C(19)-C(16)-C(17)	115.1(3)
C(16)-C(17)	1.539(4)	O(18)-C(17)-C(16)	106.3(3)
C(17)-O(18)	1.425(4)	C(20)-C(19)-C(24)	116.4(3)
C(19)-C(20)	1.380(4)	C(20)-C(19)-C(16)	120.5(2)
C(19)-C(24)	1.386(4)	C(24)-C(19)-C(16)	122.9(3)
C(20)-C(21)	1.398(4)	C(19)-C(20)-C(21)	121.4(3)
C(21)-C(22)	1.357(5)	C(22)-C(21)-C(20)	120.4(4)
C(22)-C(23)	1.347(6)	C(23)-C(22)-C(21)	119.4(4)
C(23)-C(24)	1.390(6)	C(22)-C(23)-C(24)	120.8(4)
		C(19)-C(24)-C(23)	121.5(4)
C(4)-C(1)-C(2)	119.2(2)	C(14)-N(15)-C(11)	113.3(2)
C(4)-C(1)-C(11)	120.0(2)	C(14)-N(15)-C(16)	124.3(2)
C(2)-C(1)-C(11)	120.7(2)	C(11)-N(15)-C(16)	109.3(2)
C(1)#1-C(2)-C(1)	120.6(3)	C(11)-O(18)-C(17)	104.8(2)
C(4)#1-C(3)-C(4)	121.7(3)		

Symmetry transformations used to generate equivalent atoms:

#1 -y,-x,-z+3/2

Table 4. Anisotropic displacement parameters (Å²x 10³) for **11**. The anisotropic displacement factor exponent takes the form: -2 2 [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

U11	U ²²	U ³³	U ²³	U13	U ¹²
U	U	U	U	U	0

Supplemen	tary Materia	al (ESI) fo	or Organic	& Biomolecul	ar Chemistry
This	journal is (c) The Ro	yal Societ	y of Chemistry	y 2010

C(1)	65(1)	55(1)	55(1)	2(1)	7(1)	6(1)
C(2)*	58(1)	58(1)	62(2)	-1(1)	-1(1)	11(1)
C(3)*	69(1)	69(1)	105(3)	11(2)	11(2)	28(2)
C(4)	73(2)	54(1)	81(2)	6(1)	15(1)	13(1)
C(11)	74(2)	59(1)	83(2)	-7(1)	-6(1)	8(1)
C(12)	78(2)	67(2)	153(3)	20(2)	4(2)	-10(1)
C(13)	104(2)	87(2)	89(2)	2(2)	10(2)	6(2)
C(14)	62(1)	80(2)	68(2)	-15(1)	-7(1)	4(1)
C(16)	74(2)	87(2)	66(2)	-14(1)	-11(1)	14(1)
C(17)	159(4)	111(2)	68(2)	-21(2)	-11(2)	50(2)
C(19)	58(1)	92(2)	64(2)	-2(1)	-7(1)	-1(1)
C(20)	77(2)	85(2)	95(2)	9(2)	2(2)	13(2)
C(21)	89(2)	91(2)	127(3)	19(2)	-12(2)	5(2)
C(22)	104(3)	135(3)	103(3)	29(2)	-27(2)	-36(2)
C(23)	97(2)	173(4)	100(3)	-1(3)	9(2)	-56(3)
C(24)	84(2)	160(4)	82(2)	-23(2)	4(2)	-19(2)
N(15)	63(1)	68(1)	68(1)	-7(1)	-11(1)	5(1)
O(14)	66(1)	111(2)	102(2)	1(1)	-2(1)	15(1)
O(18)	129(2)	77(1)	107(2)	-38(1)	-30(2)	19(1)

* at special position

Table 1. Crystal data and structure refinement for 18.

Identification code	Jb80	
Empirical formula	C30 H30 N2 O4	
Formula weight	482.56	
Temperature	294(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 9.737(8) Å	= 90°.
	b = 10.015(6) Å	= 90°.
	c = 26.408(11) Å	= 90°.
Volume	2575(3) Å ³	
Z	4	
Density (calculated)	1.245 Mg/m ³	
Absorption coefficient	0.083 mm ⁻¹	
F(000)	1024	
Crystal size	0.43 x 0.39 x 0.18 mm ³	

Theta range for data collection	1.54 to 26.97°.
Index ranges	0<=h<=12, 0<=k<=12, 0<=l<=33
Reflections collected	3175
Independent reflections	3175
Completeness to theta = 26.97°	99.8 %
Max. and min. transmission	0.9853 and 0.9653
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3175 / 0 / 326
Goodness-of-fit on F ²	1.124
Final R indices [I>2sigma(I)]	R1 = 0.0639, wR2 = 0.1898
R indices (all data)	R1 = 0.0894, wR2 = 0.2124
Largest diff. peak and hole	0.359 and -0.229 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for **18**. U(eq) is defined as one third of the trace of the orthogonalized U^{jj} tensor.

	х	у	Z	U(eq)
O(14)	6588(5)	2681(3)	8269(2)	87(1)
O(18)	5814(4)	1951(4)	7355(1)	85(1)
O(34)	791(4)	208(5)	8844(2)	97(1)
O(38)	2450(5)	-3290(3)	9531(1)	89(1)
N(15)	6787(3)	390(3)	8346(1)	46(1)
N(35)	2400(4)	-1268(3)	9148(1)	60(1)
C(1)	6568(5)	-1822(4)	8764(1)	48(1)
C(2)	5180(4)	-1704(4)	8887(1)	47(1)
C(3)	4349(5)	-2807(4)	8956(2)	56(1)
C(4)	4922(7)	-4074(4)	8917(2)	74(2)
C(5)	6287(7)	-4210(4)	8797(2)	78(2)
C(6)	7100(5)	-3094(4)	8719(2)	65(1)
C(11)	7419(4)	-580(4)	8705(1)	48(1)
C(12)	7547(5)	265(5)	9192(2)	63(1)
C(13)	7652(6)	1682(5)	9004(2)	72(1)
C(14)	6933(5)	1670(4)	8503(2)	61(1)
C(16)	6424(4)	-102(4)	7838(1)	49(1)
C(17)	5350(5)	731(6)	7554(2)	68(1)
C(19)	7711(5)	-367(4)	7521(1)	51(1)
C(20)	8885(4)	393(5)	7569(2)	59(1)

C(21)	10031(5)	106(6)	7283(2)	81(2)	
C(22)	10020(7)	-916(7)	6936(2)	93(2)	
C(23)	8874(8)	-1687(6)	6887(2)	95(2)	
C(24)	7703(7)	-1409(5)	7175(2)	76(2)	
C(31)	2814(5)	-2663(4)	9072(2)	63(1)	
C(32)	1873(6)	-3127(6)	8633(2)	79(2)	
C(33)	1426(6)	-1847(7)	8374(2)	90(2)	
C(34)	1447(5)	-822(6)	8806(2)	74(1)	
C(36)	2458(6)	-953(5)	9696(2)	68(1)	
C(37)	2793(9)	-2326(5)	9917(2)	93(2)	
C(39)	3438(5)	174(4)	9823(2)	59(1)	
C(40)	3444(7)	1306(5)	9514(3)	84(2)	
C(41)	4274(8)	2372(6)	9647(4)	113(2)	
C(42)	5112(8)	2324(8)	10048(4)	116(3)	
C(43)	5082(7)	1237(7)	10342(3)	98(2)	
C(44)	4275(7)	183(6)	10235(2)	84(2)	

Table 3. Bond lengths [Å] and angles [°] for 18.

O(14)-C(14)	1.234(6)	C(11)-C(12)	1.545(5)
O(18)-C(17)	1.405(6)	C(12)-C(13)	1.507(7)
O(34)-C(34)	1.217(7)	C(13)-C(14)	1.497(8)
O(38)-C(31)	1.408(5)	C(16)-C(19)	1.531(6)
O(38)-C(37)	1.444(6)	C(16)-C(17)	1.533(6)
N(15)-C(14)	1.355(5)	C(19)-C(20)	1.380(6)
N(15)-C(16)	1.472(5)	C(19)-C(24)	1.387(6)
N(15)-C(11)	1.491(5)	C(20)-C(21)	1.378(6)
N(35)-C(34)	1.370(7)	C(21)-C(22)	1.374(9)
N(35)-C(31)	1.468(6)	C(22)-C(23)	1.363(9)
N(35)-C(36)	1.481(6)	C(23)-C(24)	1.399(9)
C(1)-C(6)	1.380(6)	C(31)-C(32)	1.549(7)
C(1)-C(2)	1.395(6)	C(32)-C(33)	1.516(9)
C(1)-C(11)	1.503(6)	C(33)-C(34)	1.535(8)
C(2)-C(3)	1.381(6)	C(36)-C(39)	1.516(6)
C(3)-C(4)	1.389(7)	C(36)-C(37)	1.529(7)
C(3)-C(31)	1.533(7)	C(39)-C(44)	1.360(7)
C(4)-C(5)	1.373(9)	C(39)-C(40)	1.397(7)
C(5)-C(6)	1.386(8)	C(40)-C(41)	1.383(8)

C(41)-C(42)	1.338(12)	O(18)-C(17)-C(16)	115.9(4)
C(42)-C(43)	1.338(11)	C(20)-C(19)-C(24)	118.7(4)
C(43)-C(44)	1.346(8)	C(20)-C(19)-C(16)	122.2(3)
		C(24)-C(19)-C(16)	119.1(4)
C(31)-O(38)-C(37)	104.5(3)	C(21)-C(20)-C(19)	120.4(5)
C(14)-N(15)-C(16)	128.4(3)	C(22)-C(21)-C(20)	121.0(6)
C(14)-N(15)-C(11)	112.3(3)	C(23)-C(22)-C(21)	119.5(5)
C(16)-N(15)-C(11)	117.4(3)	C(22)-C(23)-C(24)	120.2(5)
C(34)-N(35)-C(31)	114.0(4)	C(19)-C(24)-C(23)	120.3(6)
C(34)-N(35)-C(36)	126.9(4)	O(38)-C(31)-N(35)	103.8(3)
C(31)-N(35)-C(36)	109.0(4)	O(38)-C(31)-C(3)	112.1(4)
C(6)-C(1)-C(2)	117.5(4)	N(35)-C(31)-C(3)	112.6(3)
C(6)-C(1)-C(11)	123.2(4)	O(38)-C(31)-C(32)	111.2(4)
C(2)-C(1)-C(11)	119.2(3)	N(35)-C(31)-C(32)	103.0(4)
C(3)-C(2)-C(1)	122.0(4)	C(3)-C(31)-C(32)	113.5(4)
C(2)-C(3)-C(4)	119.0(5)	C(33)-C(32)-C(31)	104.7(4)
C(2)-C(3)-C(31)	121.5(4)	C(32)-C(33)-C(34)	103.1(5)
C(4)-C(3)-C(31)	119.5(4)	O(34)-C(34)-N(35)	125.3(5)
C(5)-C(4)-C(3)	119.8(5)	O(34)-C(34)-C(33)	128.4(5)
C(4)-C(5)-C(6)	120.5(4)	N(35)-C(34)-C(33)	106.3(5)
C(1)-C(6)-C(5)	121.1(5)	N(35)-C(36)-C(39)	113.5(4)
N(15)-C(11)-C(1)	112.1(3)	N(35)-C(36)-C(37)	101.0(3)
N(15)-C(11)-C(12)	101.9(3)	C(39)-C(36)-C(37)	116.8(5)
C(1)-C(11)-C(12)	114.4(3)	O(38)-C(37)-C(36)	106.3(4)
C(13)-C(12)-C(11)	104.3(3)	C(44)-C(39)-C(40)	117.4(5)
C(14)-C(13)-C(12)	104.6(3)	C(44)-C(39)-C(36)	124.0(5)
O(14)-C(14)-N(15)	126.5(5)	C(40)-C(39)-C(36)	118.5(5)
O(14)-C(14)-C(13)	124.3(4)	C(41)-C(40)-C(39)	118.7(6)
N(15)-C(14)-C(13)	109.1(4)	C(42)-C(41)-C(40)	121.9(7)
N(15)-C(16)-C(19)	111.1(3)	C(43)-C(42)-C(41)	118.4(7)
N(15)-C(16)-C(17)	115.3(3)	C(42)-C(43)-C(44)	121.9(7)
C(19)-C(16)-C(17)	112.6(3)	C(43)-C(44)-C(39)	121.5(6)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **18**. The anisotropic displacement factor exponent takes the form: -2 2 [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

111	1122	1,133	1,23	113	112
0	U	0	0	0	0

O(14)	127(3)	36(2)	97(3)	5(2)	8(2)	3(2)
O(18)	93(3)	74(2)	88(2)	31(2)	1(2)	25(2)
O(34)	66(2)	99(3)	124(3)	-21(3)	-10(2)	18(2)
O(38)	135(3)	54(2)	79(2)	-4(2)	37(2)	-35(2)
N(15)	49(2)	35(1)	55(2)	-4(1)	7(1)	0(1)
N(35)	62(2)	55(2)	61(2)	-9(2)	7(2)	-11(2)
C(1)	66(2)	38(2)	39(2)	1(2)	-2(2)	11(2)
C(2)	66(2)	28(2)	47(2)	4(1)	4(2)	1(2)
C(3)	83(3)	32(2)	52(2)	-1(2)	1(2)	-11(2)
C(4)	107(4)	33(2)	82(3)	5(2)	-6(3)	-8(3)
C(5)	120(5)	32(2)	84(3)	-2(2)	-20(3)	20(3)
C(6)	81(3)	49(2)	67(3)	-13(2)	-13(2)	20(2)
C(11)	45(2)	49(2)	49(2)	-2(2)	1(2)	2(2)
C(12)	62(2)	74(3)	53(2)	-12(2)	0(2)	-12(3)
C(13)	77(3)	59(2)	81(3)	-23(2)	16(3)	-22(3)
C(14)	62(3)	42(2)	79(3)	-7(2)	17(2)	-7(2)
C(16)	56(2)	39(2)	51(2)	2(2)	1(2)	-4(2)
C(17)	59(3)	76(3)	69(3)	8(2)	-6(2)	10(2)
C(19)	69(2)	37(2)	48(2)	7(2)	4(2)	11(2)
C(20)	55(2)	68(3)	54(2)	5(2)	6(2)	6(2)
C(21)	67(3)	96(4)	79(3)	17(3)	17(3)	23(3)
C(22)	110(5)	88(4)	82(4)	21(3)	37(4)	46(4)
C(23)	145(6)	60(3)	80(3)	-13(3)	31(4)	21(4)
C(24)	112(4)	44(2)	73(3)	-10(2)	13(3)	-4(3)
C(31)	81(3)	49(2)	58(2)	-6(2)	18(2)	-21(2)
C(32)	76(3)	83(4)	77(3)	-29(3)	11(3)	-26(3)
C(33)	69(3)	113(5)	90(4)	-24(4)	-12(3)	10(4)
C(34)	50(2)	84(3)	87(3)	-16(3)	0(3)	-1(3)
C(36)	77(3)	60(2)	68(3)	-17(2)	29(3)	-19(3)
C(37)	165(6)	59(3)	56(3)	1(2)	23(3)	-22(4)
C(39)	60(2)	52(2)	65(2)	-12(2)	13(2)	0(2)
C(40)	79(3)	58(3)	115(4)	10(3)	-13(3)	-5(3)
C(41)	115(5)	44(3)	179(7)	6(4)	-4(6)	-18(3)
C(42)	92(4)	95(5)	160(7)	-71(5)	14(5)	-26(4)
C(43)	96(4)	106(5)	91(4)	-36(4)	-3(4)	-25(4)
C(44)	95(4)	87(4)	71(3)	-25(3)	-1(3)	-8(4)

Table 5. Hydrogen bonds for 18 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(18)-H(18)O(14)	0.82	1.88	2.631(6)	151.4

Fig S5 ORTEP view of molecular structure of 21.

Table 1. Crystal data and structure refinement for 2	1.		
Identification code	Jb82		
Empirical formula	C14 H16 N2 O2		
Formula weight	244.29		
Temperature	294(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21		
Unit cell dimensions	a = 5.559(6) Å	= 90°.	
	b = 8.894(4) Å	= 92.64(6)°.	
	c = 12.507(6) Å	= 90°.	
Volume	617.7(8) Å ³		
Z	2		
Density (calculated)	1.313 Mg/m ³		
Absorption coefficient	0.089 mm ⁻¹		
F(000)	260		
Crystal size	0.38 x 0.24 x 0.23 mm ³		
Theta range for data collection	1.63 to 25.98°.		
Index ranges	-6<=h<=6, -10<=k<=10, 0<=l<=1	5	
Reflections collected	2410		
Independent reflections	2410		
Completeness to theta = 25.98°	100.0 %		
Max. and min. transmission	0.9798 and 0.9669		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	2410 / 1 / 163		
Goodness-of-fit on F ²	0.869		
nal R indices [I>2sigma(I)] R1 = 0.0630, wR2 = 0.1355			
R indices (all data)	R1 = 0.1612, wR2 = 0.1654		
-----------------------------	------------------------------------		
Largest diff. peak and hole	0.172 and -0.148 e.Å ⁻³		

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for **21**. U(eq) is defined as one third of the trace of the orthogonalized U^{jj} tensor.

	х	У	Z	U(eq)
C(1)	5753(10)	10171(7)	2717(4)	52(1)
C(2)	3999(10)	9372(6)	2120(4)	51(2)
C(3)	2096(10)	10164(6)	1645(4)	58(2)
C(4)	1936(10)	11703(6)	1747(4)	58(2)
C(5)	3646(10)	12463(6)	2365(4)	53(2)
C(6)	5540(9)	11760(6)	2862(4)	45(1)
C(21)	4334(11)	7709(6)	1920(5)	60(2)
C(23)	1587(10)	5932(7)	1199(5)	56(1)
C(24)	3469(12)	6077(9)	409(5)	96(2)
C(25)	5007(13)	7336(6)	775(6)	90(2)
C(61)	7401(9)	12557(6)	3579(4)	51(1)
C(63)	8382(10)	15094(7)	3977(4)	56(2)
C(64)	7894(11)	14326(6)	5018(4)	65(2)
C(65)	6453(10)	12946(6)	4691(4)	62(2)
N(22)	2088(8)	6865(5)	2011(4)	62(1)
N(62)	8005(8)	14070(5)	3196(3)	55(1)
O(23)	-139(8)	5043(5)	1133(3)	74(1)
O(63)	9095(8)	16380(4)	3846(3)	74(1)

Table 3. Bond lengths [Å] and angles [°] for 21.

C(1)-C(2)	1.395(8)	C(21)-C(25)	1.533(8)
C(1)-C(6)	1.430(7)	C(23)-O(23)	1.243(6)
C(2)-C(3)	1.382(7)	C(23)-N(22)	1.331(7)
C(2)-C(21)	1.513(7)	C(23)-C(24)	1.477(8)
C(3)-C(4)	1.378(7)	C(24)-C(25)	1.469(8)
C(4)-C(5)	1.374(7)	C(61)-N(62)	1.473(7)
C(5)-C(6)	1.351(7)	C(61)-C(65)	1.549(8)
C(6)-C(61)	1.514(7)	C(63)-O(63)	1.224(6)
C(21)-N(22)	1.466(7)	C(63)-N(62)	1.345(6)

C(63)-C(64)	1.505(7)	O(23)-C(23)-N(22)	125.5(5)
C(64)-C(65)	1.512(7)	O(23)-C(23)-C(24)	125.4(6)
		N(22)-C(23)-C(24)	109.1(5)
C(2)-C(1)-C(6)	120.7(6)	C(25)-C(24)-C(23)	106.1(6)
C(3)-C(2)-C(1)	118.2(6)	C(24)-C(25)-C(21)	107.0(5)
C(3)-C(2)-C(21)	121.7(6)	N(62)-C(61)-C(6)	113.3(4)
C(1)-C(2)-C(21)	119.8(6)	N(62)-C(61)-C(65)	100.4(4)
C(4)-C(3)-C(2)	121.2(6)	C(6)-C(61)-C(65)	112.7(4)
C(5)-C(4)-C(3)	119.7(6)	O(63)-C(63)-N(62)	125.2(5)
C(6)-C(5)-C(4)	122.4(5)	O(63)-C(63)-C(64)	127.7(5)
C(5)-C(6)-C(1)	117.8(6)	N(62)-C(63)-C(64)	107.0(5)
C(5)-C(6)-C(61)	123.6(5)	C(63)-C(64)-C(65)	104.4(4)
C(1)-C(6)-C(61)	118.6(6)	C(64)-C(65)-C(61)	103.0(4)
N(22)-C(21)-C(2)	112.1(5)	C(23)-N(22)-C(21)	114.1(5)
N(22)-C(21)-C(25)	102.0(5)	C(63)-N(62)-C(61)	114.4(4)
C(2)-C(21)-C(25)	113.8(5)		

Table 4. Anisotropic displacement parameters (Å²x 10³) for **21**. The anisotropic displacement factor exponent takes the form: -2 2 [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
55(3)	55(4)	48(3)	5(3)	9(3)	-1(3)
49(3)	54(4)	51(3)	-13(3)	7(3)	-1(3)
58(4)	56(4)	62(4)	-6(3)	6(3)	0(3)
59(4)	54(4)	61(4)	-8(3)	-10(3)	15(3)
58(3)	40(3)	60(4)	0(3)	-1(3)	7(3)
46(3)	45(3)	46(3)	3(3)	4(3)	-6(3)
62(4)	47(4)	72(4)	2(3)	3(3)	2(3)
67(4)	48(3)	53(3)	12(3)	-2(3)	-7(3)
96(5)	122(6)	74(4)	-18(5)	25(4)	-37(5)
109(6)	57(4)	107(6)	-27(4)	58(5)	-12(4)
51(3)	48(3)	53(3)	-3(3)	5(3)	-10(3)
61(4)	56(4)	52(4)	-2(3)	-2(3)	-11(3)
82(4)	54(4)	61(4)	-7(3)	9(3)	-3(3)
69(4)	58(4)	59(4)	4(3)	7(3)	-9(3)
75(3)	56(3)	56(3)	-16(3)	12(3)	-17(3)
	U ¹¹ 55(3) 49(3) 58(4) 59(4) 58(3) 46(3) 62(4) 67(4) 96(5) 109(6) 51(3) 61(4) 82(4) 69(4) 75(3)	U^{11} U^{22} 55(3)55(4)49(3)54(4)58(4)56(4)59(4)54(4)58(3)40(3)46(3)45(3)62(4)47(4)67(4)48(3)96(5)122(6)109(6)57(4)51(3)48(3)61(4)56(4)82(4)54(4)69(4)58(4)75(3)56(3)	U^{11} U^{22} U^{33} 55(3)55(4)48(3)49(3)54(4)51(3)58(4)56(4)62(4)59(4)54(4)61(4)58(3)40(3)60(4)46(3)45(3)46(3)62(4)47(4)72(4)67(4)48(3)53(3)96(5)122(6)74(4)109(6)57(4)107(6)51(3)48(3)53(3)61(4)56(4)52(4)82(4)54(4)61(4)69(4)58(4)59(4)75(3)56(3)56(3)	U^{11} U^{22} U^{33} U^{23} 55(3)55(4)48(3)5(3)49(3)54(4)51(3)-13(3)58(4)56(4)62(4)-6(3)59(4)54(4)61(4)-8(3)58(3)40(3)60(4)0(3)46(3)45(3)46(3)3(3)62(4)47(4)72(4)2(3)67(4)48(3)53(3)12(3)96(5)122(6)74(4)-18(5)109(6)57(4)107(6)-27(4)51(3)48(3)53(3)-3(3)61(4)56(4)52(4)-2(3)82(4)54(4)61(4)-7(3)69(4)58(4)59(4)4(3)75(3)56(3)56(3)-16(3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

N(62)	70(3)	47(3)	48(3)	-2(2)	1(2)	-14(2)
O(23)	86(3)	69(3)	65(3)	-5(2)	-6(2)	-23(3)
O(63)	98(3)	56(3)	68(3)	-2(2)	17(2)	-25(2)

Table 5. Hydrogen bonds for 21 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(22)-H(22)O(63)#1	0.86	2.11	2.928(6)	159.7
N(62)-H(62)O(23)#2	0.86	2.15	2.952(6)	155.6

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y-1,z #2 x+1,y+1,z

6. ¹³C NMR and ¹H NMR spectra for compounds 1-7 and 9-22

Ethyl γ -oxo-2-pyridinebutanoate (1a)

Ethyl γ -oxo-2-pyridinebutanoate (1a)

 γ -Oxo-2-pyridinebutanoic acid (1b)

 γ -Oxo-2-pyridinebutanoic acid (1b)

—2.81

Diethyl γ , γ '-dioxo-2,6-pyridinedibutanoate (2a)

Diethyl γ , γ '-dioxo-2,6-pyridinedibutanoate (2a)

 γ,γ '-Dioxo-2,6-pyridinedibutanoic acid (2b)

 γ,γ '-Dioxo-2,6-pyridinedibutanoic acid (2b)

Diethyl δ , δ '-dioxo-2,6-pyridinedipentanoate (3a)

Diethyl δ , δ '-dioxo-2,6-pyridinedipentanoate (3a)

 δ, δ' -Dioxo-2,6-pyridinedipentanoic acid (3b)

--2.44

 δ, δ' -Dioxo-2,6-pyridinedipentanoic acid (3b)

Diethyl δ , δ '-dioxo-1,3-benzenedibutanoate (4a)

Diethyl δ , δ '-dioxo-1,3-benzenedibutanoate (4a)

1,3-Bis[1-oxo-3-(dimethylamino)propyl]benzene dihydrochloride (5)

1,3-Bis[1-oxo-3-(dimethylamino)propyl]benzene dihydrochloride (5)

 γ,γ '-Dioxo-1,3-benzenedibutanenitrile (6)

Supplementary Material (ESI) for Organic & Biomoleculars Chemistry This journal is (c) The Royal Society of Chemistry 2010

 γ,γ '-Dioxo-1,3-benzenedibutanenitrile (6)

 γ,γ '-Dioxo-1,3-benzenedibutanoic acid (4b)

 γ,γ '-Dioxo-1,3-benzenedibutanoic acid (4b)

(3R,7aR)-5-Oxo-3-phenyl-7a-(2-pyridyl)-2,3,5,7,7a-hexahydropyrrolo[2,1-b]oxazole (7)

(3R,7aR)-5-Oxo-3-phenyl-7a-(2-pyridyl)-2,3,5,7,7a-hexahydropyrrolo[2,1-b]oxazole (7)

(3R,3'R,7aR,7a'R)-2,6-Bis(5-oxo-3-phenyl-2,3,5,6,7,7a-hexahydropyrrolo[2,1-b]oxazol-7a-yl)pyridine (9)

(3R,3'R,7aR,7a'R)-2,6-Bis(5-oxo-3-phenyl-2,3,5,6,7,7a-hexahydropyrrolo[2,1-*b*]oxazol-7a-yl)pyridine (9)

(3*R*,3'*R*,7a*R*,7a'*R*)-2,6-Bis(5-oxo-3-phenyl-2,3,5,6,7,7a-hexahydropyrrolo[2,1-*b*]oxazol-7a-yl)pyridine (9)

(3R,3'R,8aR,8a'R)-2,6-Bis(5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5*H*-oxazolo[3,2-*a*]pyrid-8a-yl)pyridine (10)

(3R,3'R,8aR,8a'R)-2,6-Bis(5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5*H*-oxazolo[3,2-*a*]pyrid-8a-yl)pyridine (10)

(3R,3'R,8aR,8a'R)-2,6-Bis(5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5*H*-oxazolo[3,2-*a*]pyrid-8a-yl)pyridine (10)

1.521.41 1.40 1.39

(3R,3'R,8aR,8a'R)-2,6-Bis(5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5*H-*oxazolo[3,2-*a*]pyrid-8a-yl)pyridine (10)

(3R,3'R,7aR,7a'R)-1,3-Bis(5-oxo-3-phenyl-2,3,5,6,7,7a-hexahydropyrrolo[2,1-b]oxazol-7a-yl)benzene (11)

(3R,3'R,7aR,7a'R)-1,3-Bis(5-oxo-3-phenyl-2,3,5,6,7,7a-hexahydropyrrolo[2,1-b]oxazol-7a-yl)benzene (11)

(3R,3'R,7aR,7a'R)-1,3-Bis(5-oxo-3-phenyl-2,3,5,6,7,7a-hexahydropyrrolo[2,1-b]oxazol-7a-yl)benzene (11)

(3*R*,3'*R*,7a*R*,7a'*R*)-1,3-Bis(5-oxo-3-phenyl-2,3,5,6,7,7a-hexahydropyrrolo[2,1-*b*]oxazol-7a-yl)benzene (11)

(5S)-1-[(1R)-2-Hydroxy-1-phenylethyl]-5-phenyl-2-pyrrolidone (12)

 $\overbrace{1.95}^{1.98}$

(5S)-1-[(1R)-2-Hydroxy-1-phenylethyl]-5-phenyl-2-pyrrolidone (12)

(5S)-1-[(1R)-2-Chloro-1-phenylethyl]-5-phenyl-2-pyrrolidone (13)

(5S)-1-[(1R)-2-Chloro-1-phenylethyl]-5-phenyl-2-pyrrolidone (13)

(S)-5-Phenyl-1-(1-phenylvinyl)-2-pyrrolidone (14)

(S)-5-Phenyl-1-(1-phenylvinyl)-2-pyrrolidone (14)

(S)-5-Phenyl-2-pyrrolidone (15)

(S)-5-Phenyl-2-pyrrolidone (15)

Supplementary Material (Eᢒɬ) for Organic & BiomolegularyChemistry This journal is (c) The Royal Society of Chemistry 2010

(5S,5'S)-1,3-Bis{1-[(1R)-2-hydroxy-1-phenylethyl]-2-oxo-5-pyrrolidinyl}benzene (17)

(5S,5'S)-1,3-Bis{1-[(1R)-2-hydroxy-1-phenylethyl]-2-oxo-5-pyrrolidinyl}benzene (17)

(3*R*,7a*R*)-1-{5-oxo-3-phenyl-2,3,5,6,7,7a-hexahydropyrrolo[2,1-*b*]oxazol-7a-yl}-3-(5*S*)-{(1*R*)-2-hydroxy-1-phenylethyl]-2-oxo-5-pyrrolidinyl}benzene (18)

 $(3R,7aR)-1-\{5-0xo-3-phenyl-2,3,5,6,7,7a-hexahydropyrrolo[2,1-b]oxazol-7a-yl\}-3-(5S)-\{(1R)-2-hydroxy-1-phenylethyl]-2-oxo-5-nds-2-n$ pyrrolidinyl}benzene (18)

(3*R*,7*aR*)-1-{5-oxo-3-phenyl-2,3,5,6,7,7*a*-hexahydropyrrolo[2,1-*b*]oxazol-7*a*-yl}-3-(5*S*)-{(1*R*)-2-hydroxy-1-phenylethyl]-2-oxo-5-pyrrolidinyl}benzene (18)

(3*R*,7a*R*)-1-{5-oxo-3-phenyl-2,3,5,6,7,7a-hexahydropyrrolo[2,1-*b*]oxazol-7a-yl}-3-(5*S*)-{(1*R*)-2-hydroxy-1-phenylethyl]-2-oxo-5pyrrolidinyl}benzene (18)

(5S,5'S)-1,3-Bis{1-[(1R)-2-chloro-1-phenylethyl]-2-oxo-5-pyrrolidinyl}benzene (19)

Supplementation to the Reversion of Chemistry 2010 $<^{1.91}_{1.90}$

 $\sim^{7.26}_{7.13}$

(5S,5'S)-1,3-Bis{1-[(1R)-2-chloro-1-phenylethyl]-2-oxo-5-pyrrolidinyl}benzene (19)

(5S,5'S)-1,3-Bis[1-(1-phenylvinyl)-2-oxo-5-pyrrolidinyl]benzene (20)

(5S,5'S)-1,3-Bis[1-(1-phenylvinyl)-2-oxo-5-pyrrolidinyl]benzene (20)

(5S,5'S)-1,3-Bis(2-oxo-5-pyrrolidinyl)benzene (21)

(5S,5'S)-1,3-Bis(2-oxo-5-pyrrolidinyl)benzene (21)

(2S)-1,3-Di(pyrrolidinyl)benzene (22)

Supplementary Material (ES) for Organic & Biomolecomar Ogemistry This journal is (c) The Royal Society of Chemistry 2010

(2S)-1,3-Di(pyrrolidinyl)benzene (22)