Supplementary Information

Transannular dipolar cycloaddition as an approach towards the synthesis of the core ring system of the sarain alkaloids

Andrew I. Franklin, David Bensa, Harry Adams and Iain Coldham*

Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K. i.coldham@sheffield.ac.uk

Contents

1.	Experimental procedures and compound characterization data for the	
	OBn analogs of the OPMB compounds 15–18 and the cycloadduct	
	from 19 + hydroxylamine	1
2.	X-ray structure analysis for compounds 8 and 23	4
3.	NMR spectra for 8–23	9

1. Experimental procedures and compound characterization data for the OBn analogs of the OPMB compounds 15–18 and the cycloadduct from 19 + hydroxylamine

We provide here, procedures and spectroscopic data for the compounds (not drawn in the main manuscript) from the oxazolidinone 9 to the aldehyde 21. These are the OBn analogs of the OPMB compounds 15–18.

(*S*)-4-[(*R*)-1-(Benzyloxy)pent-4-en-2-yl]-3-(but-3-enyl)oxazolidin-2-one (OBn analog of the OPMB compound 15). NaOH (1.76 g, 44 mmol), K₂CO₃ (1.78 g, 12.9 mmol) and *n*-Bu₄NHSO₄ (0.21 g, 0.6 mmol) were added to the oxazolidinone **9** (1.53 g, 5.86 mmol) in PhMe (31 mL). To this mixture was added 4-bromo-1-butene (1.84 mL, 17.6 mmol) and the mixture was heated under reflux. After 1 h, water (50 mL) was added and the mixture was extracted with Et₂O (3 × 100 mL). The organic layers were dried (MgSO₄) and evaporated to give the diene (OBn analog of the OPMB compound **15**) (1.5 g, 82%) as an oil; $[\alpha]^{20}_{D}$ 9.4 (3.5, CH₂Cl₂); v_{max}/cm^{-1} 1740, 1640; ¹H NMR (500 MHz, C₆D₆) δ = 7.20–7.11 (m, 5H), 5.66 (ddt, 1H, *J* 17, 10, 7 Hz), 5.52–5.44 (m, 1H), 5.02–4.89 (m, 4H), 4.15 (d, 1H, *J* 12 Hz), 4.09 (d, 1H, *J* 12 Hz), 3.86–3.78 (m, 2H), 3.65 (ddd, 1H, *J* 9, 6, 3.5 Hz), 3.49 (dt, 1H, *J* 14, 8 Hz), 3.05 (dd, 1H, *J* 10, 4 Hz), 2.98 (dd, 1H, *J* 10, 6 Hz) 2.78 (ddd, 1H, *J* 14, 8, 6 Hz), 2.17–2.14

(m, 2H), 1.94–1.90 (m, 1H), 1.78–1.72 (m, 1H), 1.64–1.58 (m, 1H); ¹³C NMR (125 MHz, C₆D₆) δ = 158.2, 138.4, 136.1, 135.4, 128.6, 128.2, 127.7, 116.9, 116.8, 73.3, 69.1, 63.6, 56.4, 41.5, 38.9, 32.1, 28.9; HRMS (ES) found 338.1746, C₁₉H₂₅NO₃Na requires (MNa) 338.1732; *m/z* (ES) 338 (100%), 316 (5).

(10R,10aS,Z)-10-(Benzyloxy)methyl-5,6,10,10a-tetrahydro-1H-oxazolo[3,4-a]azocin-

3(*9H*)-one (OBn analog of the OPMB compound **16**). The diene above (OBn analog of the OPMB compound **15**) (543 mg, 1.72 mmol) was added to de–gassed dry PhMe (400 mL) at room temperature. Grubbs 2^{nd} generation ruthenium catalyst (48 mg, 0.057 mmol, 3.3 mol%) was added at 40 °C. After 1 h, further catalyst (48 mg, 0.057 mmol, 3.3 mol%) was added. After 1 h, further catalyst (48 mg, 0.057 mmol, 3.3 mol%) was added. After 1 h, further catalyst (48 mg, 0.057 mmol, 3.3 mol%) was added. After 1 h, further catalyst (48 mg, 0.057 mmol, 3.3 mol%) was added. After a further 1 h, DMSO (~ 0.5 mL) was added and the mixture was allowed to cool to room temperature. After 18 h, the solvent was evaporated, and the residue was purified by column chromatography on silica, eluting with EtOAc–petrol (1:4 to 2:5), to give the alkene (OBn analog of the OPMB compound **16**) (290 mg, 59%) as an oil; $[\alpha]^{20}_{D}$ 1.0 (6.0, CH₂Cl₂); v_{max} /cm⁻¹ 1740, 1670; ¹H NMR (500 MHz, C₆D₆) δ = 7.29–7.18 (m, 5H), 5.56–5.47 (m, 2H), 4.44 (d, 1H, *J* 12 Hz), 4.41 (d, 1H, *J* 12 Hz), 4.13–4.04 (m, 3H), 3.70 (ddd, 1H, *J* 14, 12, 5 Hz), 3.31 (dd, 1H, *J* 9.5, 6 Hz), 3.26 (dd, 1H, *J* 9.5, 7.5 Hz), 3.13 (ddd, 1H, *J* 14, 5, 4 Hz), 2.73–2.67 (m, 1H), 2.61–2.53 (m, 1H), 2.32–2.24 (m, 2H), 2.19–2.14 (m, 1H); ¹³C NMR (125 MHz, C₆D₆) δ = 159.4, 137.8, 129.6, 128.5, 127.9, 127.6, 125.7, 73.6, 70.7, 63.8, 57.5, 43.1, 39.7, 27.7, 26.7; HRMS (ES) found 288.1589, C₁₇H₂₂NO₃ requires (MH) 288.1600.

[(2*S***,3***R***,***Z***)-3-(Benzyloxy)methyl)-1,2,3,4,7,8-hexahydroazocin-2-yl]methanol** (OBn analog of the OPMB compound 17). NaOH (225 mg, 5.63 mmol) in ethanol (3.4 mL) and water (1.1 mL) was added to oxazolidinone above (OBn analog of the OPMB compound 16) (260 mg, 0.9 mmol) and the mixture was heated under reflux. After 16 h, CH₂Cl₂ (10 mL) was added and the mixture was washed with brine (3 × 10 mL). The organic layer was dried (MgSO₄) and the solvent was evaporated. Purification by column chromatography on silica, eluting with CH₂Cl₂–MeOH–NH₃ (95:5:1), gave the amine (OBn analog of the OPMB compound 17) (216 mg, 92%) as an oil; [α]²⁰_D –8.8 (1.7, CH₂Cl₂); $v_{max}/cm^{-1} 3325$, 3215; ¹H NMR (500 MHz, CDCl₃) δ = 7.38–7.29 (m, 5H), 5.83–5.77 (m, 1H), 5.73–5.68 (m, 1H), 4.49 (s, 2H), 3.5 (dd, 1H, *J* 9.5, 5 Hz), 3.46 (dd, 1H, *J* 9.5, 4, Hz), 3.40 (d, 2H, *J* 7 Hz), 3.06 (ddd, 1H, *J* 14, 6, 3.5 Hz), 2.89 (td, 1H, *J* 7, 4 Hz), 2.61–2.52 (m, 2H), 2.27–2.20 (m, 1H), 2.15–2.09 (m, 1H), 2.03–1.92 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ = 137.9, 130.4, 129.8, 128.5, 127.8, 127.7, 73.6, 71.5, 64.8, 59.6, 49.4, 41.9, 30.4, 28.5; HRMS (ES) found 262.1814, C₁₆H₂₄NO₂ requires (MH) 262.1807; *m*/z (ES) 284 (15%), 262 (100).

(2*S*,3*R*,*Z*)-*tert*-Butyl 3-[(Benzyloxy)methyl]-2-(hydroxymethyl)-3,4,7,8-

tetrahydroazocine-1(2*H*)-carboxylate (OBn analog of the OPMB compound 18). NaHCO₃ (174 mg, 2.07 mmol) in water (3 mL) was added to the amine above (OBn analog of the OPMB compound 17) (540 mg, 2.07 mmol) in dioxane (6.4 mL) at room temperature. After 10 min, further NaHCO₃ was added until the pH of the solution reached 10. To the mixture was added di–*tert*–butyldicarbonate (0.48 mL, 2.07 mmol). After 18 h, water (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 × 15 mL). The organic layers were dried (MgSO₄), evaporated and purified by column chromatography on silica, eluting with EtOAc–petrol (1:4 to 2:5), to give the carbamate (OBn analog of the OPMB compound 18) (648 mg, 87%) as an oil; $[\alpha]^{20}$ 5.4 (3.8, CH₂Cl₂); ν_{max} /cm⁻¹ 3430, 2925, 1690, 1665; ¹H NMR (500 MHz, CDCl₃) δ = 7.33–7.34 (m, 5H), 5.86–5.65 (m, 2H), 4.61–4.57 (m, 1H), 4.50–4.45 (m, 1H), 4.13–3.87 (m, 4H), 3.52–3.37 (m, 2H), 2.74–2.00 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ = 155.8, 138.5, 130.7, 129.3, 128.4, 127.8, 127.6, 79.5, 73.1, 72.3, 63.6, 61.9, 51.0, 43.6, 28.5, 28.5, 27.2; HRMS (ES) found 362.2334, C₂₁H₃₂NO₄ requires (MH) 362.2331; *m/z* (ES) 384 (100%) 362 (20).

Cycloadduct from 19 + hydroxylamine

NaHCO₃ (74 mg, 0.86 mmol) was added to the aldehyde **19** (73 mg, 0.19 mmol), and Nmethylhydroxylamine HCl (49 mg, 0.57 mmol) in EtOH (2 mL) and the mixture was heated in a sealed tube at 125 °C. After 4.5 h, the solvent was evaporated, H₂O (10 mL) was added and the mixture was extracted with EtOAc (3 \times 5 mL). The organic layers were dried (MgSO₄) and the solvent was evaporated. Purification by column chromatography on silica, eluting with EtOAc-petrol (1:4), gave the cycloadduct (OPMB analog of the OBn compound **22a**) (51 mg, 65%) as an oil; $\left[\alpha\right]^{22}$ 3.8 (4.0, CH₂Cl₂); v_{max}/cm^{-1} 2930, 2845, 1679; ¹H NMR (500 MHz, CDCl₃, mixture of rotamers) $\delta = 7.23$ (d, 2H, J 8 Hz), 6.86 (d, 2H, J 8 Hz), 4.49– 4.36 (m, 3.5H), 4.20-4.19 (m, 0.5H), 3.83-3.73 (m, 1H), 3.79 (s, 1.5H), 3.78 (s, 1.5H), 3.66-3.61 (m, 0.5H), 3.51-3.34 (m, 3.5H), 3.18-3.11 (m, 1H), 2.70 (s, 1.5H), 2.68 (s, 1.5H), 2.34-2.28 (m, 1H), 1.96–1.84 (m, 2H), 1.71–1.60 (m, 2H), 1.45 (s, 4.5H), 1.41 (s, 4.5H); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3, \text{mixture of rotamers}) \delta = 159.1, 159.0, 156.0, 155.6, 130.4, 130.2, 129.1,$ 129.0, 113.7, 113.6, 79.1, 79.0, 77.6, 77.3, 74.0, 73.6, 72.8, 72.7, 72.6, 71.6, 59.6, 59.1, 55.2, 55.1, 49.2, 49.0, 48.5, 48.4, 47.4, 46.8, 39.4, 38.3, 29.0, 28.7, 28.4, 28.37, 25.5, 25.1; HRMS (ES) found 419.2544, C₂₃H₃₅N₂O₅ requires (MH) 419.2546; m/z (ES) 441 (15%), 419 (98), 363 (100).

2. X-ray structure analysis for compounds 8 and 23

X-ray data for oxazolidinone 8.

Ball-and-stick representation of 8:

Thermal ellipsoid plot for 8:

Empirical formula	C8 H13 N O3		
Formula weight	171.19		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2 ₁		
Unit cell dimensions	a = 6.0046(14) Å	α= 90°.	
	b = 6.1040(14) Å	β= 103.144(4)°.	
	c = 12.099(3) Å	$\gamma = 90^{\circ}$.	
Volume	431.83(17) Å ³		
Ζ	2		
Density (calculated)	1.317 Mg/m ³		
Absorption coefficient	0.101 mm ⁻¹		
F(000)	184		
Crystal size	0.32 x 0.21 x 0.20 mm ³		
Theta range for data collection	1.73 to 27.53°.		
Index ranges	-7<=h<=7, -7<=k<=7, -15<=l<=15		
Reflections collected	4884		
Independent reflections	1080 [R(int) = 0.0246]		
Completeness to theta = 27.53°	99.6 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9802 and 0.9685		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	1080 / 1 / 109		
Goodness-of-fit on F ²	1.106		
Final R indices [I>2sigma(I)]	R1 = 0.0319, $wR2 = 0.0832$		
R indices (all data)	R1 = 0.0360, wR2 = 0.0855		
Absolute structure parameter	0(10)		
Largest diff. peak and hole	0.228 and -0.146 e.Å ⁻³		

For atomic coordinates, bond lengths and angles and displacement parameters, see data deposited at the Cambridge Crystallographic Data Centre. Structure number CCDC-791948.

X-ray data for amide 23.

Ball-and-stick representation of 23:

Thermal ellipsoid plot for **23**:

Empirical formula Formula weight Temperature Wavelength Crystal system

Space group

C30 H30 Br2 N2 O4 642.38 150(2) K 0.71073 Å Orthorhombic P2₁2₁2₁

Unit cell dimensions	a = 9.5861(10) Å	α= 90°.	
	b = 14.7570(15) Å	β= 90°.	
	c = 19.402(2) Å	$\gamma = 90^{\circ}$.	
Volume	2744.7(5) Å ³		
Ζ	4		
Density (calculated)	1.555 Mg/m ³		
Absorption coefficient	2.992 mm ⁻¹		
F(000)	1304		
Crystal size	0.26 x 0.11 x 0.09 mm ³		
Theta range for data collection	1.73 to 22.94°.		
Index ranges	-10<=h<=10, -16<=k<=14, -14<=l<=21		
Reflections collected	29383		
Independent reflections	3759 [R(int) = 0.1242]		
Completeness to theta = 22.94°	99.4 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7745 and 0.5100		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3759 / 0 / 344		
Goodness-of-fit on F ²	1.040		
Final R indices [I>2sigma(I)]	R1 = 0.0665, wR2 = 0.1502		
R indices (all data)	R1 = 0.1246, $wR2 = 0.1843$		
Absolute structure parameter	0.02(3)		
Largest diff. peak and hole	0.784 and -0.593 e.Å ⁻³		

The crystal was a poor diffractor and during data collection it decomposed; however the overall structure is clearly visible, sufficient to assign the regiochemistry in the cycloaddition reaction.

For atomic coordinates, bond lengths and angles and displacement parameters, see data deposited at the Cambridge Crystallographic Data Centre. Structure number CCDC-791949.

3. NMR spectra for 8–23

ppm (t1)

ppm (f1)

ppm (f1)

