Allosterically driven self-assemblies of interlocked calix[6]arene receptors

Stéphane Le Gac,^{*} Jean-François Picron, Olivia Reinaud and Ivan Jabin^{*}

Supporting information

Content

Figure S1. ¹H NMR spectrum (CDCl₃, 328 K, 400 MHz) of 7.

Figure S2. ¹³C NMR spectrum (CDCl₃, 328 K, 100 MHz) of 7.

Figure S3. 2D NMR COSY spectrum (CDCl₃, 328 K) of 7.

Figure S4. 2D NMR HMBC spectrum (CDCl₃, 328 K) of 7.

Figure S5. 2D NMR HSQC spectrum (CDCl₃, 328 K) of 7.

Figure S6. ¹H NMR spectrum (DMSO-d₆, 373 K, 400 MHz) of **8**.

Figure S7. ¹³C NMR spectrum (DMSO-d₆, 373 K, 100 MHz) of **8**.

Figure S8. 2D NMR COSY spectrum (DMSO-d₆, 373 K) of 8.

Figure S9. 2D NMR HMBC spectrum (DMSO-d₆, 373 K) of 8.

Figure S10. 2D NMR HSQC spectrum (DMSO-d₆, 373 K) of 8.

Figure S11. ¹H NMR spectra (CDCl₃, 298 K) of the host-guest complexes $3_{IMI}^{3H+,3TFA-}$ and $4_{PrNH3+}^{-6H+,5PrNH3+}$.

Figure S12. 2D NMR HMQC spectrum (2:1 $CD_3OD/CDCl_3$ solution, 298 K) of the host-guest complex $8_{DopaNH3+}^{-6H+,5DopaNH3+}$.

Figure S13. ¹H NMR spectra (2:1 $CD_3OD/CDCl_3$ solution, 298 K) of the host-guest complex $8^{-6H+,5tBuNH3+}_{TryptMeNH3+}$.

Figure S14. ¹H NMR spectra (CDCl₃) of $1_{IMI}^{3H+} \bullet 5_{PrNH3+}^{-3H+}$, Pic⁻, of $1_{IMI}^{3H+} \bullet 5_{PhCH2CH2NH3+}^{-3H+}$, Pic⁻ and of the assembly $1_{IMI}^{3H+} \bullet 5_{DopaMe2NH3+}^{-4H+}$.

Figure S15. 2D NMR COSY spectrum (CDCl₃, 298 K, selected area) of $1_{IMI}^{3H+} \bullet 5_{PhCH2CH2NH3+}^{-3H+}$, Pic⁻.

Figure S16. 2D NMR HMQC spectrum (CDCl₃, 298 K) of $\mathbf{1}_{IMI}^{3H+} \bullet \mathbf{5}_{PhCH2CH2NH3+}^{-3H+}$, Pic⁻.

Figure S17. 2D NMR COSY spectrum (CDCl₃, 298 K, selected area) of $1_{IMI}^{3H+} \bullet 5_{DopaMe2NH3+}^{-4H+}$.

Figure S18. 2D NMR HMQC spectrum (CDCl₃, 298 K) of $1_{IMI}^{3H+} \bullet 5_{DopaMe2NH3+}^{-4H+}$.

Figure S19. ¹H NMR spectra (CDCl₃, 298 K) of (a) $3_{IMI}^{3H+} \cdot 4_{PrNH3+}^{-3H+}$, Pic⁻, (b) $3_{IMI}^{3H+} \cdot 4_{PrNH3+}^{-4H+}$, (c) $3_{IMI}^{3H+} \cdot 2_{PrNH3+}^{-3H+}$, Pic⁻ and (d) $3_{IMI}^{3H+} \cdot Cl^{-} \cdot 2_{PrNH3+}^{-3H+}$.

Figure S20. ¹H NMR titration (CDCl₃, 298 K) of calix[6]hexa-acid **4** by PrNH₂.

Figure S1. ¹H NMR spectrum (CDCl₃, 328 K, 400 MHz) of **7**; s = solvent.

Figure S2. 13 C NMR spectrum (CDCl₃, 328 K, 100 MHz) of 7; s = solvent.

Figure S3. 2D NMR COSY spectrum (CDCl₃, 328 K) of 7.

Figure S4. 2D NMR HMBC spectrum (CDCl₃, 328 K) of 7.

Figure S5. 2D NMR HSQC spectrum (CDCl₃, 328 K) of 7.

Figure S6. ¹H NMR spectrum (DMSO-d₆, 373 K, 400 MHz) of **8** (s = solvent, g = residual grease).

Figure S7. 13 C NMR spectrum (DMSO-d₆, 373 K, 100 MHz) of 8 (s = solvent).

Figure S8. 2D NMR COSY spectrum (DMSO-d₆, 373 K) of 8.

Figure S9. 2D NMR HMBC spectrum (DMSO-d₆, 373 K) of 8.

Figure S10. 2D NMR HSQC spectrum (DMSO-d₆, 373 K) of 8.

Figure S11. ¹H NMR spectra (CDCl₃, 298 K) of the host-guest complexes (a) $3_{IMI}^{3H+,3TFA-}$ and (b) $4_{PrNH3+}^{-6H+,5PrNH3+}$. Ψ : IMI *in* or PrNH₃⁺ *in*; •: PrNH₂ *out*; S = solvent.

Figure S12. 2D NMR HMQC spectrum (2:1 $CD_3OD/CDCl_3$ solution, 298 K) of host-guest complex $8_{DopaMe2NH3+}^{-6H+,5DopaMe2NH3+}$.

Figure S13. ¹H NMR spectra (2:1 CD₃OD/CDCl₃ solution, 298 K) of host-guest complex $8_{TryptMeNH3+}^{-6H+,5tBuNH3+}$. S = solvent; w = water; $\mathbf{\nabla}$: *TryptMe in*; Δ : *TryptMe out* (16 equiv.); •: *t*BuNH₂ (20 equiv.); *: residual grease.

Figure S14. ¹H NMR spectra (CDCl₃) of (a) the assembly $\mathbf{1}_{IMI}^{3H+} \cdot \mathbf{5}_{PrNH3+}^{-3H+}$, **Pic**⁻ at 298 K, of the assembly $\mathbf{1}_{IMI}^{3H+} \cdot \mathbf{5}_{PhCH2CH2NH3+}^{-3H+}$, **Pic**⁻ at 298 K (b) and at 330 K (c), and of the assembly $\mathbf{1}_{IMI}^{3H+} \cdot \mathbf{5}_{DopaMe2NH3+}^{-4H+}$ at 298 K. S = solvent; Δ : IMI *in*; $\mathbf{\nabla}$: ammonium *in*.

Figure S15. 2D NMR COSY spectrum (CDCl₃, 298 K, selected area) of $1_{IMI}^{3H+} \bullet 5_{PhCH2CH2NH3+}^{-3H+}$, Pic⁻. S = solvent.

Figure S16. 2D NMR HMQC spectrum (CDCl₃, 298 K) of $1_{IMI}^{3H+} \bullet 5_{PhCH2CH2NH3+}^{-3H+}$, Pic⁻. S = solvent.

Figure S17. 2D NMR COSY spectrum (CDCl₃, 298 K, selected area) of $1_{IMI}^{3H+} \cdot 5_{DopaMe2NH3+}^{-4H+}$ S = solvent.

Figure S18. 2D NMR HMQC spectrum (CDCl₃, 298 K) of $1_{IMI}^{3H+} \bullet 5_{DopaMe2NH3+}^{-4H+}$. S = solvent.

Figure S19. ¹H NMR spectra (CDCl₃, 298 K) of (a) $3_{IMI}^{3H+} \cdot 4_{PrNH3+}^{-3H+}$, Pic⁻, (b) $3_{IMI}^{3H+} \cdot 4_{PrNH3+}^{-4H+}$, (c) $3_{IMI}^{3H+} \cdot 2_{PrNH3+}^{-3H+}$, Pic⁻ and (d) $3_{IMI}^{3H+} \cdot Cl^{-} \cdot 2_{PrNH3+}^{-3H+}$. S = solvent; W = water; Δ : IMI *in*; $\mathbf{\nabla}$: PrNH₃⁺ *in*; O: CON*H*Ph protons.

Figure S20. ¹H NMR titration of calix[6]hexa-acid **4** by PrNH₂ (CDCl₃, 298 K), showing the quantitative inclusion of the propylammonium ion upon addition of 3 equiv. of PrNH₂.