Supplementary Material (ESI) for Organic & Biomolecular Chemistry

Further Investigations into the N-Demethylation of Oripavine using Zero-valent Iron as a Redox Catalyst.

Gaik B. Kok and Peter J. Scammells*

Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia. *E-mail: peter.scammells@monash.edu; Fax: (+61) 3 9903 9582*

General Experim	S-2	
Synthesis of Ori	S-2	
General N-Deme	S-2	
Figure 1	Oripavine-N-oxide Hydrochloride (6) ¹ H NMR spectrum in D ₂ O	S-3
Figure 1A	Oripavine-N-oxide Hydrochloride (6) ¹ H NMR spectrum in D ₂ O (Expansion)	S-4
Figure 1B	Oripavine-N-oxide Hydrochloride (6) ¹ H NMR spectrum in D ₂ O (Expansion)	S-5
Figure 2	<i>N</i> -Nororipavine (7) Hydrochloride ¹ H NMR spectrum in D ₂ O	S-6
Figure 2A	<i>N</i> -Nororipavine (7) Hydrochloride ¹ H NMR spectrum in D ₂ O (Expansion)	S-7
Figure 2B	<i>N</i> -Nororipavine (7) Hydrochloride ¹ H NMR spectrum in D ₂ O (Expansion)	S-8
Figure 3	<i>N</i> -Nororipavine (7) Hydrochloride ¹ H NMR spectrum in D ₂ O+TFA	S-9
Figure 3A	<i>N</i> -Nororipavine (7) Hydrochloride ¹ H NMR spectrum in D ₂ O+TFA (Expansion)	S-10
Figure 3B	<i>N</i> -Nororipavine (7) Hydrochloride ¹ H NMR spectrum in D ₂ O+TFA (Expansion)	S-11
Figure 4	<i>N</i> -Nororipavine (7) Hydrochloride ¹³ C NMR spectrum in D ₂ O+TFA	S-12
Figure 4A	<i>N</i> -Nororipavine (7) Hydrochloride ¹³ C NMR spectrum in D ₂ O+TFA (Expansion)	S-13
Figure 4B	<i>N</i> -Nororipavine (7) Hydrochloride ¹³ C NMR spectrum in D ₂ O+TFA (Expansion)	S-14
Figure 5	N-Nororipavine (7) Hydrochloride High Resolution MS	S-15
Table A	Specifications for Iron Catalysts used	S-16

General Experimental

Stainless steel powders 303-L and 316-L were purchased from Alfa Aesar. Iron powder was from Höganäs Sweden. *m*-CPBA was purchased from Sigma-Aldrich. All reactions were conducted under an atmosphere of nitrogen. Chloroform and 2-propanol (Merck) were used as supplied. Both solvents were degassed before use: sonicated for 10 minutes under vacuum and then back-filled with nitrogen. Reactions were monitored using thin layer chromatography (TLC) with pre-coated Merck 5554 Kieselgel $60F_{254}$ aluminum plates using CHCl₃/MeOH/NH₄OH (170:30:1) as the mobile phase. The spots were visualized using both UV light and molybdate stain. ¹H and ¹³C NMR were recorded at 400 and 100 MHz, respectively. Chemical shifts (δ ppm) were referenced using solvent residual peaks.

Synthesis of Oripavine-N-oxide hydrochloride (6)

To a stirred solution of oripavine (1.92 g, 6.47 mmol) in CHCl₃ (200 mL) and MeOH (1 mL) at -20 °C was added *m*-CPBA (1.54 g of a max 77% reagent) portionwise over 10 min. The solution was then left to stir for a further 20 minutes. Ice-cold H₂O (100 mL) was added; the pH of the aqueous phase was adjusted to 2–3 via the addition of 10% HCl. The layers were separated; the aqueous phase was extracted with CHCl₃ (20 mL x 2), saturated with NaCl, and extracted with CHCl₃/2-propanol (3:1, 50 mL x 4). The CHCl₃/2-propanol (3:1) extracts were combined, dried (Na₂SO₄), filtered and concentrated to give **6** as an off-white solid, 2.43 g. ¹H NMR of the solid was consistent with the desired product **6** with approximately 0.5 molar equivalent of 2-propanol. This material was used in the subsequent step without further purification. ¹H NMR (D₂O) δ 6.80–6.70 (m, 2H), 6.08, 5.98 (each d, *J* = 6.7 Hz, 1H), 5.56, 5.55 (each s, 1H), 5.32, 5.29 (each d, *J* = 6.7 Hz, 1H), 4.79–4.74 (m, 1H), 3.85–3.57 (m, 9H), 3.33, 3.18 (each dd, *J* = 7.2, 1H), 2.70–2.47 (m, 1H), 2.18–1.98 (m, 1H).

General Procedure for N-Demethylation

To a mixture of oripavine-*N*-oxide hydrochloride (100 mg, 0.263 mmol) and iron powder (varying amounts; see Tables 1 and 2) was added solvent (10 mL). The reaction mixture was then stirred at the specified temperature until complete consumption of **6** (via TLC analysis). The mixture was concentrated to dryness and the remaining residue was subjected to column chromatography on silica gel. Elution with a gradient of CHCl₃/MeOH (24:1–17:3) gave oripavine followed by *N*-nororipavine, both as the corresponding hydrochloride.

The above procedure was repeated substituting iron powder with stainless steel powder 303-L or 316-L (see Table 3).

N-Nororipavine Hydrochloride (7·HCl): Off-white solid, mp >200 °C dec; $[\alpha]_D^{24}$ -188 (*c* 1.0, 10% HOAc); [lit.¹ $[\alpha]_D^{24}$ -194 (*c* 0.83, 10% HOAc)]; ¹H NMR (D₂O) δ 6.79–6.73 (m, 2H), 5.90 (d, *J* = 6.6 Hz, 1H), 5.50 (s, 1H), 5.25 (d, *J* = 6.6 Hz, 1H), 4.60 (d, *J* = 6.0, 1H), 3.64 (s, 3 H), 3.46–3.22 (m, 4H), 2.31 (ddd, *J* = 6.0, 13.3 and 13.3 Hz, 1H), 2.08–2.01 (m, 1H); ¹³C NMR (D₂O/CF₃CO₂D) δ 153.0, 142.8, 138.6, 132.0, 124.4, 124.2, 120.8, 117.3, 117.0, 96.1, 87.7, 55.1, 53.2, 44.6, 37.0, 33.5, 33.1; MS (ESI) *m/z* 284 [M+H]⁺; HRMS C₁₇H₁₈NO₃ calcd for [M+H]⁺ 284.1281, found 284.1287.

Figure 1. ¹H NMR of Oripavine-*N*-oxide Hydrochloride (6) in D₂O

Figure 1B. ¹H NMR of Oripavine-*N*-oxide Hydrochloride (6) in D₂O (Expansion)

Figure 2. ¹H NMR of *N*-Nororipavine (6) Hydrochloride in D₂O

Figure 2B. ¹H NMR of *N*-Nororipavine (7) Hydrochloride in D₂O (Expansion)

Figure 3A. ¹H NMR of *N*-Nororipavine (7) Hydrochloride in D₂O +TFA (Expansion)

Figure 3B. ¹H NMR of *N*-Nororipavine (7) Hydrochloride in D₂O +TFA (Expansion)

Figure 4A. ¹³C NMR of *N*-Nororipavine (7) Hydrochloride in D₂O + TFA (Expansion)

Figure 4B. ¹³C NMR of *N*-Nororipavine (7) Hydrochloride in D₂O + TFA (Expansion)

Table A. Specifications for Iron and Stainless Steel Catalysts

Catalyst	Supplier	Physical properties	Chemical analysis (%)						
			Fe	Cr	Ni	Мо	Mn	Si	Other
Iron(0)	Höganäs	Powder, +212 to	99	0.002	0.01	<5 ppm	0.04	0.13	Bal
	Sweden	-45 microns					(MnO)	(SiO ₂)	
303-L	Alfa Aesar	Powder, -140 mesh	70	17	13				
316-L	Alfa Aesar	Powder, -100 mesh	67.5	17	13	2.5			