Electronic Supplementary Information

Concise Syntheses of N-Aryl-5,6,7-trimethoxyindoles as Antimitoic and Vascular Disrupting Agents: Application of the Copper-mediated Ullmann-type Arylation.

Hsueh-Yun Lee, Jang-Yang Chang, Ling-Yin Chang, Wen-Yang Lai, Mei-Jung Lai, Kuang-Hsing Shih, Ching-Chuan Kuo, Chi-Yen Chang and Jing-Ping Liou

Contents:

General Procedures. (Chemistry and Biology)	ESI2
HPLC purity data for compounds 6-12.	ESI4
Spectral Data and Procedure of compounds 6-12 and 14-18	ESI12
References	ESI18
¹ H-NMR Spectra for compounds 6-12 and 14-18	ESI19

General. (A) **Chemistry.** Nuclear magnetic resonance (¹H NMR) spectra were obtained with Bruker DRX-500 spectrometer (operating at 500 MHz), with chemical shift in parts per million (ppm, δ) downfield from TMS as an internal standard. High-resolution mass spectra (HRMS) were measured with a JEOL (JMS-700) electron impact (EI) mass spectrometer. Purity of the final compounds were determined using an Agilent 1100 series HPLC system using C-18 column (Agilent ZORBAX Eclipse XDB-C18 5 µm. 4.6 mm × 150 mm) and were found to be \geq 95%. Flash column chromatography was done using silica gel (Merck Kieselgel 60, No. 9385, 230-400 mesh ASTM). All reactions were carried out under an atmosphere of dry nitrogen.

(B) **Biology.** (a) Materials. Regents for cell culture were obtained from Gibco-BRL Life Technologies (Gaitherburg, MD). Microtubule-associated protein (MAP)-rich tubulin was purchased from Cytoskeleton, Inc. (Denver, CO). [³H]Colchicine (specific activity, 60-87 Ci/mmol) was purchased from PerkinElmer Life Sciences (Boston, MA).

(b) Cell Growth Inhibitory Assay. Human oral epidermoid carcinoma KB cells, non small cell lung carcinoma H460 cells, colorectal carcinoma HT29 cells, and stomach carcinoma MKN45 cells were maintained in RPMI-1640 medium supplied with 5% fetal bovine serum. KB-VIN10 cells were maintained in growth medium supplemented with 10 nM vincristine, generated from vincristine-driven selection, and displayed overexpression of P-gp170/MDR. Cell in logarithmic phase were cultured at a density of 5000 cells/mL/well in a 24-well plate. KB-VIN10 cells were cultured in drug-free medium for 3 days prior to use. The cells were exposed to various concentrations of the test drugs for 72 h. The methylene blue dye assay was used to evaluate the effect of the test compounds on cell growth as described previously.¹ The IC₅₀ value resulting from 50% inhibition of cell growth was calculated graphically as a comparison with the control. Compounds were examined in at least three independent experiments, and the values shown for these compounds are the mean and standard deviation of these data.

(c) Tubulin Polymerization in Vitro Assay.^{2,3} Turbidimetric assays of microtubules were performed as described by Bollag et al.⁴ In brief, microtubule-associated protein (MAP)-rich tubulin (from bovine brain, Cytoskeleton, Denver, C.O.) had been dissolved in reaction buffer (100 mM PIPES (pH 6.9), 2 mM MgCl₂, 1 mM GTP) in

preparing of 4 mg/mL tubulin solution. Tubulin solution (240 μ g MAP-rich tubulin per well) was placed in 96-well microtiter plate in the presence of test compounds or 2% (v/v) DMSO as vehicle control. The increase in absorbance was measured at 350 nm in a PowerWave X Microplate Reader (BIO-TEK Instruments, Winooski, VT) at 37 °C and recorded every 30 s for 30 min. The area under the curve (AUC) used to determine the concentration that inhibited tubulin polymerization to 50% (IC₅₀). The AUC of the untreated control and 10 μ M of colchicine was set to 100% and 0% polymerization, respectively, and the IC₅₀ was calculated by nonlinear regression in at least three experiments.

(d) Tubulin Competition-Binding Scintillation Proximity Assay.⁵⁻⁷ This assay was performed in a 96-well plate. In brief, 0.08 (micro)M of [³H]colchicine was mixed with the test compound and 0.5 (micro)g special long-chain biotin-labeled tubulin (0.5 μ g) and then incubated in 100 μ l of reaction buffer (80 mM PIPES, pH 6.8, 1 mM EGTA, 10% glycerol, 1 mM MgCl₂, and 1 mM GTP) for 2h at 37°C. Then eighty (micro) g of Streptavidin-labeled SPA beads were added to each reaction mixture. Then the radioactive counts were directly measured by a scintillation counter.

(e) Capillary Disruption assays.⁸ Capillary disruption assays were carried out in a 96-well plate format using human umbilical vein endothelial cells (HUVECs) plated at 2×10^4 cells per well in 20% FBS M199 medium containing 20 ng/mL VEGF on a Matrigel layer (BD Biosciences). Capillaries were allowed to form over a 4-hour period before the addition of test compound or vehicle control. Images were acquired immediately following compound addition and 4 hours after exposure to test compound. Tube formation was quantified by measuring the network number of capillary structures manually by counting under microscope (original magnification 100X).

HPLC purity determination:

The percentage purity of compounds were determined by an Agilent 1100 series HPLC system using C18 column.

Elution conditions: Mobile phase A-Acetonitrile; Mobile phase B-Water containing 0.1% formic acid + 10 mmol NH4OAc. The flow-rate was 0.2 ml/min and the injection volume was 5 μ l. The system operated at 25 °C. Peaks were detected at 210 nm.

Time (min)	Mobile Phase A (ratio)	Mobile Phase B (ratio)
0	10	90
45	90	10
50	10	90
60	10	90

 Table 1. Elution condition

Table 2. Purity of compounds 6-12

C18 column: Agilent ZORBAX Eclipse XDB-C18 5µm. 4.6 mm × 150 mm column

Compounds	Retention time (min)	% Purity
6	30.63	99.28
7	39.29	99.76
8	39.62	95.12
9	32.64	100.00
10	32.19	99.56
11	42.7	100.00
12	38.67	99.02

Peak Quant	itation:	AREA
Calculatic	n Method:	AREA%

No.	RT	Area	Height	Conc 1
1 2 3	30.63 34.62 39.97	2709622 8139 11460	228648 796 1033	99.282 0.298 0.420
		2729221	230477	100.000

Processing Method: Purity 2007/12/24 Column Type: Column Method Developer: Bob Method Description: Peak Quantitation: AREA Calculation Method: AREA% Height Conc 1 No. RT Area 1370388 111186 99.761 39.29 1 0.239 2 41.67 3278 366 1373666 111552 100.000

Peak rejection level: 0

60

D-2000: Samples Series: 1244 Report Name: modified System: Sys 1 Hitachi D-2000 Elite HPLC System Manager Report Analyzed Date and Time: 2010/04/17 07:41 上午 Reported Date and Time: 2010/04/20 04:29 下午 Data Path: C:\Win32app\D2000HSM\samples\DATA\1244\ Processing Method: Purity 2007/12/24 Sample Name: MPTOB318-50 Nial Number: 14 Injection from this vial: 1 of 1 Sample Description:

Chrom Type: Fixed WL Chromatogram, 254 nm

Processing Method: Purity 2007/12/24 Column Type: Column Method Developer: Bob Method Description:

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Height	Conc 1
1	23.61	110111	9377	3.623
2	29.97	6009	537	0.198
3	39.62	2890839	228179	95.128
4	42.89	28473	2269	0.937
5	48.17	3453	350	0.114
		3038885	240712	100.000

Method Description: Peak Quantitation: AREA

Calculation Method: AREA%				
No.	RT	Area	Height	Conc 1
1	11.91	12616	1308	0.355
2	22.83	2944	273	0.083
3	32.19	3536448	276303	99.562
		3552008	277884	100.000

 D-2000: Samples Series: 1235
 Report Name: modified System: Sys 1

 Hitachi D-2000 Elite HPLC System Manager Report

 Analyzed Date and Time: 2010/04/10 11:58 上午

 Reported Date and Time: 2010/04/20 04:26 下午

 Data Path: C:\Win32app\D2000HSM\samples\DATA\1235\

 Processing Method: Purity 2007/12/24

 Sample Name: MPTOB300-50
 Vial Number: 20

 Injection from this vial: 1 of 1
 Volume: 20.0 ul

 Sample Description:
 Chrom Type: Fixed WL Chromatogram, 254 nm

Processing Method: Purity 2007/12/24 Column Type: Column Method Developer: Bob Method Description:

Peak Qua Calculat	Peak Quantitation: AREA Calculation Method: AREA%				
No.	RT	Area	Height	Conc 1	
1	42.70	408701	32222	100.000	
		408701	32222	100.000	

Processing Method: Purity 2007/12/24 Column Type: Column Method Description:

4 Method Developer: Bob

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Height	Conc 1
1	17.80	1829	209	0.099
2	23.15	5869	554	0.317
3	30.42	3663	454	0.198
4	33.30	5096	494	0.275
5	38.67	1835270	146254	99.020
6	49.66	1701	211	0.092
		1853428	148176	100.000

Spectral Data and Procedure of compounds 6-18.

2-Methoxy-5-(5,6,7-trimethoxy-indol-1-yl)-phenol (6)

To a solution of 5,6,7-trimethoxyindole (100 mg, 0.48 mmol), potassium carbonate (92 mg, 0.67 mmol) and copper (II) oxide (3.81 mg, 0.048 mmol) in DMF (3 mL), 5-iodo-2-methoxyphenol (288 mg, 1.15 mmol) was added and heated by microwave at 160 °C for 10 minutes. The reaction was quenched with water and extracted with ethyl acetate (20 mL x 3). The combined organic layer was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified with column chromatography to afford **6** as a yellow solid (14 mg, 9%; n-hexane/ethyl acetate = 3:1). mp 124.9- 126.5 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.51 (s, 3H), 3.88 (s, 3H) 3.91 (s, 3H), 3.95 (s, 3H), 5.69 (s, 1H), 6.49 (d, *J* = 3.0 Hz, 1H), 6.87-6.95 (m, 3H), 7.03-7.07 (m, 2H). MS (EI) m/z 329 (M⁺, 32%), 61 (100%). HRMS (EI) calcd for C₁₈H₁₉NO₅ (M⁺), 329.1263; found, 329.1263.

5,6,7-Trimethoxy-1'-methyl-1'H-[1,4']biindolyl (7)

To a solution of 5,6,7-trimethoxyindole (100 mg, 0.48 mmol), cesium carbonate (314 mg, 0.96 mmol) and copper (II) oxide (3.81 mg, 0.048 mmol) in DMF (3 mL), 4-bromo-N-methylindole (201 mg, 0.96 mmol) was added and heated to reflux for 48 hours. The reaction was quenched with water and extracted with ethyl acetate (20 mL x 3). The combined organic layer was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified with column chromatography to afford **7** as a white solid (8 mg, 4.9%; n-hexane/ethyl acetate = 2:1). mp 119.4-121.9 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.27 (s, 3H), 3.84 (s, 3H), 3.85 (s, 3H), 3.93 (s, 3H), 6.26 (d, *J* = 3.1 Hz,

1H), 6.57 (d, J = 3.0 Hz, 1H), 6.94 (s, 1H), 7.03 (d, J = 3.1 Hz, 1H), 7.19 (d, J = 7.2 Hz, 1H), 7.26-7.31 (m, 2H), 7.34 (d, J = 8.0 Hz, 1H). MS (EI) m/z 336 (M⁺, 100%). HRMS (EI) calcd for C₂₀H₂₀N₂O₃ (M⁺), 336.1474; found, 336.1475.

5,6,7-Trimethoxy-1'-methyl-1'H-[1,5']biindolyl (8)

To a solution of 5,6,7-trimethoxyindole (100 mg, 0.48 mmol), cesium carbonate (314 mg, 0.96 mmol) and copper (II) oxide (3.81 mg, 0.048 mmol) in DMF (3 mL), 5-bromo-N-methylindole (201 mg, 0.96 mmol) was added and heated to reflux for 48 hours. The reaction was quenched with water and extracted with ethyl acetate (20 mL x 3). The combined organic layer was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified with column chromatography to afford **8** as a white solid (12 mg, 7%; n-hexane/ethyl acetate = 3:1). mp 112.7-115.4 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.38 (s, 3H), 3.85 (s, 3H), 3.87 (s, 3H), 3.92 (s, 3H), 6.51 (s, 1H), 6.52 (s, 1H), 6.91 (s, 1H), 7.13 (d, *J* = 2.9 Hz, 1H), 7.14 (d, *J* = 2.8 Hz, 1H), 7.29~7.36 (m, 2H), 7.66 (s, 1H). MS (EI) m/z 207 (100%), 336 (M⁺, 27%). HRMS (EI) calcd for C₂₀H₁₈O₃N₂ (M⁺), 336.1474; found, 336.1476.

5-(5,6,7-Trimethoxy-indol-1-yl)-quinoline (9)

To a mixture of 5,6,7-trimethoxyindole (100 mg, 0.48 mmol), cesium carbonate (314 mg, 0.96 mmol) and copper (II) oxide (3.81 mg, 0.048 mmol) in DMF (3 mL), 5-iodo-2-methoxyphenol (288 mg, 1.15 mmol) was added and heated by microwave at 160 $^{\circ}$ C for 10 minutes. The reaction was quenched with water and extracted with ethyl acetate (20 mL x 3). The combined organic layer was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified with column chromatography to

afford **9** as a yellow solid (14 mg, 9%; n-hexane/ethyl acetate = 3:1). mp 135.9-137.4 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.13 (s, 3H), 3.80 (s, 3H), 3.94 (s, 3H), 6.64 (d, *J* = 3.07 Hz, 1H), 6.95 (s, 1H), 7.13 (d, *J* = 3.0 Hz, 1H), 7.40 (dd, *J* = 4.3, 8.3 Hz, 1H), 7.67 (d, *J* = 7.21 Hz, 1H), 7.81-7.87 (m, 2H), 8.35 (d, *J* = 8.3 Hz, 1H), 8.95 (d, *J* = 3.2 Hz, 1H). MS (EI) m/z 334 (M⁺,100%), 319 (82%). HRMS (EI) calcd for C₂₀H₁₈N₂O₃ (M⁺), 334.1317; found, 334.1315.

1-Quinolyl-5,6,7-trimethoxyindole (10)

To a solution of 5,6,7-trimethoxyindole (100 mg, 0.48 mmole), cesium carbonate (314 mg, 0.96 mmole) and copper (II) oxide (3.81 mg, 0.048 mmole) in DMF (3mL), 6-bromoquinoline (199 mg, 0.96 mmole) was added and refluxed for 2 days. The reaction was quenched with water and extracted with EtOAc (20 mL × 3). The combined organic layer was dried over anhydrous MgSO₄ and concentrated *in vacuo*. The residue was purified by flash column over silica gel to afford **10** (12 mg, 7%; n-hexane/ethyl acetate = 2:1) as a white solid; mp 123.3-125.4 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.42 (s, 3H), 3.91 (s, 3H), 3.94 (s, 3H), 6.61 (d, *J* = 3.0 Hz, 1H), 6.93 (s, 1H), 7.22 (d, *J* = 3.0 Hz, 1H), 7.46 (dd, *J* = 4.2, 8.2 Hz, 1H), 7.84-7.87 (m, 2H), 8.16-8.22 (m, 2H), 8.95 (dd, *J* = 1.5, 4.1 Hz, 1H). MS (EI) m/z 334 (M⁺, 100%). HRMS (EI) calcd for C₂₀H₁₈O₃N₂ (M⁺), 334.1317; found, 334.1317.

1-(4'-Methylbenzyl)-5,6,7-trimethoxyindole (11)

5,6,7-trimethoxy-1-(4-methylbenzyl)-1H-indole

A solution of 5,6,7-trimethoxyindole (100 mg, 0.48 mmol), KOH (40 mg, 0.72 mmol) and KI (79 mg, 0.48 mmol) in DMF (2 mL) was stirred at room temperature for 30 minutes. To the solution, 4-methylbenzyl bromide (222 mg, 1.2 mmol) was added and

stirred for 1.5 hours. The reaction was quenched with water and extracted by ethyl acetate (10 mL x 3). The combined organic layer was dried over anhydrous MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography to afford **11** as a yellow liquid (59 mg, 40%; n-hexane/ethyl acetate = 6:1). ¹H NMR (500 MHz, CDCl₃): δ 2.29 (s, 3H), 3.71 (s, 3H), 3.86 (s, 3H), 3.88 (s, 3H), 5.50 (s, 2H), 6.39 (d, *J* = 2.9 Hz, 1H), 6.83 (s, 1H), 6.94 (d, *J* = 7.9 Hz, 2H), 6.96 (d, *J* = 3.0, 1H), 7.08 (d, J = 7.86 Hz, 2H). MS (EI) m/z 311 (M⁺, 23%), 105 (100%). HRMS (EI) calcd for C₁₉H₂₁O₃N (M⁺), 311.1521; found, 311.1521.

A solution of 5,6,7-trimethoxyindole (100 mg, 0.48 mmol), KOH (40 mg, 0.72 mmol) and KI (79 mg, 0.48 mmol) in DMF (2 mL) was stirred at room temperature for 30 minutes. To the solution, 3-fluoro-4-methoxybenzyl chloride (167 mg, 0.96 mmol) was added at 0 °C and stirred for 1.5 hours. The reaction was quenched with water and extracted by ethyl acetate (10 mL x 3). The combined organic layer was dried over anhydrous MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography to afford **12** as an oil (51 mg, 34%; n-hexane/ethyl acetate = 6:1). ¹H NMR (500 MHz, CDCl₃): δ 3.75 (s, 3H), 3.83 (s, 3H), 3.86 (s, 3H), 3.88 (s, 3H), 5.44 (s, 2H), 6.40 (d, *J* = 2.8, 1H), 6.75 (d, *J* = 8.3 Hz, 1H), 6.80-6.88 (m, 3H), 6.95 (d, *J* = 2.9 Hz, 1H). MS (EI) m/z 345 (M⁺, 25%), 139 (100%). HRMS (EI) calcd for C₁₉H₂₀O₄NF (M⁺), 345.1376; found, 345.1375.

3,4,5-Trimethoxy-2-nitrobenzoic acid (14)

To a stirred solution of methyl 3,4,5-trimethoxy-2-nitrobenzoate (2 g, 7.37 mmole) in methanol, potassium hydroxide (0.83g, 14.47mmole) was added and heated to reflux for 1hour. The solution was evaporated and the residue was quenched with 3N HCl

(20 mL) followed by extraction with CH_2Cl_2 (20 mL × 3). The combined organic layer was dried over anhydrous MgSO₄ and concentrated *in vacuo*. The residue was purified with column chromatography to afford **14** as a white solid (1.8 g, 95%; n-hexane/ethyl acetate = 1:1). mp 166.5-168.5 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.95 (s, 6H), 3.99 (s, 3H), 7.35 (s, 1H).

3,4,5-Trimethoxy-2-nitrobenzylalcohol (15)

To a solution of compound **14** (1.89 g, 7.37 mmole) in THF, 1M borane-THF (14 mL) was added and refluxed overnight. The solvent was evaporated and the residue was quenched with water followed by extraction with EtOAc (20 mL \times 3). The combined organic layer was dried over anhydrous MgSO₄ and concentrated *in vacuo*. The residue was purified with column chromatography to offer **15** as a pale yellow solid (1.432 g, 80%; n-hexane/ethyl acetate = 1:1). mp 71.8-73.6 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.89 (s, 3H), 3.93 (s, 3H), 3.99 (s, 3H), 4.62 (s, 2H), 6.83 (s, 1H).

3,4,5-Trimethoxy-2-nitrobenzaldehyde (16)

To a solution of compound **15** (1.79 g, 7.37 mmole) in dry dichloromethane, pyridinium dichromate (5.54 g, 14.74 mmole) and molecular sieve (5.54 g) were added and stirred at room temperature overnight. The mixture was filtered and the filtrate was collected and concentrated *in vacuo*. The residue was purified with column chromatography to afford **16** as a pale green solid (1.15 g, 65%; n-hexane/ethyl acetate = 1:1). mp 75.6-77.8 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.98 (s, 3H), 4.00 (s, 6H), 7.22 (s, 1H), 9.88 (s, 1H).

1,2,3-Trimethoxy-4-nitro-5-(2-nitrovinyl)benzene (17)

To a solution of ammonium acetate (1.59 g, 20.74 mmole) and compound **16** (1 g, 4.15 mmole) in acetic acid (7 mL), nitromethane (1.12 mL, 20.74 mmole) was added and heated at 100 °C for 1.5 hours. After cooling, the reaction mixture was quenched with water and extracted with CH₂Cl₂ (20 mL × 3). The combined organic layer was evaporated *in vacuo* and the residue was purified with column chromatography to afford **17** as a yellow solid (1 g, 85%; n-hexane/ethyl acetate = 3:1). ¹H NMR (500 MHz, CDCl₃): δ 3.97 (s, 3H), 3.96 (S, 3H), 4.00 (s, 3H), 6.77 (s, 1H), 7.45 (d, *J*=13.4 Hz, 1H), 7.89 (d, *J*=13.4 Hz, 1H).

5,6,7-Trimethoxyindole (18)

To a reaction mixture of Fe power, EtOH (12 mL) and acetic acid(9 mL), a mixture of compound **17** (300 mg, 1.05 mmole) and acetic acid (12 ml) was added dropwise and heated at 100 °C for 2 hours. After cooling, the reaction was filtrated and the filtrate was collected and concentrated *in vacuo*. The residue was quenched with water and extracted with CH₂Cl₂ (20 mL × 3). The combined organic layer was dried over Mg₂SO₄ and concentrated *in vacuo*. The residue was purified o with column chromatography to afford **18** as a black brown solid (65 mg, 30%; n-hexane/ethyl acetate = 2:1); mp 82.0-84.3 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.83 (s, 3H), 3.89 (s, 3H), 4.07 (s, 3H), 6.44 (dd, *J* =2.60, 2.51 Hz, 1H), 6.85 (s, 1H), 7.13 (dd, *J* = 2.70, 2.64 Hz, 1H).

References of Supplementary Information

- 1. G. J. Finlay, B. C. Baguley and W. R. Wilson, Anal. Biochem., 1984, 139, 272.
- 2. J. P. Liou, J. Y. Chang, C. W. Chang, C. Y. Chang, N. Mahindroo, F. M. Kuo and H. P. Hsieh, *J. Med. Chem.*, 2004, **47**, 2897.
- C. C. Kuo, H. P. Hsieh, W. Y. Pan, C. P. Chen, J. P. Liou, S. J. Lee, Y. L. Chang, L. T. Chen, C. T. Chen and J. Y. Chang, *Cancer Res.*, 2004, 64, 4621.
- 4. D. M. Bollag, P. A. McQueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides and C. M. Woods, *Cancer Res.*, 1995, **55**, 2325.
- 5. S. K. Tahir, P. Kovar, S. H. Rosenberg and S. C. Ng, Biotechniques, 2000, 29, 156.
- 6. S. K. Tahir, E. K. Han, B. Credo, H. S. Jae, J. A. Pietenpol, C. D. Scatena, J. R. Wu-Wong, D. Frost, H. Sham, S. H. Rosenberg and S. C. Ng, *Cancer Res.*, 2001, **61**, 5480.
- S. K. Tahir, M. A. Nukkala, N. A. Zielinski Mozny, R. B. Credo, R. B. Warner, Q. Li, K. W. Woods, A. Claiborne, S. L. Gwaltney, II, D. J. Frost, H. L. Sham, S. H. Rosenberg and S. C. Ng, *Mol. Cancer Ther.*, 2003, 2, 227.
- 8. G. Kremmidiotis, A. F. Leske, T. C. Lavranos, D. Beaumont, J. Gasic, A. Hall, M. O'Callaghan, C. A. Matthews and B. Flynn, *Mol. Cancer. Ther.*, 2010, **9**, 1562.

