SUPPORTING INFORMATION

Radical reductions of alkyl halides bearing electron withdrawing

groups with N-heterocyclic carbene boranes

Shau-Hua Ueng,^{a,b} Louis Fensterbank,^a Emmanuel Lacôte,^a Max Malacria,^a and Dennis P. Curran^{*b}

^a Institut Parisien de Chimie Moléculaire (UMR CNRS 7201) UPMC Univ Paris 06, 4

place Jussieu, C. 229, 75005 Paris, France.

^b University of Pittsburgh, Department of Chemistry, Pittsburgh, PA 15260, USA.

louis.fensterbank@upmc.fr, max.malacria@upmc.fr, emmanuel.lacote@upmc.fr,

curran@pitt.edu

Table of Contents

General Remarks	S2
Pilot Reductions of Adamantyl Halides	S3
Experimental Procedures, Compound Characterization	S4
¹¹ B NMR Time-course Spectra	S12
Copies of Spectra	S14

General Remarks: Chemicals and solvents were purchased from commercial suppliers and used as received. The benzene used for AIBN-initiated free radical reactions was deoxygenated by passing a gentle stream of argon through for 20 min before use. All flash column chromatography was performed with 230-400 mesh silica gel purchased from Sorbent Technologies as the stationary phase. Proton (¹H). carbon (¹³C), and boron (¹¹B) nuclear magnetic resonance spectra were measured on a Bruker Avance 300 instrument at 300 MHz, 75 MHz, and 96.3 MHz, and Bruker Avance spectrometer fitted with a BBFO probehead at 400, 100, and 128.4 MHz, respectively. The chemical shifts in spectra were measured in parts per million (ppm) on the delta (δ) scale relative to the resonance of the solvent peak (CDCl₃ signal as reference, ${}^{1}H = 7.26 \text{ ppm}$, ${}^{13}C = 77.0 \text{ ppm}$). ${}^{11}B$ chemical shifts are given relative to $BF_3 \cdot OEt_2$ (¹¹B = 0 ppm). Unless noted, NMR spectra were recorded in CDCl₃ at 300 K. The resonance of the carbon center connected to boron could not be observed because of the quadrupole broadening. The following abbreviations were used to describe coupling: s = singlet; d = doublet; t = triplet; q = quartet; br = broad; m = multiplet. Infrared (IR) spectra were recorded on a Nicolet Avatar 360 FT-IR spectrometer as thin films (CH₂Cl₂) on NaCl plates and Bruker Tensor 27 ATR diamant PIKE spectrometer. Low and high resolution mass spectra were obtained on a Micromass Inc. Autospec instrument with E-B-E geometry and also recorded by Structure et fonction de molecules bioactives (UMR 7613) of Université Pierre et Marie Curie (electrospray source).

entry	Х	conditions	time	solvent	[RX]	T °C	GC yield (%)
1	Ι	Et_3B/O_2 (1 equiv)	2 h	benzene (1 mL)	0.1 M	rt	21%
2	Ι	Et_3B/O_2 (6 equiv)	2 h	benzene (1 mL)	0.1 M	rt	32% (25% SM)
3	Ι	AIBN (1 equiv)	2 h	benzene (1 mL)	0.1 M	80°C	31% (15% SM)
4	Ι	ACCN (1 equiv)	2 h	benzene (1 mL)	0.1 M	110°C	64% (14% SM)
5	Ι	ACCN (1 equiv)	2 h	toluene (4 mL)	0.025 M	110°C	53% (20% SM) Pressure tube
6	Ι	_	2 h	toluene- d_8 (0.5 mL)	0.1 M	110°C	9% (80% SM)
7	Br	Et_3B/O_2 (1 equiv)	2 h	benzene (1 mL)	0.1M	rt	9%
8	Br	Et ₃ B/O ₂ (6 equiv)	2 h	benzene (1 mL)	0.1 M	rt	12% (82% SM)
9	Br	AIBN (1 equiv)	2 h	benzene (1 mL)	0.1M	80°C	2% (98% SM)
10	Br	ACCN (1 equiv)	2 h	toluene (4 mL)	0.025 M	110°C	48% (50% SM) pressure tube
11	Br	ACCN (1 equiv)	2 h	benzene (1 mL)	0.1 M	80°C	12% (88% SM)
12	Br	ACCN (1 equiv)	2 h	benzene (1 mL)	0.1 M	80°C	27% (78% SM)
13	Br	tBuOOtBu hv	2 h	benzene (0.1 mL) <i>tert</i> -butylbenzene (0.5 mL)	0.08 M	~60 °C	60% (NMR tube)
14	Br	No tBuOOtBu	2 h	benzene (0.1 mL) <i>tert</i> -butylbenzene (0.5 mL)	0.08 M	~60 °C	0%

ACCN is 1,1'-azobis(cyclohexane-1-carbonitrile)

Dr. Julien Monot also contributed to these results.

1,2:5,6-Di-*O***-isopropylidene-3-iodo-\alpha-D-glucofuranose (5a)**: Iodine (0.58 g, 2.28 mmol) was added to the solution of diacetone- α -D-glucose (0.5 g, 1.9 mmol), triphenylphosphine (0.6 g, 2.28 mmol), and imidazole (0.26 g, 3.8 mmol) in of toluene (12 mL). The brown mixture was reflux for 3 h, and followed by the addition of sat'd NaHCO_{3 (aq)} (10 mL). The byphase system was partitioned between ethyl ether (70 mL) and sat'd NaHCO_{3 (aq)} solution (30 mL). The org. layer was washed with sat'd Na₂S₂O_{3 (aq)} (30 mL), water (30 mL) and brine (30 mL), dried (MgSO₄), and concentrated to give a yellow oil. The yellow oil was purified by flash chromatography (SiO₂, elution with hexane : ethyl acetate = 85 : 15) to give the desired iodide **5a** as a white solid (0.38 g, 54 %). ¹H NMR (CDCl₃, 300 MHz): δ 5.82 (d, *J* = 3.6 Hz, 1H), 4.61 (t, *J* = 4.1 Hz, 1H), 4.40–4.23 (m, 2H), 4.20–4.04 (m, 2H), 3.77 (dd, *J* = 9.9, 4.5 Hz, 1H), 1.56 (s, 3H), 1.50 (s, 3H), 1.38 (s, 6H). Data correspond to those reported in the literature.¹

1,2:5,6-Di-*O*-isopropylidene-3-bromo- α -D-glucofuranose (5b): Carbon tetrabromide (0.76 g, 2.28 mmol) was added to the solution of diacetone- α -D-glucose (0.5 g, 1.9 mmol), triphenylphosphine (0.6 g, 2.28 mmol), and imidazole (0.26 g, 3.8 mmol) in toluene (12 mL). The brown mixture was reflux for 3 h, and followed by the addition of sat'd NaHCO_{3 (aq)} (10 mL). The byphase system was partitioned between ethyl ether (70 mL) and 30 mL of sat'd NaHCO_{3 (aq)} solution. The org. layer was

¹ Kunz, H.; Schmidt, P. *Liebigs Ann. Chem.* **1982**, 1245–1260.

washed with sat'd Na₂S₂O_{3 (aq)} (30 mL), water (30 mL) and brine (30 mL), dried (MgSO₄), and concentrated to give a yellow oil. The yellow oil was purified by flash chromatography (SiO₂, elution with hexane : ethyl acetate = 8 : 2) to give the desired iodide **5b** as a white solid (0.17 g, 28 %). ¹H NMR (CDCl₃, 300 MHz): δ 5.75 (d, *J* = 3.6 Hz, 1H), 4.62 (t, *J* = 4.1 Hz, 1H), 4.35–4.23 (m, 1H), 4.15 (dd, *J* = 9.6, 3.3 Hz), 4.11–3.95 (m, 2H), 3.83 (dd, *J* = 9.9, 4,5 Hz, 1H), 1.51 (s, 3H), 1.41 (s, 3H), 1.32 (s, 6H). Data correspond to those reported in the literature.²

1,2:5,6-Di-*O*-isopropylidene-3-deoxy- α -D-glucofuranose (6): This was prepared by the conditions listed in Table 1 with 0.1 mmol of starting halides **5a** and **5b**; product **6** was isolated (hexane : ethyl acetate = 85 : 15, 10.0–19.3 mg, 41–79 %) as a colorless liquid. ¹H NMR (CDCl₃, 300 MHz): δ 5.81 (d, *J* = 3.7 Hz, 1H), 4.75 (t, *J* = 4.2 Hz, 1H), 4.23–4.03 (m, 3H), 3.87–3.75 (m, 1H), 2.18 (dd, *J* = 13.6, 4.2 Hz, 1H), 1.76 (ddd, *J* = 13.6, 9.6, 4.2 Hz, 1H), 1.50 (s, 3H), 1.42 (s, 3H), 1.35 (s, 3H), 1.31 (s, 3H). Data correspond to those reported in the literature.¹

1,2,3,4-Tetra-*O***-acetyl-6-iodo-β-D-glucopyranose (9)**: This was prepared following the procedure that described the synthesis of **5a** with 1,2,3,4-tetra-*O*-acetyl-β-D-glucopyranose (0.2 g, 0.57 mmol). The crude product was purified by flash chromatography (SiO₂, elution with hexane : ethyl acetate = 7 : 3) to give iodide **9** as a white solid (0.187 g, 72 %). ¹H NMR (CDCl₃, 300 MHz): δ 5.75 (d, J = 8.1 Hz, 1H),

² Hodosi, G.; Podányi, B.; Kuszmann, J. Carbohydrate Res. 1992, 230, 327-342.

5.26 (t, J = 9.3 Hz, 1H), 5.13 (dd, J = 9.3, 8.1 Hz, 1H), 4.99 (t, J = 9.3 Hz, 1H), 3.65–3.51 (m, 1H), 3.33 (dd, J = 11.1, 3.0 Hz, 1H), 3.16 (dd, J = 11.1, 6.3 Hz, 1H), 2.13 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H), 2.01 (s, 3H). Data correspond to those reported in the literature.³

1,2,3,4-Tetra-*O***-acetyl-6-deoxy-** β **-D-glucopyranose (10)**: This was prepared by the conditions listed in Table 2 with 0.1 mmol of starting halides **9**; product **10** was isolated (hexane : ethyl acetate = 7 : 3, 22.2–23.6 mg, 67–71 %) as a colorless oil. ¹H NMR (CDCl₃, 300 MHz): δ 5.68 (d, J = 8.1 Hz, 1H), 5.19 (t, J = 9.5 Hz, 1H), 5.09 (t, J = 9.0 Hz, 1H), 4.84 (t, J = 9.5 Hz, 1H), 3.78–3.63 (m, 1H), 2.14 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H), 1.23 (d, J = 6.3 Hz, 3H). Data correspond to those reported in the literature.⁴

3-Iodo-3,4-dihydrocoumarin (11): ¹H NMR (CDCl₃, 300 MHz): δ 7.42–7.32 (m, 1H), 7.25–7.15 (m, 2H), 7.15–7.08 (m, 1H), 4.95 (dd, *J* = 4.5, 3.0 Hz, 1H), 3.49 (dd, *J* = 17.4, 4.5 Hz, 1H), 3.11 (dd, *J* = 17.4, 3 Hz, 1H). Data correspond to those reported in the literature.⁵

3,4-Dihydrocoumarin (12): A solution of 3-iodo-3,4-dihydrocoumarin 11 (27.4 mg,

³ Kaszynski, P.; McMurdie, N. D.; Michl, J. J. Org. Chem. **1991**, *56*, 307–316.

⁴ Zercher, C. K.; Fedor, L. R. Carbohydrate Res. 1987, 165, 299–305.

⁵ Murakata, M.; Jono, T.; Shoji, T.; Moriy, A.; Shirai, Y. *Tetrahedron: Asymm.* **2008**, *19*, 2479–2483.

0.1 mmol) and dimethylimidazolylidene borane **3** (11.0 mg, 0.1 mmol) in of benzene- d_6 (1 mL) was placed in a NMR tube, and the reaction progress was monitored by ¹H NMR spectroscopy until the conversion of the starting material was complete. 1,3,5-Trimethoxybenzene (11.8 mg, 0.07 mmol) was added to the reaction solution as the internal standard, and the yield was determined by ¹H NMR spectroscopy analysis (70 %). The resulting product was purified by flash chromatography (SiO₂, pentane : ethyl ether = 8 : 2) to give **12** as a colorless oil (8.9 mg, 60 %). ¹H NMR (CDCl₃, 300 MHz): δ 7.32–7.15 (m, 2H), 7.11 (d, *J* = 7.5 Hz, 1H), 7.05 (d, *J* = 8.7 Hz, 1H), 3.01 (dd, *J* = 7.5, 6.9 Hz, 2H), 2.79 (dd, *J* = 6.9, 5.4 Hz, 2H), Data correspond to those reported in the literature.⁶

N-Allyl-*N*-(2-chloro-ethyl)-4-methyl-benzenesulfonamide (II): Tetrabutylammonium bromide (0.6 mmol) was added to a solution of I (6.0 mmol), potassium hydroxide (9.0 mmol), and 1-bromo-2-chloroethane (9.0 mmol) in THF (30 mL). The white mixture was stirred at room temperature for 16 h, and then partitioned between ethyl ether (100 mL) and water (40 mL). The organic layer was washed with water (40 mL), brine (40 mL), dried (MgSO₄), and concentrated. The crude product was purified by flash chromatography (SiO₂, ethyl acetate : pentane = 1 : 9 then 2 : 8) to afford the chloride II as a colorless oil (1.2 g, 73 %). IR (neat, cm⁻¹) v_{max} 2930, 1710, 1598, 1451, 1340, 1156, 1091; ¹H NMR (CDCl₃, 400 MHz) δ 7.71 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.3 Hz, 2H), 5.75–5.57 (m, 1H), 5.25–5.12 (m, 2H), 3.83 (d, *J* = 7.5 Hz,

⁶ Hwu, J. R.; Wein, Y. S.; Leu, Y.-J. J. Org. Chem. **1996**, 61, 1493–1499.

2H), 3.62 (t, J = 7.4 Hz, 2H), 3.37 (t, J = 7.4 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 144.4, 137.0, 133.5, 130.5, 127.9, 120.3, 52.8, 49.5, 42.4, 22.2; HRMS calcd. for C₁₂H₁₆O₂NCINaS ([M+Na]⁺) 296.0482, found 296.0483.

N-Allyl-*N*-(2-iodo-ethyl)-4-methyl-benzenesulfonamide (15a): Sodium iodide (15 mmol) was added to a solution of chloride II (3.0 mmol) in DMF (7 mL). The colorless solution was stirred at 80 °C for 16 h, and then cooled to room temperature. The white resulting mixture was partitioned between ethyl ether (100 mL) and water (40 mL). The organic layer was washed with water (40 mL), brine (40 mL), dried (MgSO₄), and concentrated. The crude product was purified by flash chromatography (SiO₂, ethyl acetate : pentane = 1 : 9) to afford the iodide **15a** as a colorless oil (0.6 g, 55 %). ¹H NMR (CDCl₃, 400 MHz) δ 7.76–7.65 (m, 2H), 7.32 (d, *J* = 8.5 Hz, 2H), 5.76–5.60 (m, 1H), 5.27–5.12 (m, 2H), 3.85–3.73 (m, 2H), 3.50–3.35 (m, 2H), 3.30–3.15 (m, 2H), 2.44 (s, 3H). Data correspond to those reported in the literature.⁷

N-Allyl-*N*-(2-bromo-ethyl)-4-methyl-benzenesulfonamide (15b): Bromide 15b was prepared following established procedures.^{8,9} ¹H NMR (CDCl₃, 400 MHz) δ 7.70 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.76–5.60 (m, 1H), 5.26–5.13 (m, 2H), 3.81 (d, *J* = 6.6 Hz, 2H), 3.50–3.35 (m, 4H), 2.43 (s, 3H). Data correspond to those reported in the literature.⁹

3-Methyl-1-(toluene-4-sulfonyl)-pyrrolidine (16): This was prepared by the

⁷ Ohmiya, H.; Wakabayashi, K.; Yorimitsu, H.; Oshima, K. *Tetrahedron* **2006**, *62*, 2207–2213.

⁸ Miyata, O.; Ozawa, Y.; Ninomiya, I.; Naito, T. *Tetrahedron* **2000**, *56*, 6199–6208.

⁹ Rai, K. M. L.; Hassner, A. Heterocycles 1990, 30, 817.

conditions listed in Table 2 with 0.1 mmol of corresponding substrate; product **16** was isolated (pentane : ethyl acetate = 9 : 1 then 8 : 2) as a colorless liquid. ¹H NMR (CDCl₃, 400 MHz) δ 7.70 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 3.42 (dd, *J* = 9.6, 7.2 Hz, 1H), 3.38–3.30 (m, 1H), 3.28–3.15 (m, 1H), 2.74 (dd, *J* = 9.6, 7.9 Hz, 1H), 2.43 (s, 3H), 2.16–2.05 (m, 1H), 1.95–1.80 (m, 1H), 1.42–1.28 (m, 1H), 0.91 (d, *J* = 6.6 Hz, 3H). Data correspond to those reported in the literature.¹⁰

N-Allyl-*N*-(2-bromo-acetyl)-4-methyl-benzenesulfonamide (17): NaH (60 % in mineral oil) (92 mg, 2.31 mmol) was added to the solution of **I** (0.325 g, 1.54 mmol) in THF (10 mL) at room temperature in one portion, before the addition of bromoacetyl bromide (0.37 g, 1.85 mmol). The yellow mixture was stirred at room temperature for 18 h, and then the yellow reaction mixture was partitioned between of ethyl ether (70 mL) and water (30 mL). The org. layer was washed with water (30 mL), brine (30 mL), dried (MgSO₄), and concentrated to give a yellow oil. The yellow oil was purified by flash chromatography (SiO₂, ethyl acetate : pentane = 1 : 9) to give the desired product **17** as a colorless oil (0.25 g, 49 %). ¹H NMR (CDCl₃, 300 MHz) δ 7.83 (d, *J* = 8.1 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 5.95–5.75 (m, 1H), 5.33–5.18 (m, 2H), 4.46 (d, *J* = 6.6 Hz, 2H), 4.23 (s, 2H), 2.46 (s, 3H). Data correspond to those reported in the literature.¹¹

¹⁰ Tang, J.; Shinokubo, H.; Oshima, K. *Tetrahedron* **1999**, *55*, 1893–1904.

¹¹ Ozaki, S.; Matsushita, H.; Ohmori, H. J. Chem. Soc., Perkin Trans. 1 1993, 2339–2344.

4-Methyl-1-(toluene-4-sulfonyl)-pyrrolidin-2-one (18): This was prepared by the conditions listed in Table 2 with 0.1 mmol of **17**; product **18** was isolated (hexane : ethyl acetate = 9 : 1 then 7 : 3, 2.8–10.6 mg, 11–42 %) as a colorless oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.91 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 4.03 (dd, *J* = 9.9, 7.2 Hz, 1H), 3.41 (dd, *J* = 9.9, 6.3 Hz, 1H), 2.57 (dd, *J* = 16.6, 8.1 Hz, 1H), 2.52–2.38 (m overlapped with s at 2.44, 4H), 2.06 (dd, *J* = 16.6, 7.2 Hz, 1H), 1.09 (d, *J* = 6.6 Hz, 3H). Data correspond to those reported in the literature.¹¹

N-Acetyl-*N*-allyl-4-methyl-benzenesulfonamide (19): This was prepared by the conditions listed in Table 2 with 0.1 mmol of 17; product 19 was isolated (hexane : ethyl acetate = 9 : 1 then 7 : 3, 6.8–14.7 mg, 27–58 %) as a colorless oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.81 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 5.98–5.80 (m, 1H), 5.33–5.20 (m, 2H), 4.46 (dt, *J* = 5.7, 1.5 Hz, 2H), 2.44 (s, 3H), 2.29 (s, 3H). Data correspond to those reported in the literature.¹¹

N-Allyl-*N*-(2-bromo-propionyl)-4-methyl-benzenesulfonamide (20): This was prepared following the procedure described the synthesis of 17 with I (1.54 mmol) and of 2-bromopropionyl bromide (1.85 mmol). The crude product was purified by flash chromatography (SiO₂, ethyl acetate : pentane = 15 : 85) to give the desired product 20 as a white solid (0.38 g, 71 %). ¹H NMR (CDCl₃, 300 MHz) δ 7.87 (d, *J* =

8.1 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 6.00–5.83 (m, 1H), 5.33–5.20 (m, 2H), 4.86 (q, *J* = 6.6 Hz, 1H), 4.70 (dd, *J* = 17.4, 4.2 Hz, 1H), 4.41 (dd, *J* = 17.4, 5.4 Hz, 1H), 2.45 (s, 3H), 1.74 (d, *J* = 6.6 Hz, 3H). Data correspond to those reported in the literature.¹²

trans-3,4-Dimethyl-1-(toluene-4-sulfonyl)-pyrrolidin-2-one (*trans*-21): This was prepared by the conditions listed in Table 2 with 0.1 mmol of 20; product 21 was isolated (hexane : ethyl acetate = 9 : 1 then 7 : 3, 6.8–14.7 mg, 36–44 %) as a colorless oil. ¹H NMR (DMSO- d_6 , 300 MHz) δ 7.83 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 8.1 Hz, 2H), 3.98 (dd, J = 9.3, 7.5 Hz, 1H), 3.28 (t, J = 9.6 Hz, 1H), 2.40 (s, 3H), 2.22–2.10 (m, 1H), 2.03–1.85 (m, 1H), 1.03 (d, J = 6.3 Hz, 3H), 0.96 (d, J = 6.9 Hz, 3H). Data correspond to those reported in the literature.¹²

N-Allyl-4-methyl-*N*-propionyl-benzenesulfonamide (22): Following corresponding conditions with 0.1 mmol of 20, a mixture of compounds 22, I, and rest of the AIBN was isolated (hexane : ethyl acetate = 9 : 1 then 7 : 3) as a colorless oil. The percent yield of amide 22 was determined by ¹H NMR spectroscopy analysis as 17–28 %. ¹H NMR (CDCl₃, 300 MHz) δ 7.82 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 5.98–5.82 (m, 1H), 5.33–5.20 (m, 2H), 4.48 (d, *J* = 8.4 Hz, 2H), 2.56 (q, *J* = 7.3 Hz, 2H), 2.45 (s, 3H), 1.04 (t, *J* = 7.3 Hz, 3H). Data correspond to those reported in the literature.¹²

¹² Ozaki, S.; Matsushita, H.; Emoto, M.; Ohmori, H. Chem. Pharm. Bull. 1995, 43, 32-36.

Figure S1. Partial ¹¹B NMR spectra [96.3 MHz, Benzene- d_6 , 298 K] displaying (a-b) the formation of the 1,3-dimethylimidazol-2-ylidene borane **3** from monoiodide intermediate **23a** under the treatment with NaBH₄ over time—(a) 0 min, (b) 30 min, after addition of 2 equiv of NaBH₄.

Figure S2. Partial ¹¹B NMR spectra [96.3 MHz, Benzene- d_6 , 298 K] displaying (a-d) the formation of the 1,3-dimethylimidazol-2-ylidene borane **3** from monobromide intermediate **23b** under the treatment with NaBH₄ over time and the loading scale of NaBH₄—(a) 0 min, after irradiation for 15 min (b) 10 min, 0.5 equiv of NaBH₄ (c) 20 min, 1.5 equiv of NaBH₄, and (d) 180 min, 2 equiv of NaBH₄.

1.00 0.74 1.07 1.07 **5.55 6.88 6.88** Supplementary Material (ESI) for Organic & Biomolecular Chemistry shu2100a, 62,20 Royal Society of Chemistry 2011

Supplementary Material (ESI) for Organic & Biomolecular Chemistry Տիս 2 Ծիգեյծալու լեյ գր. Շից Roya Society օրենի հemistry 2011

Supplementary Material (ESI) for Organic & Biomolecular Chemistry Shu3 @hsg@yrnal to 10-06 Roys Soctet of Achemistry 2011

Supplementary Material (ESI) for Organic & Biomolecular Chemistry

shu 3 016 0 cernal is ic - the Roya Society of the mistry 2011

AcO⁻ -OAc AcO ÒAc

Supplementary Material (ESI) for Organic & Biomolecular Chemistry shu3 መቌረሚጠል <u>ኬ ድን- </u>መደ ለማ ፍርጅ የ ውርድ የ መቴሪ በ መካለት የ

(ppm)

(ppm)

(ppm)

(ppm)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry Shu3 011570arnal 15 1c-104 Roys Societ of a Chemistry 2011

Supplementary Material (ESI) for Organic & Biomolecular Chemistry Shu3 Irtis4dgrnal to 20- The Royal Society of Chemistry 2011

ppm

Supplementary Material (ESI) for Organic & Biomolecular Chemistry

