### **Electronic supplementary information**

## Cascade reaction of β,γ-unsaturated α-ketoesters with phenols in trityl chloride/TFA system. Highly selective synthesis of 4-aryl-2*H*-chromenes and their applications

Yan-Chao Wu, Hui-Jing Li, Li Liu, Zhe Liu, Dong Wang and Yong-Jun Chen

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

#### **Table of Contents**

| 1.   | NMR spectra •••••                                                                                           | • S2 |
|------|-------------------------------------------------------------------------------------------------------------|------|
| 1.1. | <sup>1</sup> H and <sup>13</sup> C NMR spectra of 4-aryl-2 <i>H</i> -chromenes <b>3</b> ••••••              | S2   |
| 1.2. | <sup>1</sup> H and <sup>13</sup> C NMR spectra of 4 <i>H</i> -chromene intermediate $13a$ ••••••            | S18  |
| 1.3. | <sup>1</sup> H and <sup>13</sup> C NMR spectra of triphenylmethane (14) ••••••                              | S19  |
| 1.4. | <sup>1</sup> H and <sup>13</sup> C NMR spectra of hydroxyl amides <b>4</b> ••••••                           | S20  |
| 1.5. | <sup>1</sup> H and <sup>13</sup> C NMR spectra of amino acid 5 ••••••                                       | \$23 |
| 1.6. | <sup>1</sup> H and <sup>13</sup> C NMR spectra of amino esters <b>6</b> ••••••••••••••••••••••••••••••••••• | S24  |
| 1.7. | <sup>1</sup> H and <sup>13</sup> C NMR spectra of Friedel–Crafts adducts 7 ••••••                           | S27  |
| 2.   | Single crystal data •••••                                                                                   | \$30 |
| 2.1. | Single crystal data of 4 <i>H</i> -chromene intermediate 13a ••••••                                         | 530  |
| 2.2. | Single crystal data of 4-aryl-2 <i>H</i> -chromene <b>3a</b> ••••••                                         | S36  |
| 2.3. | Single crystal data of amino ester <b>6a</b> ••••••                                                         | S45  |

1. NMR spectra

1.1. <sup>1</sup>H and <sup>13</sup>C NMR spectra of 4-aryl-2*H*-chromenes **3** 4-Aryl-2*H*-chromene **3a**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



4-Aryl-2*H*-chromene **3b**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



4-Aryl-2*H*-chromene **3c**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



4-Aryl-2*H*-chromene **3d**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



4-Aryl-2*H*-chromene **3e**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



4-Aryl-2*H*-chromene **3f**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



4-Aryl-2*H*-chromene **3g**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



4-Aryl-2*H*-chromene **3h**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)





#### 4-Aryl-2*H*-chromene **3i**: <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>)

4-Aryl-2*H*-chromene **3i**: <sup>13</sup>C NMR (100MHz, CDCl<sub>3</sub>)





4-Aryl-2*H*-chromene **3j**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)

4-Aryl-2*H*-chromene **3j**: <sup>13</sup>C NMR (75MHz, CDCl<sub>3</sub>)



4-Aryl-2*H*-chromene **3k**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



4-Aryl-2*H*-chromene **3l**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



4-Aryl-2*H*-chromene **3m**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



4-Aryl-2*H*-chromene **3n**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



4-Aryl-2*H*-chromene **30**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



4-Aryl-2*H*-thiochromene **3p**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>) Current NAME EXPMO FROCINO karanetera vync-0-404 10 1 25052.7~ 25522.7~ -2.26018 -3. 79633 -3.12522 ۵d F2 - Act Date\_ Timp INSTRAM PADBHD PULFROS TO SOLVENT MS CS ENH FIDRES AB RB DH DH DE TE DI 3.46 8v300 13C-1 2930 86638 COC18 Ph Me ←OH CO<sub>2</sub>Me 6.00 282.2 S NUC1 P1 PL1 6F01 1H 9.30 uses -1.00 dB 300.1218634 MHz 1179 parametera 32769 303.13000020 MHz EN 0 0.30 Hz 0 1.00 200.00 ch 8.00 ch 10.200 ppn 2001.33 Hz -0.200 ppn -50.03 Hz D.52000 ppn/ca 556.06761 Hz/ca 1.0000 3.0489 3.0061 BEBE.6 [MBB411] рр**п** T. Ţ 4-Aryl-2*H*-thiochromene **3p**: <sup>13</sup>C NMR (75MHz, CDCl<sub>3</sub>) etera -0-424 20 1 Durren Kune Editio Fridako 52,918 193 アアモル Ā ¥ 2.41 m300 190-1 0pg90 Ph Me **←**ОН СО<sub>2</sub>Ме S NLES Pi Pli SFQS IT 9.40 use -1.40 dB 62953 HHz 75.07 POP NCC POPOS PL2 PL12 PL13 BF12 re itzi6 5H B0.00 una -1.00 dB 18.00 dB 18.00 dB and any H H EN 1.00 1.40 H 80.00 cm 10.00 cm 240.155 pp -16.107 pp -14.467 pp -14.467 pp -14.467 pp -14.467 pp -14.467 pp 26 200 176 160 126 100 76 6D ľ ppn

1.2. <sup>1</sup>H and <sup>13</sup>C NMR spectra of 4*H*-chromene intermediate **13a** 4*H*-chromene intermediate **13a**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



1.3. <sup>1</sup>H and <sup>13</sup>C NMR spectra of triphenylmethane (**14**) Triphenylmethane (**14**): <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



Triphenylmethane (14): <sup>13</sup>C NMR (75MHz, CDCl<sub>3</sub>)



1.4. <sup>1</sup>H and <sup>13</sup>C NMR spectra of hydroxyl amides **4** Hydroxyl amide **4a**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



3.430 3.418 3.418 3.377 2.183 2.183 2.183 2.188 2.188 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.138 2.1388 2.138 2.138 2.138 2.1388 2.138 2.138 2.138 2.138 2.138 2.138 2.13 7.431 88.888 କ୍ଷ 828882888888 8 22 68 Ph Bu .OH N H Ő ↓↓ ↓ 242 242 구 4.1 գարտ գ ÷ ч ч ч ч 220 0 2 28 2 23 Ē 8.00 7.50 7.00 6.50 6.00 5.50 5.00 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 -0.50 ppm (t1)

Hydroxyl amide **4b**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)

Hydroxyl amide **4b**: <sup>13</sup>C NMR (75MHz, CDCl<sub>3</sub>)



Hydroxyl amide **4c**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



1.5. <sup>1</sup>H and <sup>13</sup>C NMR spectra of amino acid **5** Amino acid **5**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



1.6. <sup>1</sup>H and <sup>13</sup>C NMR spectra of amino esters **6** Amino ester **6a**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



Amino ester **6b**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



Amino ester 6c: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



1.7. <sup>1</sup>H and <sup>13</sup>C NMR spectra of Friedel–Crafts adducts **7** Friedel–Crafts adduct **7a**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



Friedel–Crafts adduct **7b**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)



Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2011



Friedel–Crafts adduct **7c**: <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

- 2. Single crystal data
- 2.1. Single crystal data of 4-aryl-4*H*-chromene intermediate 13a



Table 1. Crystal data and structure refinement for **13a**.

| Identification code             | 13a                                   |
|---------------------------------|---------------------------------------|
| Empirical formula               | C21 H22 O3                            |
| Formula weight                  | 322.39                                |
| Temperature                     | 293(2) K                              |
| Wavelength                      | 0.71073 A                             |
| Crystal system, space group     | Monoclinic, Cc                        |
| Unit cell dimensions            | a = 17.683(4) A alpha = 90 deg.       |
|                                 | b = 10.819(2) A beta = 114.81(3) deg. |
|                                 | c = 10.206(2) A gamma = 90 deg.       |
| Volume                          | 1772.3(6) A^3                         |
| Z, Calculated density           | 4, 1.208 Mg/m^3                       |
| Absorption coefficient          | 0.080 mm^-1                           |
| F(000)                          | 688                                   |
| Crystal size                    | 0.58 x 0.17 x 0.15 mm                 |
| Theta range for data collection | 2.54 to 27.48 deg.                    |
| Limiting indices                | 0<=h<=22, 0<=k<=14, -13<=l<=11        |
| Reflections collected / unique  | 6608 / 1990 [R(int) = 0.0799]         |
| Completeness to theta $= 27.48$ | 98.0 %                                |
| Absorption correction           | Empirical                             |
| Max. and min. transmission      | 0.9881 and 0.9551                     |
| Refinement method               | Full-matrix least-squares on F^2      |
| Data / restraints / parameters  | 1990 / 2 / 217                        |
| Goodness-of-fit on F^2          | 1.017                                 |
| Final R indices [I>2sigma(I)]   | R1 = 0.0698, $wR2 = 0.1715$           |
| R indices (all data)            | R1 = 0.0905, wR2 = 0.1823             |
| Absolute structure parameter    | 1(2)                                  |
| Largest diff. peak and hole     | 0.307 and -0.303 e.A^-3               |

Table 2. Atomic coordinates (  $x \ 10^{4}$ ) and equivalent isotropic displacement parameters (A<sup>2</sup>  $x \ 10^{3}$ ) for **13a**.

|      | X       | у       | Z       | U(eq)  |
|------|---------|---------|---------|--------|
| O(1) | 1799(2) | 4764(4) | 8023(5) | 107(2) |
| O(2) | 2393(2) | 3433(4) | 9860(4) | 78(1)  |
| O(3) | 3834(2) | 3658(3) | 9846(3) | 61(1)  |

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

| C(1)  | 1586(4) | 3263(7)  | 9882(8)   | 100(2) |
|-------|---------|----------|-----------|--------|
| C(2)  | 2401(3) | 4274(5)  | 8902(6)   | 68(1)  |
| C(3)  | 3252(2) | 4487(4)  | 8968(4)   | 50(1)  |
| C(4)  | 3406(3) | 5375(4)  | 8295(5)   | 58(1)  |
| C(5)  | 4257(2) | 5725(4)  | 8478(4)   | 50(1)  |
| C(6)  | 4487(2) | 6982(3)  | 9269(5)   | 45(1)  |
| C(7)  | 4297(3) | 8058(4)  | 8473(6)   | 63(1)  |
| C(8)  | 4477(4) | 9184(4)  | 9216(8)   | 81(2)  |
| C(9)  | 4832(3) | 9223(5)  | 10692(7)  | 78(2)  |
| C(10) | 5002(3) | 8120(5)  | 11469(7)  | 76(1)  |
| C(11) | 4833(3) | 7036(4)  | 10754(5)  | 58(1)  |
| C(12) | 4855(2) | 4716(3)  | 9235(4)   | 44(1)  |
| C(13) | 4630(3) | 3761(3)  | 9880(4)   | 48(1)  |
| C(14) | 5178(3) | 2826(4)  | 10614(5)  | 61(1)  |
| C(15) | 5963(3) | 2844(4)  | 10674(6)  | 61(1)  |
| C(16) | 6236(2) | 3797(4)  | 10026(4)  | 51(1)  |
| C(17) | 5664(2) | 4702(4)  | 9322(4)   | 48(1)  |
| C(18) | 7111(3) | 3784(5)  | 10063(5)  | 65(1)  |
| C(19) | 7702(5) | 3007(13) | 11284(13) | 213(7) |
| C(20) | 7072(5) | 3278(11) | 8667(12)  | 162(5) |
| C(21) | 7462(5) | 5068(7)  | 10195(14) | 155(4) |
|       |         |          |           |        |

Table 3. Bond lengths [A] and angles [deg] for **13a**.

| O(1)-C(2)  | 1.192(7) |
|------------|----------|
| O(2)-C(2)  | 1.340(6) |
| O(2)-C(1)  | 1.448(6) |
| O(3)-C(3)  | 1.375(5) |
| O(3)-C(13) | 1.398(5) |
| C(2)-C(3)  | 1.495(6) |
| C(3)-C(4)  | 1.275(6) |
| C(4)-C(5)  | 1.485(6) |
| C(5)-C(12) | 1.490(6) |
| C(5)-C(6)  | 1.546(6) |
| C(6)-C(11) | 1.377(6) |
| C(6)-C(7)  | 1.378(5) |
| C(7)-C(8)  | 1.399(8) |
| C(8)-C(9)  | 1.368(8) |

| C(9)-C(10)        | 1.395(8)  |
|-------------------|-----------|
| C(10)-C(11)       | 1.347(7)  |
| C(12)-C(13)       | 1.371(5)  |
| C(12)-C(17)       | 1.397(5)  |
| C(13)-C(14)       | 1.384(6)  |
| C(14)-C(15)       | 1.364(6)  |
| C(15)-C(16)       | 1.415(6)  |
| C(16)-C(17)       | 1.375(5)  |
| C(16)-C(18)       | 1.531(6)  |
| C(18)-C(20)       | 1.502(10) |
| C(18)-C(19)       | 1.503(10) |
| C(18)-C(21)       | 1.504(9)  |
| C(2)-O(2)-C(1)    | 114.3(4)  |
| C(3)-O(3)-C(13)   | 115.8(3)  |
| O(1)-C(2)-O(2)    | 124.8(5)  |
| O(1)-C(2)-C(3)    | 122.0(5)  |
| O(2)-C(2)-C(3)    | 113.0(4)  |
| C(4)-C(3)-O(3)    | 124.9(3)  |
| C(4)-C(3)-C(2)    | 122.0(4)  |
| O(3)-C(3)-C(2)    | 113.1(4)  |
| C(3)-C(4)-C(5)    | 123.9(4)  |
| C(4)-C(5)-C(12)   | 109.9(3)  |
| C(4)-C(5)-C(6)    | 108.7(3)  |
| C(12)-C(5)-C(6)   | 113.5(3)  |
| C(11)-C(6)-C(7)   | 119.9(4)  |
| C(11)-C(6)-C(5)   | 120.7(3)  |
| C(7)-C(6)-C(5)    | 119.3(4)  |
| C(6)-C(7)-C(8)    | 118.2(5)  |
| C(9)-C(8)-C(7)    | 121.3(5)  |
| C(8)-C(9)-C(10)   | 119.3(5)  |
| C(11)-C(10)-C(9)  | 119.4(5)  |
| C(10)-C(11)-C(6)  | 121.9(4)  |
| C(13)-C(12)-C(17) | 117.2(3)  |
| C(13)-C(12)-C(5)  | 121.0(3)  |
| C(17)-C(12)-C(5)  | 121.8(3)  |
| C(12)-C(13)-C(14) | 122.2(4)  |
| C(12)-C(13)-O(3)  | 122.7(3)  |
| C(14)-C(13)-O(3)  | 115.1(3)  |
| C(15)-C(14)-C(13) | 118.8(4)  |
| C(14)-C(15)-C(16) | 122.0(4)  |

| C(17)-C(16)-C(15) | 116.3(3) |
|-------------------|----------|
| C(17)-C(16)-C(18) | 122.2(4) |
| C(15)-C(16)-C(18) | 121.4(4) |
| C(16)-C(17)-C(12) | 123.4(4) |
| C(20)-C(18)-C(19) | 108.8(7) |
| C(20)-C(18)-C(21) | 105.9(7) |
| C(19)-C(18)-C(21) | 109.0(8) |
| C(20)-C(18)-C(16) | 109.7(5) |
| C(19)-C(18)-C(16) | 111.7(5) |
| C(21)-C(18)-C(16) | 111.6(4) |
|                   |          |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A<sup>2</sup> x 10<sup>3</sup>) for **13a**. The anisotropic displacement factor exponent takes the form: -2 pi<sup>2</sup> [ h<sup>2</sup> a<sup>\*</sup> U11 + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U12 ]

|       | U11   | U22    | U33    | U23    | U13   | U12    |
|-------|-------|--------|--------|--------|-------|--------|
|       |       |        |        |        |       |        |
| O(1)  | 36(2) | 97(3)  | 153(4) | 32(3)  | 7(2)  | 3(2)   |
| O(2)  | 47(2) | 109(3) | 80(2)  | -4(2)  | 31(2) | -10(2) |
| O(3)  | 45(2) | 79(2)  | 66(2)  | 18(2)  | 29(2) | 8(1)   |
| C(1)  | 59(3) | 137(5) | 117(5) | -11(4) | 51(4) | -16(3) |
| C(2)  | 50(3) | 67(3)  | 85(4)  | -10(3) | 26(3) | -7(2)  |
| C(3)  | 36(2) | 56(2)  | 49(2)  | -6(2)  | 10(2) | -2(2)  |
| C(4)  | 40(2) | 57(2)  | 63(3)  | 2(2)   | 8(2)  | 4(2)   |
| C(5)  | 46(2) | 57(2)  | 43(2)  | 6(2)   | 15(2) | 3(2)   |
| C(6)  | 35(2) | 43(2)  | 61(2)  | 10(2)  | 24(2) | 8(1)   |
| C(7)  | 52(3) | 63(3)  | 80(3)  | 21(2)  | 35(2) | 10(2)  |
| C(8)  | 75(3) | 46(2)  | 138(6) | 21(3)  | 61(4) | 13(2)  |
| C(9)  | 63(3) | 55(3)  | 116(5) | -13(3) | 38(3) | -3(2)  |
| C(10) | 65(3) | 76(4)  | 78(3)  | -14(3) | 22(3) | 6(2)   |
| C(11) | 55(2) | 48(2)  | 64(3)  | 3(2)   | 19(2) | 3(2)   |
| C(12) | 41(2) | 49(2)  | 41(2)  | -4(2)  | 19(2) | 1(2)   |
| C(13) | 45(2) | 52(2)  | 55(3)  | -2(2)  | 28(2) | 4(2)   |

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

| C(14)          | 59(3)          | 55(2)          | 77(3)          | 13(2)         | 37(2)  | 8(2)   |
|----------------|----------------|----------------|----------------|---------------|--------|--------|
| C(15)          | 59(3)<br>40(2) | 49(2)<br>62(2) | 78(3)<br>54(3) | 12(2)         | 32(2)  | 18(2)  |
| C(10)<br>C(17) | 48(2)          | 47(2)          | 54(3)<br>54(2) | -3(2)<br>3(2) | 26(2)  | 2(2)   |
| C(18)          | 43(2)          | 85(3)          | 70(3)          | -7(3)         | 26(2)  | 6(2)   |
| C(19)          | 59(5)          | 330(17)        | 254(14)        | 170(13)       | 68(7)  | 60(7)  |
| C(20)          | 88(5)          | 261(12)        | 176(9)         | -89(9)        | 94(6)  | -28(7) |
| C(21)          | /4(4)          | 105(5)         | 312(14)        | -4/(/)        | 105(7) | -27(4) |

Table 5 Hydrogen coordinates (  $x \ 10^{4}$ ) and isotropic displacement parameters (A<sup>2</sup>  $x \ 10^{4}$ ) for **13a**.

|        | X    | у    | Z     | U(eq) |
|--------|------|------|-------|-------|
|        |      |      |       |       |
| H(1A)  | 1628 | 2651 | 10590 | 149   |
| H(1B)  | 1191 | 2995 | 8948  | 149   |
| H(1C)  | 1403 | 4031 | 10123 | 149   |
| H(4A)  | 2959 | 5832 | 7652  | 70    |
| H(5A)  | 4247 | 5828 | 7517  | 60    |
| H(7A)  | 4055 | 8037 | 7469  | 75    |
| H(8A)  | 4354 | 9919 | 8697  | 97    |
| H(9A)  | 4958 | 9978 | 11172 | 94    |
| H(10A) | 5230 | 8132 | 12473 | 91    |
| H(11A) | 4952 | 6303 | 11278 | 69    |
| H(14A) | 5014 | 2197 | 11060 | 73    |
| H(15A) | 6330 | 2211 | 11155 | 73    |
| H(17A) | 5825 | 5339 | 8880  | 58    |
| H(19A) | 8243 | 3020 | 11275 | 320   |
| H(19B) | 7501 | 2172 | 11172 | 320   |
| H(19C) | 7741 | 3332 | 12185 | 320   |
| H(20A) | 7621 | 3272 | 8693  | 242   |
| H(20B) | 6714 | 3788 | 7882  | 242   |
| H(20C) | 6857 | 2451 | 8532  | 242   |
| H(21A) | 8009 | 5027 | 10215 | 233   |
| H(21B) | 7494 | 5441 | 11071 | 233   |
| H(21C) | 7106 | 5555 | 9384  | 233   |

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2011

2.2. Single crystal data of 4-aryl-2*H*-chromene **3a** 



### Table 1 Crystal data and structure refinement for **3a**

| Identification code               | 3a                                     |
|-----------------------------------|----------------------------------------|
| Empirical formula                 | C21 H22 O4                             |
| Formula weight                    | 338.39                                 |
| Temperature                       | 293(2) K                               |
| Wavelength                        | 0.71073 A                              |
| Crystal system, space group       | monoclinic, P2(1)/n                    |
| Unit cell dimensions              | a = 14.3688(8) A alpha = 90 deg.       |
|                                   | b = 7.7163(4) A beta = 111.567(2) deg. |
|                                   | c = 18.1469(11) A gamma = 90 deg.      |
| Volume                            | 1871.15(18) A^3                        |
| Z, Calculated density             | 4, 1.201 Mg/m^3                        |
| Absorption coefficient            | 0.082 mm^-1                            |
| F(000)                            | 720                                    |
| Crystal size                      | 0.78 x 0.73 x 0.33 mm                  |
| Theta range for data collection   | 2.90 to 27.48 deg.                     |
| Limiting indices                  | 0<=h<=18, 0<=k<=10, -23<=l<=21         |
| Reflections collected / unique    | 3958 / 3958 [R(int) = 0.0000]          |
| Completeness to theta $= 27.48$   | 92.3 %                                 |
| Max. and min. transmission        | 0.9733 and 0.9382                      |
| Refinement method                 | Full-matrix least-squares on F^2       |
| Data / restraints / parameters    | 3958 / 0 / 227                         |
| Goodness-of-fit on F <sup>2</sup> | 0.673                                  |
| Final R indices [I>2sigma(I)]     | R1 = 0.0521, wR2 = 0.1209              |
| R indices (all data)              | R1 = 0.1399, wR2 = 0.1338              |
| Largest diff. peak and hole       | 0.322 and -0.234 e.A^-3                |

# Table 2 Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters $(A^2 x 10^3)$ for **3a**.

|       | X        | У        | Z       | U(eq)  |
|-------|----------|----------|---------|--------|
| O(1)  | 14(2)    | 6975(3)  | 417(1)  | 83(1)  |
| O(2)  | 176(2)   | 8291(3)  | 1540(1) | 72(1)  |
| O(3)  | -392(1)  | 3926(2)  | 955(1)  | 66(1)  |
| O(4)  | 938(1)   | 4988(2)  | 2023(1) | 60(1)  |
| C(1)  | 354(3)   | 9936(3)  | 1217(2) | 91(1)  |
| C(2)  | 38(2)    | 6941(4)  | 1077(2) | 54(1)  |
| C(3)  | -75(2)   | 5268(3)  | 1492(2) | 50(1)  |
| C(4)  | -765(2)  | 5382(3)  | 1941(2) | 50(1)  |
| C(5)  | -615(2)  | 4436(3)  | 2584(2) | 46(1)  |
| C(6)  | -1324(2) | 4527(3)  | 3006(2) | 48(1)  |
| C(7)  | -2350(2) | 4439(4)  | 2586(2) | 64(1)  |
| C(8)  | -3012(2) | 4705(4)  | 2977(2) | 79(1)  |
| C(9)  | -2684(3) | 5045(4)  | 3760(2) | 81(1)  |
| C(10) | -1675(3) | 5106(4)  | 4184(2) | 75(1)  |
| C(11) | -1005(2) | 4833(3)  | 3809(2) | 60(1)  |
| C(12) | 298(2)   | 3381(3)  | 2882(2) | 47(1)  |
| C(13) | 1055(2)  | 3706(3)  | 2591(2) | 52(1)  |
| C(14) | 1948(2)  | 2825(4)  | 2859(2) | 65(1)  |
| C(15) | 2080(2)  | 1497(4)  | 3401(2) | 65(1)  |
| C(16) | 1330(2)  | 1039(4)  | 3683(2) | 53(1)  |
| C(17) | 456(2)   | 2015(3)  | 3420(2) | 52(1)  |
| C(18) | 1461(2)  | -501(4)  | 4242(2) | 61(1)  |
| C(19) | 2255(5)  | -1708(7) | 4213(4) | 272(4) |
| C(20) | 546(3)   | -1486(6) | 4054(3) | 211(3) |
| C(21) | 1772(4)  | 115(5)   | 5062(2) | 194(3) |

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

| O(1)-C(2)    | 1.186(3) |
|--------------|----------|
| O(2)-C(2)    | 1.307(3) |
| O(2)-C(1)    | 1.460(3) |
| O(3)-C(3)    | 1.379(3) |
| O(3)-H(3A)   | 0.8200   |
| O(4)-C(13)   | 1.393(3) |
| O(4)-C(3)    | 1.436(3) |
| C(1)-H(1A)   | 0.9600   |
| C(1)-H(1B)   | 0.9600   |
| C(1)-H(1C)   | 0.9600   |
| C(2)-C(3)    | 1.532(4) |
| C(3)-C(4)    | 1.500(3) |
| C(4)-C(5)    | 1.325(3) |
| C(4)-H(4B)   | 0.9300   |
| C(5)-C(12)   | 1.468(3) |
| C(5)-C(6)    | 1.484(3) |
| C(6)-C(11)   | 1.377(3) |
| C(6)-C(7)    | 1.390(3) |
| C(7)-C(8)    | 1.397(4) |
| C(7)-H(7A)   | 0.9300   |
| C(8)-C(9)    | 1.347(4) |
| C(8)-H(8A)   | 0.9300   |
| C(9)-C(10)   | 1.370(4) |
| C(9)-H(9A)   | 0.9300   |
| C(10)-C(11)  | 1.383(4) |
| C(10)-H(10A) | 0.9300   |
| C(11)-H(11A) | 0.9300   |
| C(12)-C(13)  | 1.395(3) |
| C(12)-C(17)  | 1.397(3) |
| C(13)-C(14)  | 1.373(3) |
| C(14)-C(15)  | 1.384(3) |
| C(14)-H(14A) | 0.9300   |
| C(15)-C(16)  | 1.397(3) |
| C(15)-H(15A) | 0.9300   |
| C(16)-C(17)  | 1.390(3) |
| C(16)-C(18)  | 1.529(4) |
| C(17)-H(17A) | 0.9300   |

Table 3. Bond lengths [A] and angles [deg] for **3a**.

| C(18)-C(20)      | 1.447(4)   |
|------------------|------------|
| C(18)-C(21)      | 1.466(4)   |
| C(18)-C(19)      | 1.489(5)   |
| C(19)-H(19A)     | 0.9600     |
| C(19)-H(19B)     | 0.9600     |
| C(19)-H(19C)     | 0.9600     |
| C(20)-H(20A)     | 0.9600     |
| C(20)-H(20B)     | 0.9600     |
| C(20)-H(20C)     | 0.9600     |
| C(21)-H(21A)     | 0.9600     |
| C(21)-H(21D)     | 0.9600     |
| C(21)-H(21B)     | 0.9600     |
| C(2)-O(2)-C(1)   | 116.3(2)   |
| C(3)-O(3)-H(3A)  | 109.5      |
| C(13)-O(4)-C(3)  | 114.84(19) |
| O(2)-C(1)-H(1A)  | 109.5      |
| O(2)-C(1)-H(1B)  | 109.5      |
| H(1A)-C(1)-H(1B) | 109.5      |
| O(2)-C(1)-H(1C)  | 109.5      |
| H(1A)-C(1)-H(1C) | 109.5      |
| H(1B)-C(1)-H(1C) | 109.5      |
| O(1)-C(2)-O(2)   | 124.9(3)   |
| O(1)-C(2)-C(3)   | 123.1(3)   |
| O(2)-C(2)-C(3)   | 112.0(2)   |
| O(3)-C(3)-O(4)   | 110.6(2)   |
| O(3)-C(3)-C(4)   | 108.4(2)   |
| O(4)-C(3)-C(4)   | 110.7(2)   |
| O(3)-C(3)-C(2)   | 110.6(2)   |
| O(4)-C(3)-C(2)   | 101.1(2)   |
| C(4)-C(3)-C(2)   | 115.3(2)   |
| C(5)-C(4)-C(3)   | 121.3(2)   |
| C(5)-C(4)-H(4B)  | 119.3      |
| C(3)-C(4)-H(4B)  | 119.3      |
| C(4)-C(5)-C(12)  | 117.6(2)   |
| C(4)-C(5)-C(6)   | 120.6(2)   |
| C(12)-C(5)-C(6)  | 121.7(2)   |
| C(11)-C(6)-C(7)  | 117.6(3)   |
| C(11)-C(6)-C(5)  | 122.0(2)   |
| C(7)-C(6)-C(5)   | 120.3(3)   |
| C(6)-C(7)-C(8)   | 119.8(3)   |

| C(6)-C(7)-H(7A)     | 120.1    |
|---------------------|----------|
| C(8)-C(7)-H(7A)     | 120.1    |
| C(9)-C(8)-C(7)      | 121.7(3) |
| C(9)-C(8)-H(8A)     | 119.2    |
| C(7)-C(8)-H(8A)     | 119.2    |
| C(8)-C(9)-C(10)     | 119.1(3) |
| C(8)-C(9)-H(9A)     | 120.4    |
| C(10)-C(9)-H(9A)    | 120.4    |
| C(9)-C(10)-C(11)    | 120.2(3) |
| C(9)-C(10)-H(10A)   | 119.9    |
| C(11)-C(10)-H(10A)  | 119.9    |
| C(6)-C(11)-C(10)    | 121.6(3) |
| C(6)-C(11)-H(11A)   | 119.2    |
| C(10)-C(11)-H(11A)  | 119.2    |
| C(13)-C(12)-C(17)   | 116.8(2) |
| C(13)-C(12)-C(5)    | 118.5(2) |
| C(17)-C(12)-C(5)    | 124.7(2) |
| C(14)-C(13)-O(4)    | 117.2(2) |
| C(14)-C(13)-C(12)   | 122.3(3) |
| O(4)-C(13)-C(12)    | 120.6(2) |
| C(13)-C(14)-C(15)   | 119.0(3) |
| C(13)-C(14)-H(14A)  | 120.5    |
| C(15)-C(14)-H(14A)  | 120.5    |
| C(14)-C(15)-C(16)   | 121.7(3) |
| C(14)-C(15)-H(15A)  | 119.2    |
| C(16)-C(15)-H(15A)  | 119.2    |
| C(17)-C(16)-C(15)   | 117.3(3) |
| C(17)-C(16)-C(18)   | 121.6(3) |
| C(15)-C(16)-C(18)   | 121.1(2) |
| C(16)-C(17)-C(12)   | 122.8(3) |
| C(16)-C(17)-H(17A)  | 118.6    |
| C(12)-C(17)-H(17A)  | 118.6    |
| C(20)-C(18)-C(21)   | 108.7(4) |
| C(20)-C(18)-C(19)   | 107.7(4) |
| C(21)-C(18)-C(19)   | 106.7(4) |
| C(20)-C(18)-C(16)   | 111.9(3) |
| C(21)-C(18)-C(16)   | 109.8(3) |
| C(19)-C(18)-C(16)   | 111.8(3) |
| C(18)-C(19)-H(19A)  | 109.5    |
| C(18)-C(19)-H(19B)  | 109.5    |
| H(19A)-C(19)-H(19B) | 109.5    |

| C(18)-C(19)-H(19C)  | 109.5 |
|---------------------|-------|
| H(19A)-C(19)-H(19C) | 109.5 |
| H(19B)-C(19)-H(19C) | 109.5 |
| C(18)-C(20)-H(20A)  | 109.5 |
| C(18)-C(20)-H(20B)  | 109.5 |
| H(20A)-C(20)-H(20B) | 109.5 |
| C(18)-C(20)-H(20C)  | 109.5 |
| H(20A)-C(20)-H(20C) | 109.5 |
| H(20B)-C(20)-H(20C) | 109.5 |
| C(18)-C(21)-H(21A)  | 109.5 |
| C(18)-C(21)-H(21D)  | 109.5 |
| H(21A)-C(21)-H(21D) | 109.5 |
| C(18)-C(21)-H(21B)  | 109.5 |
| H(21A)-C(21)-H(21B) | 109.5 |
| H(21D)-C(21)-H(21B) | 109.5 |
|                     |       |

Symmetry transformations used to generate equivalent atoms:

|       | U11    | U22    | U33    | U23    | U13    | U12    |
|-------|--------|--------|--------|--------|--------|--------|
| O(1)  | 139(2) | 61(1)  | 60(1)  | 7(1)   | 52(1)  | -6(1)  |
| O(2)  | 110(2) | 45(1)  | 65(1)  | -1(1)  | 38(1)  | -7(1)  |
| O(3)  | 96(2)  | 49(1)  | 66(1)  | -1(1)  | 42(1)  | -6(1)  |
| O(4)  | 51(1)  | 64(1)  | 69(1)  | 20(1)  | 28(1)  | 4(1)   |
| C(1)  | 124(3) | 42(2)  | 110(3) | 11(2)  | 48(2)  | -13(2) |
| C(2)  | 58(2)  | 49(2)  | 59(2)  | 3(2)   | 26(2)  | -3(2)  |
| C(3)  | 58(2)  | 44(2)  | 47(2)  | 4(2)   | 20(2)  | 0(2)   |
| C(4)  | 47(2)  | 50(2)  | 51(2)  | 2(2)   | 18(1)  | 3(1)   |
| C(5)  | 44(2)  | 47(2)  | 49(2)  | 0(2)   | 18(1)  | -1(1)  |
| C(6)  | 42(2)  | 48(2)  | 53(2)  | 7(1)   | 18(1)  | 2(1)   |
| C(7)  | 49(2)  | 73(2)  | 68(2)  | 12(2)  | 21(2)  | -2(2)  |
| C(8)  | 48(2)  | 103(3) | 90(3)  | 20(2)  | 30(2)  | 2(2)   |
| C(9)  | 69(2)  | 100(3) | 87(3)  | 21(2)  | 45(2)  | 13(2)  |
| C(10) | 88(2)  | 81(2)  | 64(2)  | 5(2)   | 36(2)  | 8(2)   |
| C(11) | 53(2)  | 72(2)  | 60(2)  | 3(2)   | 25(2)  | 1(2)   |
| C(12) | 46(2)  | 46(2)  | 47(2)  | 5(1)   | 16(1)  | 1(1)   |
| C(13) | 53(2)  | 49(2)  | 55(2)  | 8(2)   | 21(2)  | -3(2)  |
| C(14) | 48(2)  | 72(2)  | 78(2)  | 14(2)  | 27(2)  | 6(2)   |
| C(15) | 53(2)  | 68(2)  | 76(2)  | 17(2)  | 28(2)  | 18(2)  |
| C(16) | 49(2)  | 55(2)  | 53(2)  | 7(2)   | 15(1)  | 9(2)   |
| C(17) | 51(2)  | 56(2)  | 53(2)  | 6(2)   | 24(1)  | 5(2)   |
| C(18) | 60(2)  | 61(2)  | 58(2)  | 19(2)  | 17(2)  | 11(2)  |
| C(19) | 391(9) | 183(5) | 397(9) | 218(6) | 329(8) | 217(6) |
| C(20) | 134(4) | 155(4) | 243(6) | 148(4) | -49(4) | -71(4) |
| C(21) | 314(7) | 137(4) | 65(3)  | 42(3)  | -7(4)  | -62(4) |

Table 4. Anisotropic displacement parameters (A<sup>2</sup> x 10<sup>3</sup>) for **3a**. The anisotropic displacement factor exponent takes the form: -2 pi<sup>2</sup> [ h<sup>2</sup> a<sup>\*</sup> U11 + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U12 ]

|        | Х     | У     | Z    | U(eq) |
|--------|-------|-------|------|-------|
|        | 142   | 4020  | 617  | 100   |
| H(3A)  | -145  | 4030  | 01/  | 100   |
| H(1A)  | 444   | 10837 | 1602 | 130   |
| H(1B)  | -209  | 10209 | /46  | 130   |
| H(IC)  | 945   | 9845  | 1091 | 136   |
| H(4B)  | -1309 | 6132  | 1765 | 60    |
| H(7A)  | -2594 | 4204  | 2045 | 76    |
| H(8A)  | -3697 | 4645  | 2691 | 95    |
| H(9A)  | -3137 | 5236  | 4009 | 97    |
| H(10A) | -1439 | 5333  | 4725 | 90    |
| H(11A) | -322  | 4856  | 4107 | 72    |
| H(14A) | 2456  | 3115  | 2679 | 78    |
| H(15A) | 2682  | 895   | 3582 | 78    |
| H(17A) | -46   | 1747  | 3610 | 62    |
| H(19A) | 2312  | -2661 | 4567 | 408   |
| H(19B) | 2882  | -1104 | 4369 | 408   |
| H(19C) | 2082  | -2139 | 3683 | 408   |
| H(20A) | 655   | -2432 | 4420 | 317   |
| H(20B) | 347   | -1930 | 3525 | 317   |
| H(20C) | 28    | -749  | 4094 | 317   |
| H(21A) | 1842  | -855  | 5409 | 291   |
| H(21D) | 1276  | 896   | 5108 | 291   |
| H(21B) | 2401  | 708   | 5204 | 291   |

## Table 5. Hydrogen coordinates ( $x \ 10^{4}$ ) and isotropic displacement parameters (A<sup>2</sup> x 10<sup>3</sup>) for **3a**.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

2.3. Single crystal data of amino ester 6a



| Table 1 Crystal data and structure | e refinement for <b>6a</b>       |  |  |  |
|------------------------------------|----------------------------------|--|--|--|
| Identification code                | 6a                               |  |  |  |
| Empirical formula                  | C28 H29 N O3                     |  |  |  |
| Formula weight                     | 427.52                           |  |  |  |
| Temperature                        | 293(2) K                         |  |  |  |
| Wavelength                         | 0.71073 A                        |  |  |  |
| Crystal system, space group        | Orthorhombic, P2(1)2(1)2(1)      |  |  |  |
| Unit cell dimensions               | a = 6.0368(12) A alpha = 90 deg. |  |  |  |
|                                    | b = 13.398(3) A beta = 90 deg.   |  |  |  |
|                                    | c = 29.789(6) A gamma = 90 deg.  |  |  |  |
| Volume                             | 2409.3(8) A^3                    |  |  |  |
| Z, Calculated density              | 4, 1.179 Mg/m^3                  |  |  |  |
| Absorption coefficient             | 0.076 mm^-1                      |  |  |  |
| F(000)                             | 912                              |  |  |  |
| Crystal size                       | 0.75 x 0.28 x 0.08 mm            |  |  |  |
| Theta range for data collection    | 1.37 to 27.47 deg.               |  |  |  |
| Limiting indices                   | -6<=h<=7, -16<=k<=17, -36<=l<=38 |  |  |  |
| Reflections collected / unique     | 18931 / 3133 [R(int) = 0.0473]   |  |  |  |
| Completeness to theta $= 27.47$    | 98.7 %                           |  |  |  |
| Absorption correction              | Empirical                        |  |  |  |
| Max. and min. transmission         | 0.9943 and 0.9455                |  |  |  |
| Refinement method                  | Full-matrix least-squares on F^2 |  |  |  |
| Data / restraints / parameters     | 3133 / 0 / 289                   |  |  |  |
| Goodness-of-fit on F^2             | 1.010                            |  |  |  |
| Final R indices [I>2sigma(I)]      | R1 = 0.0436, wR2 = 0.1095        |  |  |  |
| R indices (all data)               | R1 = 0.0698, wR2 = 0.1307        |  |  |  |
| Absolute structure parameter       | -1(2)                            |  |  |  |
| Largest diff. peak and hole        | 0.314 and -0.323 e.A^-3          |  |  |  |

Table 2. Atomic coordinates (  $x \ 10^{4}$ ) and equivalent isotropic displacement parameters (A<sup>2</sup>  $x \ 10^{3}$ ) for **6a**.

|       | х         | У        | Z       | U(eq) |
|-------|-----------|----------|---------|-------|
| O(1)  | 1746(4)   | 6238(2)  | 2461(1) | 67(1) |
| O(2)  | 4541(3)   | 7217(2)  | 2267(1) | 75(1) |
| O(3)  | 1963(3)   | 8528(2)  | 1882(1) | 55(1) |
| N(1)  | -855(4)   | 7980(2)  | 2380(1) | 50(1) |
| C(1)  | 3279(6)   | 5543(3)  | 2660(1) | 82(1) |
| C(2)  | 2611(5)   | 7043(3)  | 2274(1) | 50(1) |
| C(3)  | 783(4)    | 7680(2)  | 2062(1) | 46(1) |
| C(4)  | -370(5)   | 7120(2)  | 1692(1) | 47(1) |
| C(5)  | -1201(5)  | 7610(2)  | 1345(1) | 44(1) |
| C(6)  | -2527(5)  | 7106(2)  | 989(1)  | 47(1) |
| C(7)  | -4513(6)  | 6663(3)  | 1092(1) | 73(1) |
| C(8)  | -5736(7)  | 6193(3)  | 759(2)  | 98(1) |
| C(9)  | -4962(10) | 6170(3)  | 332(2)  | 98(2) |
| C(10) | -2996(9)  | 6592(3)  | 226(1)  | 83(1) |
| C(11) | -1763(6)  | 7072(2)  | 554(1)  | 60(1) |
| C(12) | -850(5)   | 8698(2)  | 1314(1) | 47(1) |
| C(13) | -2010(5)  | 9316(2)  | 1025(1) | 49(1) |
| C(14) | -1614(5)  | 10339(2) | 1001(1) | 52(1) |
| C(15) | 42(6)     | 10714(3) | 1278(1) | 65(1) |
| C(16) | 1204(6)   | 10117(2) | 1568(1) | 65(1) |
| C(17) | 759(5)    | 9112(2)  | 1592(1) | 50(1) |
| C(18) | -2899(6)  | 11035(2) | 689(1)  | 57(1) |
| C(19) | -4033(7)  | 11854(3) | 967(1)  | 81(1) |
| C(20) | -1316(7)  | 11523(3) | 356(1)  | 82(1) |
| C(21) | -4716(7)  | 10494(2) | 429(1)  | 71(1) |
| C(22) | -391(5)   | 8334(2)  | 2813(1) | 44(1) |
| C(23) | 1589(5)   | 8786(2)  | 2925(1) | 54(1) |
| C(24) | 1931(6)   | 9119(2)  | 3359(1) | 56(1) |
| C(25) | 378(6)    | 9027(2)  | 3688(1) | 53(1) |
| C(26) | -1626(6)  | 8598(2)  | 3569(1) | 59(1) |
| C(27) | -2008(5)  | 8243(2)  | 3140(1) | 53(1) |
| C(28) | 802(8)    | 9345(2)  | 4168(1) | 74(1) |

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

| O(1)-C(2)      | 1.322(4) |
|----------------|----------|
| O(1)-C(1)      | 1.440(4) |
| O(2)-C(2)      | 1.189(3) |
| O(3)-C(17)     | 1.373(3) |
| O(3)-C(3)      | 1.444(3) |
| N(1)-C(22)     | 1.403(3) |
| N(1)-C(3)      | 1.429(3) |
| C(2)-C(3)      | 1.531(4) |
| C(3)-C(4)      | 1.503(4) |
| C(4)-C(5)      | 1.321(4) |
| C(5)-C(12)     | 1.476(4) |
| C(5)-C(6)      | 1.492(4) |
| C(6)-C(7)      | 1.372(5) |
| C(6)-C(11)     | 1.375(4) |
| C(7)-C(8)      | 1.386(5) |
| C(8)-C(9)      | 1.358(7) |
| C(9)-C(10)     | 1.352(7) |
| C(10)-C(11)    | 1.387(5) |
| C(12)-C(13)    | 1.384(4) |
| C(12)-C(17)    | 1.393(4) |
| C(13)-C(14)    | 1.394(4) |
| C(14)-C(15)    | 1.390(4) |
| C(14)-C(18)    | 1.527(4) |
| C(15)-C(16)    | 1.371(5) |
| C(16)-C(17)    | 1.375(4) |
| C(18)-C(20)    | 1.525(5) |
| C(18)-C(21)    | 1.527(5) |
| C(18)-C(19)    | 1.536(4) |
| C(22)-C(23)    | 1.380(4) |
| C(22)-C(27)    | 1.384(4) |
| C(23)-C(24)    | 1.383(4) |
| C(24)-C(25)    | 1.363(5) |
| C(25)-C(26)    | 1.386(5) |
| C(25)-C(28)    | 1.514(4) |
| C(26)-C(27)    | 1.381(4) |
| C(2)-O(1)-C(1) | 116.6(2) |

Table 3. Bond lengths [A] and angles [deg] for **6a**.

| C(17)-O(3)-C(3)   | 114.9(2) |
|-------------------|----------|
| C(22)-N(1)-C(3)   | 124.6(2) |
| O(2)-C(2)-O(1)    | 123.7(3) |
| O(2)-C(2)-C(3)    | 126.1(3) |
| O(1)-C(2)-C(3)    | 110.2(2) |
| N(1)-C(3)-O(3)    | 111.5(2) |
| N(1)-C(3)-C(4)    | 107.9(2) |
| O(3)-C(3)-C(4)    | 110.5(2) |
| N(1)-C(3)-C(2)    | 112.4(2) |
| O(3)-C(3)-C(2)    | 103.7(2) |
| C(4)-C(3)-C(2)    | 111.0(2) |
| C(5)-C(4)-C(3)    | 120.0(3) |
| C(4)-C(5)-C(12)   | 119.1(3) |
| C(4)-C(5)-C(6)    | 122.3(3) |
| C(12)-C(5)-C(6)   | 118.6(2) |
| C(7)-C(6)-C(11)   | 119.3(3) |
| C(7)-C(6)-C(5)    | 120.4(3) |
| C(11)-C(6)-C(5)   | 120.3(3) |
| C(6)-C(7)-C(8)    | 120.2(4) |
| C(9)-C(8)-C(7)    | 119.8(4) |
| C(10)-C(9)-C(8)   | 120.8(4) |
| C(9)-C(10)-C(11)  | 120.0(4) |
| C(6)-C(11)-C(10)  | 120.0(4) |
| C(13)-C(12)-C(17) | 119.0(3) |
| C(13)-C(12)-C(5)  | 123.9(3) |
| C(17)-C(12)-C(5)  | 117.1(3) |
| C(12)-C(13)-C(14) | 122.2(3) |
| C(15)-C(14)-C(13) | 116.6(3) |
| C(15)-C(14)-C(18) | 120.4(3) |
| C(13)-C(14)-C(18) | 123.0(3) |
| C(16)-C(15)-C(14) | 122.1(3) |
| C(15)-C(16)-C(17) | 120.3(3) |
| O(3)-C(17)-C(16)  | 119.2(3) |
| O(3)-C(17)-C(12)  | 121.1(3) |
| C(16)-C(17)-C(12) | 119.7(3) |
| C(20)-C(18)-C(21) | 108.8(3) |
| C(20)-C(18)-C(14) | 109.8(3) |
| C(21)-C(18)-C(14) | 112.6(2) |
| C(20)-C(18)-C(19) | 108.9(3) |
| C(21)-C(18)-C(19) | 107.0(3) |
| C(14)-C(18)-C(19) | 109.6(3) |

| C(23)-C(22)-C(27) | 118.7(3) |
|-------------------|----------|
| C(23)-C(22)-N(1)  | 122.9(3) |
| C(27)-C(22)-N(1)  | 118.5(3) |
| C(22)-C(23)-C(24) | 119.8(3) |
| C(25)-C(24)-C(23) | 122.7(3) |
| C(24)-C(25)-C(26) | 116.9(3) |
| C(24)-C(25)-C(28) | 122.6(3) |
| C(26)-C(25)-C(28) | 120.5(3) |
| C(27)-C(26)-C(25) | 121.7(3) |
| C(26)-C(27)-C(22) | 120.1(3) |
|                   |          |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A<sup>2</sup> x 10<sup>3</sup>) for **6a**. The anisotropic displacement factor exponent takes the form:  $-2 \text{ pi}^2 [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$ 

| U11    | U22                                                                                                                                                            | U33                                                                                                                                                                                                                                                                                                        | U23                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 48(1)  | 76(2)                                                                                                                                                          | 76(1)                                                                                                                                                                                                                                                                                                      | 21(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -9(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 33(1)  | 101(2)                                                                                                                                                         | 90(2)                                                                                                                                                                                                                                                                                                      | 8(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -5(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -10(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 43(1)  | 73(1)                                                                                                                                                          | 50(1)                                                                                                                                                                                                                                                                                                      | 8(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -8(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -23(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 30(1)  | 73(2)                                                                                                                                                          | 46(1)                                                                                                                                                                                                                                                                                                      | -6(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -9(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 71(2)  | 86(2)                                                                                                                                                          | 90(3)                                                                                                                                                                                                                                                                                                      | 19(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -13(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 36(2)  | 74(2)                                                                                                                                                          | 41(2)                                                                                                                                                                                                                                                                                                      | -7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -8(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 34(1)  | 62(2)                                                                                                                                                          | 41(2)                                                                                                                                                                                                                                                                                                      | 1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -3(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -14(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40(1)  | 56(2)                                                                                                                                                          | 46(2)                                                                                                                                                                                                                                                                                                      | -4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -13(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40(1)  | 51(2)                                                                                                                                                          | 40(2)                                                                                                                                                                                                                                                                                                      | -6(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -8(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 50(2)  | 44(2)                                                                                                                                                          | 45(2)                                                                                                                                                                                                                                                                                                      | -4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -12(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 54(2)  | 91(3)                                                                                                                                                          | 74(2)                                                                                                                                                                                                                                                                                                      | -17(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -8(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -17(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 67(3)  | 107(3)                                                                                                                                                         | 120(4)                                                                                                                                                                                                                                                                                                     | -21(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -31(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -28(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 123(4) | 75(3)                                                                                                                                                          | 95(3)                                                                                                                                                                                                                                                                                                      | -20(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -66(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 130(4) | 67(2)                                                                                                                                                          | 51(2)                                                                                                                                                                                                                                                                                                      | -12(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -31(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 75(2)  | 59(2)                                                                                                                                                          | 47(2)                                                                                                                                                                                                                                                                                                      | 1(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -12(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 44(2)  | 56(2)                                                                                                                                                          | 41(2)                                                                                                                                                                                                                                                                                                      | -3(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -10(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 45(2)  | 54(2)                                                                                                                                                          | 47(2)                                                                                                                                                                                                                                                                                                      | -9(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -8(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | U11<br>48(1)<br>33(1)<br>43(1)<br>30(1)<br>71(2)<br>36(2)<br>34(1)<br>40(1)<br>40(1)<br>50(2)<br>54(2)<br>67(3)<br>123(4)<br>130(4)<br>75(2)<br>44(2)<br>45(2) | U11U22 $48(1)$ $76(2)$ $33(1)$ $101(2)$ $43(1)$ $73(1)$ $30(1)$ $73(2)$ $71(2)$ $86(2)$ $36(2)$ $74(2)$ $34(1)$ $62(2)$ $40(1)$ $56(2)$ $40(1)$ $56(2)$ $40(1)$ $51(2)$ $50(2)$ $44(2)$ $54(2)$ $91(3)$ $67(3)$ $107(3)$ $123(4)$ $75(3)$ $130(4)$ $67(2)$ $75(2)$ $59(2)$ $44(2)$ $56(2)$ $45(2)$ $54(2)$ | U11U22U33 $48(1)$ $76(2)$ $76(1)$ $33(1)$ $101(2)$ $90(2)$ $43(1)$ $73(1)$ $50(1)$ $30(1)$ $73(2)$ $46(1)$ $71(2)$ $86(2)$ $90(3)$ $36(2)$ $74(2)$ $41(2)$ $34(1)$ $62(2)$ $41(2)$ $40(1)$ $56(2)$ $46(2)$ $40(1)$ $56(2)$ $46(2)$ $40(1)$ $51(2)$ $40(2)$ $50(2)$ $44(2)$ $45(2)$ $54(2)$ $91(3)$ $74(2)$ $67(3)$ $107(3)$ $120(4)$ $123(4)$ $75(3)$ $95(3)$ $130(4)$ $67(2)$ $51(2)$ $75(2)$ $59(2)$ $47(2)$ $44(2)$ $56(2)$ $41(2)$ $45(2)$ $54(2)$ $47(2)$ | U11U22U33U23 $48(1)$ $76(2)$ $76(1)$ $21(1)$ $33(1)$ $101(2)$ $90(2)$ $8(2)$ $43(1)$ $73(1)$ $50(1)$ $8(1)$ $30(1)$ $73(2)$ $46(1)$ $-6(1)$ $71(2)$ $86(2)$ $90(3)$ $19(2)$ $36(2)$ $74(2)$ $41(2)$ $-7(2)$ $34(1)$ $62(2)$ $41(2)$ $-7(2)$ $34(1)$ $62(2)$ $41(2)$ $-7(2)$ $34(1)$ $56(2)$ $46(2)$ $-4(1)$ $40(1)$ $51(2)$ $40(2)$ $-6(1)$ $50(2)$ $44(2)$ $45(2)$ $-4(1)$ $40(1)$ $51(2)$ $40(2)$ $-6(1)$ $50(2)$ $44(2)$ $45(2)$ $-4(1)$ $54(2)$ $91(3)$ $74(2)$ $-17(2)$ $67(3)$ $107(3)$ $120(4)$ $-21(3)$ $123(4)$ $75(3)$ $95(3)$ $-20(2)$ $130(4)$ $67(2)$ $51(2)$ $-12(2)$ $75(2)$ $59(2)$ $47(2)$ $1(2)$ $44(2)$ $56(2)$ $41(2)$ $-3(1)$ $45(2)$ $54(2)$ $47(2)$ $-9(1)$ | U11U22U33U23U13 $48(1)$ $76(2)$ $76(1)$ $21(1)$ $-9(1)$ $33(1)$ $101(2)$ $90(2)$ $8(2)$ $-5(1)$ $43(1)$ $73(1)$ $50(1)$ $8(1)$ $-8(1)$ $30(1)$ $73(2)$ $46(1)$ $-6(1)$ $-4(1)$ $71(2)$ $86(2)$ $90(3)$ $19(2)$ $-13(2)$ $36(2)$ $74(2)$ $41(2)$ $-7(2)$ $-1(1)$ $34(1)$ $62(2)$ $41(2)$ $-7(2)$ $-1(1)$ $34(1)$ $62(2)$ $41(2)$ $-4(1)$ $-4(1)$ $40(1)$ $56(2)$ $46(2)$ $-4(1)$ $-4(1)$ $40(1)$ $51(2)$ $40(2)$ $-6(1)$ $-2(1)$ $50(2)$ $44(2)$ $45(2)$ $-4(1)$ $-12(1)$ $54(2)$ $91(3)$ $74(2)$ $-17(2)$ $-8(2)$ $67(3)$ $107(3)$ $120(4)$ $-21(3)$ $-31(3)$ $123(4)$ $75(3)$ $95(3)$ $-20(2)$ $-66(3)$ $130(4)$ $67(2)$ $51(2)$ $-12(2)$ $-31(3)$ $75(2)$ $59(2)$ $47(2)$ $1(2)$ $-12(2)$ $44(2)$ $56(2)$ $41(2)$ $-3(1)$ $1(1)$ $45(2)$ $54(2)$ $47(2)$ $-9(1)$ $-4(2)$ |

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

\_

| C(14) | 53(2)  | 53(2) | 49(2)  | -7(1)  | 6(2)   | -7(2)  |
|-------|--------|-------|--------|--------|--------|--------|
| C(15) | 71(2)  | 56(2) | 68(2)  | 1(2)   | -1(2)  | -22(2) |
| C(16) | 60(2)  | 68(2) | 66(2)  | -1(2)  | -9(2)  | -32(2) |
| C(17) | 43(2)  | 65(2) | 43(2)  | 3(1)   | -1(1)  | -19(2) |
| C(18) | 59(2)  | 51(2) | 63(2)  | -5(2)  | 6(2)   | 3(2)   |
| C(19) | 78(3)  | 64(2) | 100(3) | -18(2) | 12(2)  | 4(2)   |
| C(20) | 87(3)  | 75(2) | 84(2)  | 21(2)  | 16(2)  | 6(2)   |
| C(21) | 76(2)  | 69(2) | 68(2)  | -4(2)  | -12(2) | 15(2)  |
| C(22) | 39(1)  | 48(2) | 46(2)  | 2(1)   | -4(1)  | 0(1)   |
| C(23) | 43(2)  | 69(2) | 51(2)  | -6(2)  | -2(2)  | -12(2) |
| C(24) | 53(2)  | 56(2) | 59(2)  | -10(2) | -10(2) | -7(2)  |
| C(25) | 67(2)  | 42(2) | 49(2)  | -4(1)  | -7(2)  | 7(2)   |
| C(26) | 64(2)  | 62(2) | 50(2)  | 0(2)   | 11(2)  | -4(2)  |
| C(27) | 44(2)  | 59(2) | 56(2)  | 1(2)   | 0(2)   | -8(2)  |
| C(28) | 103(3) | 64(2) | 56(2)  | -16(2) | -11(2) | 5(2)   |
|       |        |       |        |        |        |        |

Table 5. Hydrogen coordinates (  $x \ 10^{4}$ ) and isotropic displacement parameters (A<sup>2</sup> x 10<sup>3</sup>) for **6a**.

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                          |        | Х     | У     | Z    | U(eq) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|------|-------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                          |        |       |       |      |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                          | H(1A)  | -2222 | 7940  | 2301 | 60    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                          | H(1B)  | 2476  | 4992  | 2786 | 123   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                          | H(1C)  | 4107  | 5872  | 2892 | 123   |
| H(4A)-4986429170757H(7A)-50386677138588H(8A)-70845895829118H(9A)-57935859109117H(10A)-24706561-6799H(11A)-421737148072H(13A)-3090903884059H(15A)37311391126678 | H(1D)  | 4277  | 5301  | 2434 | 123   |
| H(7A)-50386677138588H(8A)-70845895829118H(9A)-57935859109117H(10A)-24706561-6799H(11A)-421737148072H(13A)-3090903884059H(15A)37311391126678                    | H(4A)  | -498  | 6429  | 1707 | 57    |
| H(8A)-70845895829118H(9A)-57935859109117H(10A)-24706561-6799H(11A)-421737148072H(13A)-3090903884059H(15A)37311391126678                                        | H(7A)  | -5038 | 6677  | 1385 | 88    |
| H(9A)-57935859109117H(10A)-24706561-6799H(11A)-421737148072H(13A)-3090903884059H(15A)37311391126678                                                            | H(8A)  | -7084 | 5895  | 829  | 118   |
| H(10A)-24706561-6799H(11A)-421737148072H(13A)-3090903884059H(15A)37311391126678                                                                                | H(9A)  | -5793 | 5859  | 109  | 117   |
| H(11A)-421737148072H(13A)-3090903884059H(15A)37311391126678                                                                                                    | H(10A) | -2470 | 6561  | -67  | 99    |
| H(13A)-3090903884059H(15A)37311391126678                                                                                                                       | H(11A) | -421  | 7371  | 480  | 72    |
| H(15A) 373 11391 1266 78                                                                                                                                       | H(13A) | -3090 | 9038  | 840  | 59    |
|                                                                                                                                                                | H(15A) | 373   | 11391 | 1266 | 78    |
| H(16A) 2297 10394 1750 77                                                                                                                                      | H(16A) | 2297  | 10394 | 1750 | 77    |
| H(19A) -2940 12207 1140 121                                                                                                                                    | H(19A) | -2940 | 12207 | 1140 | 121   |
| H(19B) -5095 11556 1166 121                                                                                                                                    | H(19B) | -5095 | 11556 | 1166 | 121   |

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2011

| H(19C) | -4773 | 12312 | 770  | 121 |
|--------|-------|-------|------|-----|
| H(20A) | -607  | 11016 | 179  | 122 |
| H(20B) | -214  | 11896 | 517  | 122 |
| H(20C) | -2129 | 11963 | 163  | 122 |
| H(21A) | -4065 | 9979  | 248  | 106 |
| H(21B) | -5477 | 10961 | 239  | 106 |
| H(21C) | -5748 | 10202 | 636  | 106 |
| H(23A) | 2688  | 8865  | 2709 | 65  |
| H(24A) | 3277  | 9419  | 3429 | 67  |
| H(26A) | -2742 | 8547  | 3783 | 70  |
| H(27A) | -3355 | 7943  | 3071 | 63  |
| H(28A) | 2266  | 9619  | 4192 | 112 |
| H(28B) | 674   | 8776  | 4363 | 112 |
| H(28C) | -265  | 9840  | 4254 | 112 |
|        |       |       |      |     |

Table 6. Hydrogen bonds for **6a** [A and deg.].

| D-HA             | d(D-H) | d(HA) | d(DA)    | <(DHA) |
|------------------|--------|-------|----------|--------|
| N(1)-H(1A)O(2)#1 | 0.86   | 2.18  | 2.981(3) | 154.0  |

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z