An important role of intramolecular free radical reactions in antimalarial activity of artemisinin and its analogs

Evgeny Denisov

Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region, 142432, Russia, e-mail: det@icp.ac.ru

02

Me

51

(он

HOH

 0_2

HO

ò

Ме 1 200Н

Me

O_OH

OH_{OH} <u>Me</u>OO

,ОН

Me

о́. Н

OH

HOI

о́, Н

55

Me

61

ЛОН

Ò

HOL

ò

H^O

62

ò

Me Η

Me

Scheme 2. Stages of the intramolecular oxidation of compound **3.** Kinetic characteristics $(\Delta H, E, k)$ of elementary steps of intramolecular oxidation of compound **3** are given in Table 6.

As in the case of compound **2**, free radical $\text{RO}^{1\bullet}(3)$ is isomerized in parallel to alkyl radicals $\text{R}^{4\bullet}(3)$ and $\text{R}^{7\bullet}(3)$ with the ratio of rate constants 2:1. The oxidation and destruction of $\text{R}^{4\bullet}(3)$ produces three hydroxy radicals and one thiyl radical, and the oxidation of $\text{R}^{7\bullet}(3)$ produces two hydroxy radicals and one LS[•] radical. Radical $\text{RO}^{2\bullet}$ is generated due to the oxidation of six hydroxy radicals. The total yield of radicals per molecule of **3** is equal to 4.33 hydroxy radicals (that is more than **1**!) and 0.5 LS[•] radical.

Scheme 3. Stages of the intramolecular oxidation of radical $RO^{2\bullet}$ of compound 4. Kinetic characteristics (ΔH , *E*, *k*) of elementary steps of the intramolecular oxidation of compound 4 are given in Table 6.

It is seen that the intramolecular oxidation of radical $RO^{2^{\bullet}}(4)$ proceeds *via* a line of consecutive reactions and generates, as a result, three HO[•] radicals and one LS[•] radical. The same cascade of free radical reactions proceeds in the case of intramolecular transformations of radicals $RO^{2^{\bullet}}(5)$ and $RO^{2^{\bullet}}(6)$.

O₂

Me

112

114

0

"ОН

чо<u>,</u>

// 0

ОН | ОН | ОН

ЮН

O

όн

118

O C

// 0

123

, ОН

\н<u>о</u>,,

Me

0

≥0

`0 `ОН

он

 $+ \mathrm{OH}$

ŌН

117

125

128

Scheme 4 Stages of the intramolecular oxidation of radical RO¹•(4). Kinetic characteristics ($\Delta H, E, k$) of elementary steps of the intramolecular oxidation of compound **5** are given in Table 6.

The formed methoxy radical reacts preferentially with LSH forming LS[•] radical. So, the final yield of free radicals per radical $RO^{1\bullet}(4)$ is as follows: 3 HO[•] and 2 LS[•]. The total yield of free radicals *via* oxidation of compound 4 is 3 HO[•] + 1.5 LS[•].

The introduction of the methyl group in position 4 in such a way that the C^4 -H bond is available for RO¹ intramolecular attack of compound **3** changes the situation dramatically (see Scheme 5).

Scheme 5 Stages of the intramolecular oxidation of radical RO^{1•} (5). Kinetic characteristics ($\Delta H, E, k$) of elementary steps of the intramolecular oxidation of compound 5 are given in Table 6.

158

159

157

The methyl group decreases the bond dissociation energy of the adjacent C⁴–H bond, and practically all RO^{1•}(**5**) radicals are transformed into radical R^{4•}(**5**). The latter is oxidized with the generation of four hydroxyls and one thiyl radical. The total yield of HO[•] radicals is as much as $3.75 \text{ HO}^{•} + 1.5 \text{ LS}^{•}$, which is higher than that for 1! This is in agreement with the antimalarial activity of **5**, which is twice as large as that of 1.²⁴

The change in methyl group orientation at the C^4 atom affects very strongly the antimalarial activity of compound 6.²⁴ In this compound, the C⁴–H bond cannot be attacked by RO^{1•} radical, and the oxidation proceeds in another way (see Scheme 6). As a result, the oxidation of RO^{1•} radical generates only two hydroxy and two LS[•] radicals. The total yield of HO[•] radicals is equal to 2.5 HO[•] and that of thiyl radicals is 1.5.

Scheme 6 Stages of the intramolecular oxidation of radical RO^{1•}(6). Kinetic characteristics ($\Delta H, E, k$) of elementary steps of the intramolecular oxidation of compound 6 are given in Table 6.

-			
Reaction	$\Delta H (\mathrm{kJ}\mathrm{mol}^{-1})$	$E (\text{kJ mol}^{-1})$	k (310 K) (s ⁻¹)
$48 \rightarrow 49, 92 \rightarrow 93, 142 \rightarrow 143$	-48.5	17.0	5.46×10^{9}
$49 \rightarrow 50, 50 \rightarrow 51, 73 \rightarrow 74$	19.7	44.5	1.74×10^{5}
$51 \rightarrow 52$	29.2	49.5	2.51×10^{4}
$52 \rightarrow 53, 145 \rightarrow 146$	36.9	54.6	3.47×10^{3}
$53 \rightarrow 54, 86 \rightarrow 87$	45.3	57.4	1.22×10^{3}
$54 \rightarrow 55, 74 \rightarrow 75, 76 \rightarrow 77, 87 \rightarrow 88,$	-6.9	19.8	4.15×10^{6}
$147 \rightarrow 148$			
$55 \rightarrow 56, 64 \rightarrow 65, 65 \rightarrow 66, 88 \rightarrow 89,$	12.5	42.7	3.51×10^{5}
108 →109			
$59 \rightarrow 60, 165 \rightarrow 166$	43.3	56.3	1.80×10^{3}
$60 \rightarrow 61, 120 \rightarrow 121$	13.5	41.5	2.03×10^{2}
$63 \rightarrow 64, 107 \rightarrow 108, 156 \rightarrow 157,$	-34.6	21.8	8.51×10^{8}
$67 \rightarrow 68, 85 \rightarrow 86, 114 \rightarrow 115,$	-43.0	18.4	3.17×10^{9}
$128 \rightarrow 129, 132 \rightarrow 133$			
$68 \rightarrow 69, 95 \rightarrow 96, 146 \rightarrow 147$	50.2	60.0	4.27×10^{2}
$69 \rightarrow 70$	30.0	49.4	2.61×10^{4}
$70 \rightarrow 71, 77 \rightarrow 78, 83 \rightarrow 84, 113 \rightarrow 114,$	17.2	43.2	2.88×10^{5}
$126 \rightarrow 127, 148 \rightarrow 149, 162 \rightarrow 163$			
$72 \rightarrow 73, 168 \rightarrow 169$	-53.2	14.9	1.23×10^{10}
$75 \rightarrow 76$	49.5	57.7	1.04×10^{3}
$80 \rightarrow 81, 80 \rightarrow 81, 90 \rightarrow 91, 138 \rightarrow 139,$	-78.5	5.8	2.06×10^{6}

Table 6. Kinetic characteristics (ΔH , *E*, *k*) of elementary steps of the intramolecular oxidation of compounds **3-6**

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011 $170 \rightarrow 171, 172 \rightarrow 173$				
$4 \rightarrow 125, 3 \rightarrow 82, 101 \rightarrow 102, 111 \rightarrow 112,$	-29.7	23.6	4.26×10^{8}	
$124 \rightarrow 125, 128 \rightarrow 129, 160 \rightarrow 161$				
$82 \rightarrow 83$	22.1	45.7	1.10×10^{5}	
$93 \rightarrow 94, 133 \rightarrow 134, 143 \rightarrow 144$	19.5	44.3	1.79×10^{5}	
$94 \rightarrow 95, 165 \rightarrow 166$	32.6	50.7	1.54×10^{4}	
$96 \rightarrow 97$	38.4	53.7	4.95×10^{3}	
$97 \rightarrow 98$	10.3	40.0	1.00×10^{6}	
$99 \rightarrow 100$	-67.6	10.3	7.35×10^{10}	
$102 \rightarrow 103$	34.0	53.0	4.00×10^{2}	
$103 \rightarrow 104$	-2.1	31.0	1.20×10^{2}	
$109 \rightarrow 110$	8.0	40.6	7.93×10^{5}	
$112 \rightarrow 113$	-9.3	31.5	2.48×10^{7}	
$115 \rightarrow 116$	26.7	47.8	4.85×10^{4}	
$116 \rightarrow 117$	39.0	54.0	4.37×10^{3}	
$117 \rightarrow 118, 157 \rightarrow 158$	-5.5	29.5	5.35×10^{2}	
$119 \rightarrow 120, 135 \rightarrow 136$	22.9	46.0	7.93×10^{5}	
$123 \rightarrow 124$	-71.9	1.5	1.12×10^{7}	
$129 \rightarrow 130, 151 \rightarrow 152$	28.6	48.7	3.36×10^{4}	
$130 \rightarrow 131$	2.5	36.5	3.89×10^{6}	
$134 \rightarrow 135$	41.0	56.6	1.59×10^{3}	
$136 \rightarrow 137$	8.8	41.0	6.79×10^{5}	
$144 \rightarrow 145$	27.1	48.0	1.49×10^{8}	
$150 \rightarrow 151, 164 \rightarrow 165$	-44.4	18.2	3.41×10^{9}	
$152 \rightarrow 153$	-8.2	32.0	2.23×10^{7}	
$154 \rightarrow 155$	-77.4	3.3	2.78×10^{12}	
$161 \rightarrow 162, 125 \rightarrow 126$	24.5	46.7	7.32×10^{4}	
$166 \rightarrow 167$	-4.4	33.6	2.82×10^{7}	
$169 \rightarrow 170$	15.2	43.8	2.25×10^{5}	