This journal is (c) The Royal Society of Chemistry 2011

Reductive Biotransformation of Nitroalkenes via Nitroso-intermediates to Oxazetes Catalyzed by Xenobiotic Reductase A (XenA)

Katharina Durchschein,^a Walter M. F. Fabian,^a Peter Macheroux,^b Klaus Zangger,^a Gregor Trimmel,^c Kurt Faber*^a

Electronic Supporting Information

Sources of enzymes, compounds and materials	S2
Synthesis of substrates and reference materials	S2
Analytical procedures	S5
Differential Scanning Calorimetry (DSC)	S7
High resolution MS measurements	S 8
NMR-Spectra of oxazete 1e	S9
Computational details	S12

^a Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28; A-8010 Graz, Austria. E-mail: Kurt.Faber@Uni-Graz.at.

^b Institute of Biochemistry, Petersgasse 12, Graz University of Technology, A-8010 Graz, Austria.

^c Institute of Chemistry and Technology of Materials, Stremayrgasse 16, Graz University of Technology; 8010 Graz, Austria.

Source of enzymes, compounds and materials

TLC were run on silica (Merck silica gel 60, F₂₅₄). IR spectra were recorded as film on NaCl plates on a Unicam Galaxy 7020 FTIR spectrometer. All NMR spectra were acquired at 25 °C on a Bruker Avance III 300 MHz NMR spectrometer, equipped with a 5mm TXI probe and zaxis gradients. For the two-dimensional NMR spectra (HSQC and HMBC), data matrices of 2048x256 (F2xF1) points were acquired with 4 and 16 scans for the HSQC and HMBC spectrum, respectively. Chemical shifts are reported in ppm [δ] and coupling constants are given in Hz. High Resolution MS measurements were performed with Narrow SIM @ 1.250.000 resolution FWHH. Differential scanning calorimetric measurement were carried out using a Simultaneous Thermoanalysator (STA 449 C, Netzsch) using helium as carrier gas. 2-Phenvl-1-propene, acetic anhydride, nitric acid, acetophenone (1f), 2-phenylpropanal (1c), 1-nitrocyclohexene (2), (E)-1-nitro-2-phenyl-ethene (4), (E)-2-nitro-1-phenyl-1-propene (3), propiophenone (5f, 95%) and methyltriphenylphosphonium bromide (97%) were from Aldrich. Nitromethane for synthesis was from Merck and ether (99.5%) extra dry over molecular sieves was from Acros Organics. NADPH and NADP⁺ were purchased from Biocatalytics (Order number 004642), NADH, NAD⁺, glucose dehydrogenase (475 U/ml) were from Codexis. The plasmids for pentaerythritol tetranitrate reductase from *Enterobacter* cloacae PB2 (PETN-Red, 2.6 mg/ml) and morphinone reductase from Pseudomonas putida M10 (Mor-Red, 1.9 mg/ml) were provided by Neil C. Bruce (Department of Biology, University of York), enzyme production was performed as recently reported.¹ Lycopersicon esculentum OPR3 was expressed and purified as recently reported.² YhdA from Bacillus subtilis was expressed and purified using a standard protocol.³

Synthesis of substrates and reference materials

(*E*/*Z*)-1-Nitro-2-phenylprop-1-ene (1): To a stirred mixture of acetic anhydride (40ml) and nitric acid (5.28 g, 65%) was added 2-phenylpropene (3.2 ml, 12.2 mmol) at 0 °C. After 20 min, the solution was poured into water (180ml) and stirred for additional 30 min. The organic layer was washed with saturated aqueous NaHCO₃, water and then dried (Na₂SO₄). Removal of the solvent under reduced pressure gave an oily residue of crude 2-acetoxy-1-nitro-2-phenylpropane, that was purified via flash chromatography on silica (ethyl acetate/petroleum ether 1:30). A solution of the nitroacetate in triethylamine (15ml) and chloroform (30ml) was stirred for 3h at room temperature. After the addition of HCl (2N,

30ml), the mixture was extracted with dichloromethane and dried (Na₂SO₄). Evaporation of the solvent followed by flash chromatography on silica (ethyl acetate/petroleum ether 1:25) afforded 1-nitro-2-phenylprop-1-ene (*E/Z*)-1 as yellow oil (788 mg, 5.97 mmol, 49%).⁴ GC-MS (EI): m/z 39, 44, 51, 65, 77, 91, 115, 120, 130, 135, 145, 163; ¹H-NMR (300 MHz, CDCl₃): δ 2.66 (3H, d, J=1.3); 7.32 (1H, d, J=1.4); 7.46 (5H, s). NMR data corresponded to literature.^{5,6,7}

1-Nitro-2-phenylpropane (1a): *trans*-β-Nitrostyrene (0.45 g, 3 mmol) in 20ml dry Et₂O was added to methyl magnesium iodide (5ml of a 3M solution, 15 mmol) in 40ml of dry Et₂O at - 20 °C. Within 10 min, the solution was added to ice cold 5% aqueous HCl solution and stirred for 30 min. The mixture was extracted with CH₂Cl₂, dried over Na₂SO₄, filtered and the solvent was evaporated to give 1-nitro-2-phenylpropane **1a** (124 mg, 0.75 mmol, 25%).² ¹H-NMR (CDCl₃): δ 1.4 (3H, d, J=7.0), 3.62-3.72 (1H, m), 4.47-4.60 (2H, m), 7.23-7.38 (5H, m); ¹³C-NMR (CDCl₃): δ 18.7, 38.6, 81.9, 126.9, 127.6, 129.0, 140.9. NMR data corresponded to literature.^{4,5,6}

(*E/Z*)-2-Phenyl-propanaloxime (1b): To a stirred solution of 2-phenylpropanal 1c (200 μL, 1.79 mmol) in 5 ml of ethanol, hydroxylamine hydrochloride (249 mg, 3.58 mmol) was added together with pyridine (435 μL, 5.37 mmol). After 24h the mixture was washed with water (20ml) and extracted twice with ethyl acetate. The combined organic layers were washed with brine and dried over Na₂SO₄ and evaporated. The product was purified by flash chromatography on silica (ethyl acetate/petroleum ether 1:5) to give 1b as a liquid (116 μL, 1.04 mmol, 58%).⁸ GC-MS (EI): *m/z* 39, 51, 63, 77, 91, 105, 117, 132, 149; ¹H-NMR (CDCl₃): δ 1.46-1.51 (3H, d, J=6.5), 3.67-3.76 (1H, m), 4.45-4.52 (1H, m), 7.26-7.40 (5H, m), 7.55-7.58 (1H, d, J=7.2), 8.21 (OH s, br); ¹³C-NMR (CDCl₃): δ 18.3, 18.8, 35.0, 40.4, 126.8, 127.0, 127.2, 127.4, 128.7, 128.8, 141.9, 142.1, 141.9, 142.1, 154.8, 155.3. NMR data corresponded to literature.⁹

2-Phenyl-1-butene (starting material for **5**): In a two-necked round-bottomed flask under argon, a solution of Ph₃PMeBr (0.91 equiv, 1.42 g, 4.55 mmol) and *n*-BuLi (0.91equiv, 1.82ml of 2.5M solution, 4.55 mmol) in Et₂O (0.34M, 11.38ml) was prepared. After stirring the reaction mixture for 4h at 0 °C, a solution of propiophenone **5f** [1 equiv, 671 mg, 65 mmol in Et₂O (2.2M, 2.28ml)] was added. The reaction mixture was stirred at reflux overnight and filtered. The resulting solution was poured into water and extracted with Et₂O (3x). The combined organic phases were dried over MgSO₄, concentrated in vacuum and the crude

material was purified by flash chromatography (ethyl acetate/petroleum ether 1:100) to afford pure 2-phenyl-1-butene (510 mg, 3.86 mmol, 76%). ¹H-NMR (300 MHz, CDCl₃): δ 1.12-1.17 (3H, t, J=7.4); 2.52-2.60 (2H, q, J=7.2); 5.10 (2H, s), 5.32 (2H, s), 7.28-7.47 (Ar, m); ¹³C-NMR (75 MHz, CDCl₃): δ 13.0, 28.1, 111.0, 126.0, 127.3, 128.2, 141.6, 150.1. NMR data corresponded to literature.¹⁰

(E/Z)-1-Nitro-2-phenylbut-1-ene (5): To a stirred mixture of acetic anhydride (7ml) and 60% nitric acid (1g) was added 2-phenyl-butene (500 mg, 3.79 mmol) at 0 °C. After 20 min, the solution was poured into water (30ml) and stirred for additional 30 min. The organic layer was washed with aqueous NaHCO₃, water and dried. Removal of the solvent under reduced pressure gave 2-acetoxy-1-nitro-2-phenylbutane, which was used without purification. It is important to note that for the elimination of acetic acid from 2-acetoxy-1-nitro-2phenylbutane yielding 1-nitro-2-phenyl-1-butene 5 (instead of isomeric 1-nitro-2-phenyl-2butene) it was necessary to use saturated NaHCO3 solution instead of Et3N in chloroform. A solution of the nitroacetate in saturated NaHCO₃ (2 ml) and chloroform (4 ml) was stirred overnight. After the addition of HCl (2N), the mixture was extracted with dichloromethane and dried (Na₂SO₄). Evaporation of the solvent followed by flash chromatography on silica (ethyl acetate/petroleum ether 1:10) afforded 1-nitro-2-phenylbut-1-ene 5 as yellow oil (103 mg, 0.58 mmol, 21%). GC-MS (EI): *m/z* (one isomer) 30, 39, 51, 65, 77, 91, 103, 115, 131, 147, 159, 177; (one isomer) 32, 43, 51, 65, 77, 91, 105, 115, 124, 133, 145, 160, 177; ¹H-NMR (300 MHz, CDCl₃): δ 1.15-1.20 (3H, t, J=7.4), 3.07-3.15 (2H, q, J=7.5), 7.21 (1H, s, br); ¹³C-NMR (75 MHz, CDCl₃): δ 12.4, 12.8, 24.8, 29.6, 126.4, 127.1, 127.8, 128.5, 129.0, 130.2, 135.7, 137.1, 155.8. Overall, NMR data corresponded to literature.^{4,10}

(*E/Z*)-1-(2'-Naphthyl)-1-nitro-1-propene (6): In a 100ml flask under argon was prepared a solution of 1-(2-naphthyl)-ethanone 6f (2.66 g, 12.5 mmol, 1equiv), 2.68ml nitromethane (50 mmol, 4 equiv) and 498µl of *n*-BuNH₂ (5 mmol, 0.4equiv) in toluene (8ml). The resulting mixture was stirred under reflux overnight with a Dean-Stark apparatus. It was then cooled to room temperature, diluted with EtOAc and quenched by addition of an aqueous solution of NH₄Cl. The organic phase was separated, dried over MgSO₄ and concentrated under reduced pressure to afford the crude product, which was purified by flash chromatography on silica gel (ethyl acetate/petroleum ether 1:100) afforded (*E/Z*)-1-(2'-naphthyl)-1-nitro-1-propene 6 (1.45 g, 55%). GC-MS (EI): *m/z* (one isomer) 30, 39, 49, 58, 70, 83, 91, 101, 115, 128, 139, 152, 165, 183, 195, 213; (one isomer) 39, 63, 82, 98, 115, 141, 165, 196, 213; ¹H-NMR (300

MHz, CDCl₃): δ 2.17 (3H, s), 2.82 (3H, s), 7.28 (1H, =CH-NO₂, s), 7.47- 7.97 (Ar, m); ¹³C-NMR (75 MHz, CDCl₃): δ 18.6, 31.0, 123.7, 126.7, 127.1, 127.5, 127.7, 128.6, 128.9, 133.0, 134.0, 135.4, 136.6, 149.9. NMR data deviated in part from literature.¹⁰

Analytical procedures

GC-MS measurements were carried out with an Agilent 7890A GC system, equipped with an Agilent 5975C mass-selective detector (electron impact, 70eV) using an Agilent J&W Scientific HP-5MS column (5% phenyl-methyl-polysiloxane, length 30m, I.D. 250 μ m, film 0.25 μ m). GC-FID analyses were carried out on a Varian 3800 gas chromatograph using H₂ as carrier gas (14.5psi).

Determination of conversion

Conversions of (E/Z)-1-nitro-2-phenyl-1-propene **1**, 1-nitrocyclohexene **2**, (E)-2-nitro-1-phenyl-1-propene **3**, (E)-1-nitro-2-phenyl-ethene **4** and (E/Z)-1-nitro-2-phenylbut-1-ene **5** were analyzed using a 6% cyanopropyl-phenyl phase capillary column (Varian CB 1701, 30m, 0.25mm, 0.25µm), detector temperature 240 °C. Temperature program 70 °C hold 0 min, 5 °C/min to 140 °C, hold 0 min, 25 °C/min to 170 °C, hold 15 min.

Retention times for the bioreduction products of (E/Z)-1-nitro-2-phenyl-1-propene 1: acetophenone 1f 5.95 min, 2-phenyl-1-propanal 1c 6.54 min, (E/Z)-2-phenyl-propan-1-oxime 1b 12.48 and 13.06 min, 1-nitro-2-phenyl-propane 1a 13.69 min, (E/Z)-1-nitro-2-phenylpropene 1 14.84 min and 15.44 min, 4-methyl-4-phenyl-4H-1,2-oxazete 1e 16.48 min. Retention times for the bioreduction products of (E/Z)-1-nitro-2-phenylbut-1-ene 5: phenylpropanone 5f 9.04 min, 1-nitro-2-phenyl-butane 5a 13.80 min, (E/Z)-1-nitro-2phenylbut-1-ene 5 16.04 min and 16.82 min, 4-ethyl-4-phenyl-4H-1,2-oxazete 5e 18.95 min; Retention times for the bioreduction products of 1-nitrocyclohexene 2: cyclohexanone 2c 3.15 min, nitrocyclohexane 2a 7.41 min, 1-nitrocyclohexene 2 9.7 min; Retention times for the bioreduction products of (E)-1-nitro-2-phenyl-ethene 4: 1-nitro-2-phenyl-ethane 4a 13.7 min, (E)-nitro-2-phenyl-ethene 4 15.61 min; Retention times for the bioreduction products of (E)-2-nitro-1-phenyl-1-propene 3: 1-phenylpropan-2-one 3c 8.27 min, 2-nitro-1-phenyl-propane 3a 14.08 min, (E)-2-nitro-1-phenyl-1-propene 3 16.17 min. Conversion of (E/Z)-1-(2'naphthyl)-1-nitro-1-propene 6 was analyzed using a HP-5MS column (5% phenyl-methylpolysiloxane, length 30m, I.D. 250um, film 0.25um). Temperature program: 100 °C hold 0.5 min, 10 °C/min to 300 °C, hold 0 min. Retention times for the bioreduction products of 6: 2acetonaphthone/ 1-(2'-naphtyl)-1-ethanone 6f 10.70 min, 2-(1-nitropropan-2-yl)naphthalene

This journal is (c) The Royal Society of Chemistry 2011

6a 13.79 min, (*E/Z*)-1-(2'-naphthyl)-1-nitro-1-propene **6** 14.27 min and 15.05 min, 4-methyl-

4-(naphthalen-2-yl)-4H-1,2-oxazete 6e 14.86 min.

This journal is (c) The Royal Society of Chemistry 2011

Determination of enantiomeric excess of 1e

Figure S1 Chiral GC measurement of 1e.

The enantiomeric excess of 4-methyl-4-phenyl-4*H*-1,2-oxazete **1e** was determined using a CP-Chirasil-DEX CB (25m, 0.32mm, 0.25 μ m film). Temperature program for **1e**: 110 °C hold 1 min, 15 °C/min to 170 °C, hold 15 min, 10 °C/min to 180 °C, hold 0 min. Retention times: (*S/R*) or (*R/S*)-**1e** 11.31 min and 12.87 min. No reference material was available.

Differential Scanning Calorimetry (DSC)

5.001 mg of 4-methyl-4-phenyl-4*H*-1,2-oxazete **1e** was weighed into a special aluminum vessel and aligned. The measurement was performed on a Simultaneous Thermoanalysator (STA 449 C, Netzsch) with helium as carrier gas (50 mL/min). The heating rate was 10 °C/min.

Figure S2 DSC measurement of **1e:** X-axis: temperature range; y-axis decreasing mass / weight percentage of 4-methyl-4-phenyl-4*H*-1,2-oxazete **1e**. Green line: heat tone; blue line: mass percentage of **1e**; red line: mass to charge ratio of HCN (27), indicating increased HCN-formation within the temperature range of 120-160 °C with concomitant decreasing mass percentage of **1e**.

This journal is (c) The Royal Society of Chemistry 2011

High Resolution MS (HRMS)

The sample was prepared by dissolving 15 mg of oxazete **1e** in 1ml MeOH, measurements were performed on a Narrow SIM @ 1.250.000 resolution FWHH MS

This journal is (c) The Royal Society of Chemistry 2011

Rank	Elemental composition	RDB	ppm
1	C ₉ H ₁₀ ON	5.5	0.40182
2	C ₄ H ₉ O ₂ NF ₂ Li	-0.5	1.07735
3	$C_5H_{13}ON_2P$	1	-1.69569
4	C ₆ H ₁₁ ONLiSi	2.5	-4.7005

Figure S3 High resolution mass spectra of 1e

NMR Spectra

Figure S4 ¹H-NMR of oxazete 1e

Figure S6 135-DEPT ¹³C-NMR of oxazete 1e (CH and CH₃ positive, CH₂ negative signals)

l

2.5

2.0

1.5

1.0

0.5

0.0

4.5 4.0 f2 (ppm) 3.5

3.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

S12

-180 -190

200 210

This journal is (c) The Royal Society of Chemistry 2011

Figure S8 HMBC-NMR of oxazete 1e ($f1 = {}^{13}C$, $f2 = {}^{1}H$)

Computational Details

Geometries were optimized using 2^{nd} order Møller-Plesset perturbation theory¹¹ with the correlation consistent double- ζ basis set^{12,13} (MP2/cc-pVDZ), followed by MP2/cc-pVTZ single point calculations. All structures were characterized as minima and transition states by MP2/cc-pVDZ frequency calculations. In addition, intrinsic reaction coordinate calculations¹⁴ were used to verify that the located TSs connect the respective minima. Zero point energies and thermal correction to Gibbs free energies are unscaled. Higher-level correlation contributions were obtained by coupled-cluster¹⁵ calculations [CCSD(T)/6-31G(d)]. Solvent effects (aqueous solution) were estimated by bulk solvation models, SM8^{16,17} combined with the M06-2X¹⁸ density functional [SM8-M06-2X/6-31+G(d,p)]. Programs used were NWChem 5.1.1,¹⁹ GAMESS,²⁰ GAMESSPLUS,²¹ Gaussian 03,²² and MOLDEN²³ for visualization.

Figure S9 Calculated (MP2/cc-pVDZ) structure of the cyclization transition state (TS1)

		· •	/			
	$\Delta G(\text{gas})$	$\Delta G(\mathrm{H_2O})$	τ_1	$ au_2$	$ au_3$	r(C7-O11)
(E)-trans-1d	-5.51	-5.63	179.1	-31.4 (147.9)	147.9 (-32.8)	3.474
TS1	3.68	5.61	93.1	-35.6 (143.9)	143.1 (-37.5)	3.134
(E)-cis-1d	0.00	0.00	26.4	-38.6 (141.5)	141.5 (-38.4)	2.823
TS2	29.24	22.20	21.9	-173.7 (4.4)	29.9 (-152.0)	2.098
Oxazete 1e	-4.06	-8.40	-0.1	65.4 (-114.2)	-74.9 (105.6)	1.482
TS2'	31.97	26.10	21.7	33.6 (-141.7)	-167.3 (17.4)	2.086
(Z)-cis-1d	2.33	1.75	40.7	-58.9 (116.5)	-66.6 (118.0)	2.887
TS1'	4.68	5.70	95.7	-54.4 (123.9)	126.1 (-55.7)	3.173

Table S1 Calculated relative Gibbs free energies in gas phase and aqueous solution^a and pertinent structural parameters (Figure 1).^b

$(Z)^{-11}u^{113} I I = 5.70$ -4.07 177.7 150.7 (-41.0) 157.5 (-45.0) 5.40	(Z)-trans-1d	-3.96	-4.89	179.7	136.7 (-41.0)	139.3 (-43.0)	3.48
--	--------------	-------	-------	-------	---------------	---------------	------

^a $\Delta G \overline{(\text{gas})} = E(\text{MP2/cc-pvTZ}//\text{MP2/cc-pVDZ}) + \{E[\text{CCSD}(\text{T})/6-31G(d)] - E[\text{MP2}/6-31G(d)] + \Delta G_{therm}; \Delta G(\text{H}_2\text{O}) = \Delta G (\text{gas}) + \Delta G_{solv}[\text{SM8-M06-2X}/6-31+G(d,p)].$ ^b $\tau_1 = \tau(\text{C7-C8-N10-O11}); \tau_2 = \tau(\text{C2} (\text{C6})-\text{C1-C7-C9}); \tau_3 = \tau(\text{C2} (\text{C6})-\text{C1-C7-C8}).$ For atom numbering see Figure S4.

References and Notes

- 1 N. J. Mueller, C. Stueckler, B. Hauer, N. Baudendistel, H. Housden, N. C. Bruce, K. Faber, *Adv. Synth. Catal.*, 2010, **352**, 387–394.
- 2 C. Breithaupt, R. Kurzbauer, H. Lilie, A. Schaller, J. Strassner, R. Huber, P. Macheroux, T. Clausen, *Proc. Natl. Acad. Sci.*, USA 2006, 103, 14337-14342.
- 3 S. Deller, S. Sollner, R. Trenker-El-Toukhy, I. Jelesarov, G. M. Gübitz, P. Macheroux, *Biochemistry*, 2006, 45, 7083-7091; S. Sollner, R. Nenauer, H. Ehammer, A. Prem, S. Deller, B. A. Palfey, G. Daum, P. Macheroux, *FEBS J.*, 2007, 274, 1328-1339.
- 4 H. Ohta, N. Kobayashi, K. Ozaki, J. Org. Chem., 1989, 54, 1802-1804.
- 5 A. Fryszkowska, K. Fisher, J. M. Gardinger, G. M. Stephens, *J. Org. Chem.*, 2008, **73**, 4295-4298.
- 6 M. Hall, C. Stueckler, H. Ehammer, E. Pointner, G. Oberdorfer, K. Gruber, B. Hauer, R. Stuermer, W. Kroutil, P. Macheroux, K. Faber, *Adv. Synth. Catal.*, 2008, 350, 411-418.
- 7 C. Czekelius, E. M. Carreira, Org. Lett., 2004, 6, 4575-4577.
- 8 N. Jain, A. Kumar, S. M. S. Chauhan, Tetrahedron Lett., 2005, 46, 2599-2602.
- 9 F. Portela-Cubillo, B. A. Surgenor, R. A. Aitken, J. C. Walton, J. Org. Chem., 2008, 73, 8124-8127.
- 10 N. J. A. Martin, L. Ozores, B. List, J. Am. Chem. Soc., 2007, 129, 8976-8977.
- 11 C. Møller, M. S. Plesset, Phys. Rev., 1934, 46, 618-622.
- 12 T. H. Dunning, J. Chem. Phys., 1989, 90, 1007-1023.
- 13 For basis set exchange and EMSL basis set library, see: K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus, *J. Chem. Inf. Model.*, 2007, 47, 1045-1052; D. Feller, *J. Comput. Chem.*, 1996, 17, 1571-1586. https://bse.pnl.gov/bse/portal
- 14 C. Gonzalez, H. B. Schlegel, J. Phys. Chem., 1990, 94, 5523-5527.

- 15 R. J. Bartlett, In Coupled-Cluster Theory: An Overview of Recent Developments; D. R. Ed. Yarkony, Advanced Series in Physical Chemistry: Modern Electronic Structure Theory; World Scientific Publishing Co.: Singapore, 1995, 2, pp. 1047-1131.
- 16 C. J. Cramer, D. G. Truhlar, Acc. Chem. Res., 2008, 41, 760-768.
- 17 A. V. Marenich, R. M. Olson, C. P. Kelly, C. J. Cramer, D. G. Truhlar, *J. Chem. Theory Comput.*, 2007, **3**, 2011-2033.
- 18 Y. Zhao, G. D. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
- 19 E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, D. Wang, E. Apra, T. L. Windus, J. Hammond, P. Nichols, S. Hirata, M. T. Hackler, Y. Zhao, P.-D. Fan, R. J. Harrison, M. Dupuis, D. M. A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, Q. Wu, T. Van Voorhis, A. A. Auer, M. Nooijen, E. Brown, G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao, R. Kendall, J. A Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, L. Pollack, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong, Z. Zhang, *NWChem: A Computational Chemistry Package for Parallel Computers;* Version 5.1.1, Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA, 2007.
- 20 M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347-1363.
- 21 M. Higashi, A. V. Marenisch, R. M. Olson, A. C. Chamberlin, J. Pu, C. P. Kelly, J. D. Thompson, J. D. Xidos, J. Li, T. Zhu, G. D. Hawkins, Y. Y. Chuang, P. L. Fast, B. J. Lynch, D. A. Liotard, D. Rinaldi, J. Gao, C. J. Cramer, D. G. Thruhlar, *GAMESSPLUS - Version 2009*, University of Minnesota, Minneapolis, 2009.
- 22 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,

J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian 03, Revision B.04*, Gaussian, Inc., Wallingford CT, 2004.

23 G. Schaftenaar, J. H. Noordik, J. Comput. - Aided Mol. Des., 2000, 14, 123-134.