Total Synthesis of Novel D-ring Modified Triptolide Analogues: Structure-activity Relationship Studies on D-ring of Triptolide

Bing Zhou, Xiaomei Li, Zehong Miao, Huanyu Tang, Huijin Feng, Yuanchao Li* Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Road Zu Chong Zhi, Zhangjiang Hi-Tech Park, Shanghai 201203, PR China ycli@mail.shcnc.ac.cn

General

Mass spectra and high-resolution mass spectra were measured on a Finnigan MAT-95 mass spectrometer. Melting points were determined on a Buchi 510 melting point apparatus and are uncorrected. IR spectra were recorded on a Nicollet Magna FT-IR-750 spectrometer using KBr pellets. Optical rotations were recorded on a Jasco-Dip-181 polarimeter. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were determined on Bruker AM-300, Bruker AM-400 instruments using tetramethylsilane as internal reference. Data are presented as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{br} \mathrm{s}=\mathrm{broad}$ singlet, $\mathrm{d}=$ doublet, $\mathrm{br} \mathrm{d}=$ broad doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet), $\mathrm{J}=$ coupling constant in hertz (Hz). The signals of the ${ }^{13} \mathrm{C}$ NMR were assigned utilizing DEPT experiments and on the basis of literature data. Silica gel 60 H (200-300 mesh) manufactured by Qingdao Haiyang Chemical Group Co. (China) was used for general chromatography.

(2R,4aS,10aR)-7-isopropyl-8-methoxy-4a-methyl-1-methylene-1,2,3,4,4a,9,1 0,10a-octahydrophenanthren-2-ol (9). To a solution of compound $\mathbf{8}$ ($13 \mathrm{~g}, 0.045 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ were added t-BuOOH ($70 \mathrm{wt} \%$ in water, $19.1 \mathrm{~mL}, 0.135 \mathrm{~mol}$) and $\mathrm{SeO}_{2}(2.5 \mathrm{~g}, 0.022 \mathrm{~mol})$. The mixture was stirred at room temperature overnight. $\mathrm{NaHSO}_{3}(5 \mathrm{~g})$ was added and the mixture was washed with brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a crude product, which was chromatographed on silica gel (5\% EtOAc in cyclohexane) to give pure 9 (11.9 g,
88%) as a colourless solid, mp $136-138{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.07(\mathrm{~s}, 2$ H), $5.08(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{sept}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.14-3.04 (m, 1 H), 2.80-2.67 (m, 2 H), 2.08-1.60 (m, 7 H), 1.23 (d, $J=$ $3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) ;$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 154.8,151.6,145.7,138.2,128.4,123.6,121.3,109.8,72.7,60.4,41.1,39.0,32.4$, 30.1, 26.0, 24.0, 23.9, 23.8, 21.8, 20.3; LRMS (EI, 70 eV) m/z (\%) 300 (${ }^{+}, 10$), 267 (100); HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right): 300.2090$, found 300.2086.

(4aS,10aR)-7-isopropyl-8-methoxy-4a-methyl-1-methylene-3,4,4a,9,10,10a-h exahydrophenanthren-2(1H)-one (10). To a solution of DMSO (7.1 mL) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(200 \mathrm{~mL})$ were added $(\mathrm{COCl})_{2}(4.9 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under nitrogen and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . To the resultant solution was added $9(15 \mathrm{~g}, 0.05 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 40 min and $\mathrm{Et}_{3} \mathrm{~N}(36 \mathrm{~mL})$ was added dropwise. The solution was stirred for 30 min , warmed to room temperature, and water (20 mL) was added dropwise. The mixture was washed with water and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a crude product, which was chromatographed on silica gel (2% EtOAc in cyclohexane) to give pure $\mathbf{1 0}(14 \mathrm{~g}, 94 \%)$ as a colourless solid, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.11$ (s, 2 H), 5.98 (s, 1 H), 5.23 (s, 1 H), 3.74 (s, 3 H), 3.31 (sept, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (dd, $J=18.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78-2.45 (m, 5 H), 2.14-1.90 (m, 2 H), 1.74-1.60 (m, 1 H), $1.24(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 202.1,154.8,148.3,144.0,138.7,128.4,124.1,121.7,118.4,60.5,46.1$, 37.2, 36.7, 36.1, 26.1, 24.0, 23.8, 23.8, 22.2, 20.3; LRMS (EI, 70 eV) m/z (\%) 298 ($\mathrm{M}^{+}, 78$), 241 (100); HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 298.1932, found 298.1940.

(2S,4aS,10aR)-2-(hydroxymethyl)-7-isopropyl-8-methoxy-4a-methyl-1-methylene -1,2,3,4,4a,9,10,10a-octahydrophenanthren-2-ol (11). A solution of 10 ($0.298 \mathrm{~g}, 1.0$ mmol) in THF (6.0 mL) was added to the Grignard reagent [prepared from chloromethyldimethylisopropoxysilane ($0.627 \mathrm{~mL}, 3.5 \mathrm{mmol}$), 1,2-dibromoethane (two drops), and $\mathrm{Mg}(0.096 \mathrm{~g}, 4.0 \mathrm{mmol})$ in THF (4.0 mL) according to the Tamao's procedure ${ }^{28}$ under Ar atmosphere. After stirring at $-30^{\circ} \mathrm{C}$ for 55 min , the mixture was quenched with an aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10\%) and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give an single adduct as colorless oil. To a stirred mixture of colorless crude adduct, $\mathrm{MeOH}(5.0 \mathrm{~mL})$, THF $(5.0 \mathrm{~mL}), \mathrm{KHCO}_{3}(0.150 \mathrm{~g}, 1.5 \mathrm{mmol})$, and $\mathrm{KF}(0.282 \mathrm{~g}, 3.0$ $\mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.5 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at room temperature. The mixture was stirred at room temperature until starting material disappeared. An aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (50%) was added slowly to the mixture and stirred until a negative starch/iodide test was observed. The mixture was extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified via column chromatography (10% EtOAc in cyclohexane) to provide compound $11(0.264 \mathrm{~g}, 80 \%)$ as a white solid, $\mathrm{mp} 158-160^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}+273$ (c 0.15 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (KBr) 3388, 2960, 2935, 2867, 1060, $1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 7.06(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.30 (sept, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.15-3.06 (m, 1 H), 2.78-2.64 (m, 1 H), 2.46 (brs, 1 H), 2.26-2.19 (m, 2 H), 2.08-1.56 (m, 6 H$), 1.23$ (d, $J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.21$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 154.9,151.1,145.2$, $138.5,128.3,123.9,121.4,108.6,75.6,66.8,60.4,44.5,39.0,35.6,33.0,26.0,24.2$, 23.8, 23.8, 22.3, 21.2 ; LRMS (EI, 70 eV) m/z (\%) 330 (${ }^{+}$, 15), 299 (100); HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right): 330.2195$, found 330.2187 .

((2S,4aS,10aR)-2-hydroxy-7-isopropyl-8-methoxy-4a-methyl-1-methylene-1,2,3,4, 4a,9,10,10a-octahydrophenanthren-2-yl)methyl acetate (12). To a solution of compound $11(4.2 \mathrm{~g}, 0.013 \mathrm{~mol})$ in pyridine $(20 \mathrm{~mL})$ was added $\mathrm{Ac}_{2} \mathrm{O}(12 \mathrm{~mL}, 0.13$ $\mathrm{mol})$. The mixture was stirred at room temperature for 3 h and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The organic layer was washed with $5 \% \mathrm{HCl}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a crude product, which was chromatographed on silica gel (3% EtOAc in cyclohexane) to give pure $\mathbf{1 2}$ ($4.7 \mathrm{~g}, 98 \%$) as a colourless solid, mp $106-108{ }^{\circ} \mathrm{C}$; ${ }^{\mathrm{H}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.05(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H})$, $4.34(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{sept}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.10 (dd, $J=17.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80-2.65 (m, 2 H), 2.32-1.62 (m, 10 H), $1.23(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 171.2,154.9,150.4,145.2,138.5,128.3,123.8,121.4,108.5,74.8,68.4$, 60.4, 44.5, 38.9, 35.6, 32.9, 26.0, 24.3, 23.9, 23.8, 22.2, 21.2, 20.7; LRMS (EI, 70 eV) $m / z(\%) 372\left(\mathrm{M}^{+}, 27\right), 299$ (100); HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right): 372.2300$, found 372.2302 .

((4aS,10aR)-1-(chloromethyl)-7-isopropyl-8-methoxy-4a-methyl-3,4,4a,9,10,10a-h exahydrophenanthren-2-yl)methyl acetate (13). To a solution of compound 12 (70 $\mathrm{mg}, 0.188 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added $\mathrm{SOCl}_{2}(0.034 \mathrm{~mL}, 0.47 \mathrm{mmol})$. The mixture was stirred at room temperature for 8 h and EtOAc was added. The organic layer was washed with $5 \% \mathrm{NaHCO}_{3}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a crude product, which was chromatographed on silica gel (0.5% EtOAc in
cyclohexane) to give pure $13(36.0 \mathrm{mg}, 50 \%)$ as a colourless oil, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.08(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{sept}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (ddd, $J=13.5,4.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.33(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 3$ H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 171.0, 155.0, 145.3, 138.5, 134.3, 132.9, 128.4, $123.6,120.3,63.8,60.4,42.4,41.0,35.7,33.3,26.7,26.0,24.0,23.9,23.9,22.3,20.9$, 19.9; LRMS (EI, 70 eV) m/z (\%) 390 ($\mathrm{M}^{+}, 40$), 279 (100); HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{ClO}_{3}\left(\mathrm{M}^{+}\right): 390.1962$, found 390.1963 .

(3aR,3bS,9bS)-7-isopropyl-6-methoxy-9b-methyl-3a,3b,4,5,9b,10-hexahydrophen anthro[2,1-c]furan-3(1H)-one
and
(3aS,3bS,9bS)-7-isopropyl-6-methoxy-9b-methyl-3a,3b,4,5,9b,10-hexahydrophen anthro[2,1-c]furan-3(1H)-one (17). To a solution of compound $\mathbf{1 3}$ ($390 \mathrm{mg}, 1.0$ mmol) in DMSO (10 mL) was added $\mathrm{Me}_{3} \mathrm{NO}(300 \mathrm{mg}, 4.0 \mathrm{mmol}$). The mixture was stirred at room temperature for 3 h , then AcOEt was added and the mixture was washed with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a crude product, which without purification, was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and water $(5 \mathrm{~mL}) . \mathrm{K}_{2} \mathrm{CO}_{3}(552 \mathrm{mg}, 4.0 \mathrm{mmol})$ was added in the solution and the mixture was stirred at room temperature for 3 h . The solvent was evaporated, then AcOEt was added and the mixture was washed with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a crude product $\mathbf{1 4}$ and 15 . This crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and pyridinium dichromate ($676 \mathrm{mg}, 1.8 \mathrm{mmol}$) was added. The mixture was stirred at room temperature overnight, diluted with ethyl acetate, and filtered through a pad of silica gel. The filtrate was concentrated under reduced pressure to give a crude product, which was chromatographed on silica gel (10% EtOAc in cyclohexane) to give pure 16 ($94.5 \mathrm{mg}, 29 \%$) and $17(114 \mathrm{mg}, 35 \%)$
as two colourless solid.
16: mp 206-208 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$); 5.80 (br s, 1 H), 4.74 (m, 2 H), 3.72 (s, 3 H), 3.31 (sept, $J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.06(\mathrm{dd}, J=17.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.86-1.77$ (m, 1 H), 1.69-1.59 (m, 1 H), 1.23 (d, $J=4.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1.21 (d, $J=4.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 176.4,154.7,144.0,138.6,131.0$, $128.9,124.0,121.9,121.7,69.9,60.4,40.7,39.4,39.3,36.5,26.0,23.8,23.7,23.7$, 23.5, 20.3; LRMS (EI, 70 eV) m/z (\%) 326 (${ }^{+}$, 100), 311 (68); HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right): 326.1882$, found 326.1873 .

17: mp 204-206 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.74(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{sept}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.05(\mathrm{dd}, J=17.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.81(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, 3 H); 1.17 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 176.5,154.7,144.0$, 138.6, 131.0, $129.0,124.0,121.9,121.8,70.0,60.5,40.7,39.4,39.4,36.5,26.0,23.9,23.8,23.8$, 23.5, 20.4; LRMS (EI, 70 eV) $m / z(\%) 326$ ($\mathrm{M}^{+}, 100$), 311 (68); HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right): 326.1882$, found 326.1883.

(3bR,9bS)-7-isopropyl-6-methoxy-9b-methyl-3b,4,5,9b,10,11-hexahydrophenanth ro[2,1-c]furan-3(1H)-one (18). To a solution of compound $\mathbf{1 6}$ or $\mathbf{1 7}$ ($326 \mathrm{mg}, 1.0$ mmol) in $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{~mL})$ was added $\mathrm{CH}_{3} \mathrm{ONa}(10.8 \mathrm{mg}, 0.2 \mathrm{mmol})$. The mixture was stirred at room temperature for 15 min , then AcOEt was added and the mixture was washed with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a crude product, which was chromatographed on silica gel (10\% EtOAc in cyclohexane) to give pure $\mathbf{1 8}(326 \mathrm{mg}, 100 \%)$ as a colourless solid, $\mathrm{mp} 172-174{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.08(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{sept}, J$
$=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~m}, 3 \mathrm{H}), 2.53(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.21(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.5,160.8$, $155.5,144.2,139.1,128.9,127.0,123.6,119.8,70.7,60.5,38.5,36.4,32.5,26.1,23.9$, 23.8, 22.7, 22.1, 21.9, 17.5; LRMS (EI, 70 eV) m/z (\%) 326 ($\mathrm{M}^{+}, 80$), 311 (100); HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 326.1882 , found 326.1881.

(3bR,9bS)-7-isopropyl-6-methoxy-9b-methyl-3b,4,10,11-tetrahydrophenanthro[2, 1-c]furan-3,5(1H,9bH)-dione (19). To a solution of 18 ($32.6 \mathrm{mg}, 0.1 \mathrm{mmol}$) in acetonitrile (2 mL) and water (2 mL), was added ammonium ceric nitrate (109 mg , 0.2 mmol) and the mixture was stirred at room temperature for 5 h . The solvent was evaporated, then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the mixture was washed with water and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a crude product, which without purification, was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and pyridinium dichromate ($67.6 \mathrm{mg}, 0.18 \mathrm{mmol}$) was added. The mixture was stirred at room temperature overnight, diluted with ethyl acetate, and filtered through a pad of silica gel. The filtrate was concentrated under reduced pressure to give a crude product, which was chromatographed on silica gel (20% EtOAc in cyclohexane) to give pure $19(30.0 \mathrm{mg}, 88 \%)$ as a colourless solid, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.42(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77$ (m, 2 H), 3.81 (s, 3 H), 3.66 (dd, $J=19.6$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.49(\mathrm{~m}, 4 \mathrm{H}), 1.86(\mathrm{~m}$, 1 H), $1.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 196.8,172.6,160.6,158.2,150.5,141.7,131.2,125.8,125.1$, $118.0,71.1,62.6,37.4,37.0,36.4,31.7,25.9,23.7,23.1,21.3,21.2$; LRMS (EI, 70 $\mathrm{eV}) m / z(\%) 340\left(\mathrm{M}^{+}, 36\right), 325(100)$; HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right): 340.1674$, found 340.1680 .

(3bR,9bS)-6-hydroxy-7-isopropyl-9b-methyl-3b,4,10,11-tetrahydrophenanthro[2, 1-c]furan- $\mathbf{3 , 5} \mathbf{5} \mathbf{(1 H , 9 b H})$-dione (20). To a solution of $\mathbf{1 9}(21.1 \mathrm{mg}, 0.062 \mathrm{mmol})$ in dichloromethane (2 mL), under nitrogen at $-78^{\circ} \mathrm{C}$, was added $\mathrm{BBr}_{3}(0.018 \mathrm{~mL}, 0.186$ mol) and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and warmed to room temperature. An aqueous NaHCO_{3} solution (10\%) was added and the extracts were washed with brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a crude product which was chromatographed on silica gel (20% EtOAc in cyclohexane) to give pure $20(19.5 \mathrm{mg}, 96.5 \%)$ as a white solid, $\mathrm{mp} 84-86{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 13.2$ (s, 1 H), $7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~m}, 2$ H), 3.78 (dd, $J=18.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.08-3.01(\mathrm{~m}, 1 \mathrm{H})$, $2.60(\mathrm{~m}, 4 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.13$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 203.9,172.5,161.5,161.1,149.1,135.8$, $133.0,125.3,114.8,113.0,71.0,37.7,36.2,35.4,31.4,26.1,22.2,22.1,21.5,21.4 ;$ LRMS (EI, 70 eV) $m / z(\%) 326\left(\mathrm{M}^{+}, 40\right), 311$ (100); HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$ $\left(\mathrm{M}^{+}\right): 326.1518$, found 326.1510.

(3bR,5S,9bS)-5,6-dihydroxy-7-isopropyl-9b-methyl-3b,4,5,9b,10,11-hexahydroph enanthro[2,1-c]furan-3(1H)-one (21). To a solution of $20(28.7 \mathrm{mg}, 0.088 \mathrm{mmol})$ in methanol (2 mL) at $0{ }^{\circ} \mathrm{C}$ was added sodium borohydride ($3.3 \mathrm{mg}, 0.088 \mathrm{mmol}$) in three portions. After stirring at $0{ }^{\circ} \mathrm{C}$ for 30 min , the mixture was quenched with an aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10\%) and extracted with EtOAc. The organic layer was
washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a crude product which was chromatographed on silica gel (40% EtOAc in cyclohexane) to give pure $21(24.2 \mathrm{mg}, 84 \%)$ as a white solid, $\mathrm{mp} 160-162{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $8.70(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~m}, 1 \mathrm{H}), 4.73$ (m, 2 H), 3.50 (m, 2 H), 3.34 (sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67 (m, 1 H), 2.56-2.46 (m, 3 H), 1.89-1.71 (m, 2 H), $1.25(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ; 1.12(\mathrm{~s}, 3$ H);); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 173.6, 161.9, 154.6, 143.2, 133.9, 125.7, 125.6, 121.0, 115.0, 70.9, 69.5, 37.6, 36.6, 32.4, 28.0, 26.4, 23.1, 22.6, 22.4, 21.7; LRMS (EI, $70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%) 328\left(\mathrm{M}^{+}, 8\right), 310(100)$; HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}\left(\mathrm{M}^{\dagger}\right)$: 328.1675, found 328.1684 .

$(7,8) \boldsymbol{\beta},(\mathbf{9}, 11) \beta,(12,13) \alpha$-tris(epoxy)-18-hydroxy-14-oxo-18(4 3)
abeo-abieta-3-en-19-oic acid lactone (3). To a solution of compound 21 (30.1 mg , 0.092 mmol) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added a solution of $\mathrm{NaIO}_{4}(19.8 \mathrm{mg}, 0.092 \mathrm{mmol})$ in water $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 50 min , the mixture was extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a crude product $\mathbf{2 2}$ which was dissolved in acetonitrile (2 mL) and was added an aqueous Na_{2} (EDTA) solution $\left(4 \times 10^{-4} \mathrm{M}, 2 \mathrm{~mL}\right)$. The resulting homogeneous solution was cooled to $0{ }^{\circ} \mathrm{C}$, followed by addition of 1,1,1-trifluoroacetone (0.1 mL) via a precooled syringe. To this homogeneous solution was added in portions a mixture of sodium bicarbonate ($22.7 \mathrm{mg}, 0.27 \mathrm{mmol}$) and Oxone ($115.3 \mathrm{mg}, 0.18 \mathrm{mmol}$) in a period of $1 \mathrm{~h}(\mathrm{pH} 7-7.5)$. The reaction was monitored by TLC. The mixture was poured into water and extracted with dichloromethane. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to give a crude product which was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$ and was added $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.1$ $\mathrm{mL}, 1.0 \mathrm{mmol}$) at room temperature. After stirring for 1 h , the mixture was extracted
with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a crude product which was chromatographed on silica gel (40% EtOAc in cyclohexane) to give pure 3 ($20.4 \mathrm{mg}, 62 \%$) as a white solid, mp $224-226{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.68(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.81 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.42(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H})$, 2.47-2.33 (m, 3 H), $2.02(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=15.6,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~m}, 1 \mathrm{H})$, $1.08(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 197.2,172.5,160.5,125.6,70.9,66.4,65.3,61.3,60.8,58.7,55.9,38.1$, 35.3, 30.2, 25.7, 22.0, 20.7, 18.0, 16.3, 13.7; LRMS (EI, 70 eV) m/z (\%) 358 ($\mathrm{M}^{+}, 52$), 329 (28), 287 (40), 175 (100); HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right): 358.1417$, found 358.1422 .

Triptolide methylthiomethy ether (23). To a solution of compound $\mathbf{1}$ ($50 \mathrm{mg}, 0.139$ $\mathrm{mmol})$ in DMSO $(0.4 \mathrm{~mL})$ was added $\mathrm{Ac}_{2} \mathrm{O}(0.28 \mathrm{~mL})$ and $\mathrm{AcOH}(0.05 \mathrm{~mL})$. After stirring overnight, the mixture was extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a crude product which was chromatographed on silica gel (20% EtOAc in cyclohexane) to give pure $23(32.1 \mathrm{mg}, 55 \%)$ as a white solid, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.00(\mathrm{~m}, 2 \mathrm{H}), 4.66$ (m, 2 H), 3.78 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (s, 1 H), $3.50(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J$ $=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 5 \mathrm{H}), 1.92(\mathrm{t}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.2,160.1,125.5,76.7,75.8,69.9$, $64.5,63.9,61.4,58.0,55.0,54.6,40.4,35.8,29.5,26.3,23.4,17.1,17.0,16.8,14.8$, 13.6; LRMS (EI, 70 eV) m/z (\%) 421 (M+1, 2), 377 (4), 273 (40), 61 (100); HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{SO}_{6}(\mathrm{M}+1)$: 421.1685 , found 421.1672.

Preparation of compound 24. To a solution of compound 23 ($42.0 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added a solution of DIBAL ($0.15 \mathrm{~mL}, 1.0 \mathrm{M}$ in n-hexane) at $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 50 min , water $(0.1 \mathrm{~mL})$ was added slowly and the mixture was extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a crude product which was dissolved in $\mathrm{CDCl}_{3}(2 \mathrm{~mL})$ and silica gel (100 mg) was added. The mixture stirred overnight and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a crude product which was chromatographed on silica gel (5% EtOAc in cyclohexane) to give pure $24(30.3 \mathrm{mg}, 75 \%)$ as a white oil, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.12(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=12.3$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=16.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.95$ (dd, $J=15.3,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 137.5,137.2$, $124.6,119.1,76.6,76.2,64.4,64.3,61.3,58.6,55.0,54.8,37.6,35.9,30.7,26.3,25.9$, 17.1, 16.9, 15.5, 14.8, 12.9; LRMS (EI, 70 eV) $m / z(\%) 404\left(\mathrm{M}^{+}, 2\right), 327$ (20), 61 (100); HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{SO}_{5}\left(\mathrm{M}^{+}\right): 404.1658$, found 404.1675 .

Preparation of compound 4. To a solution of compound $24(10 \mathrm{mg}, 0.025 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ and water (0.25 mL) was added HgCl_{2} ($54.2 \mathrm{mg}, 0.2 \mathrm{mmol}$). After stirring overnight, the mixture was extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a crude product which was chromatographed on silica gel (20% EtOAc in cyclohexane) to give pure 4
($7.3 \mathrm{mg}, 85 \%$) as a white oil, ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.12(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.88(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=11.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=16.8$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{sept}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=15.2,12.4 \mathrm{~Hz}, 1$ H), $1.48(\mathrm{dd}, J=12.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3$ H), 0.89 (d, J=7.2 Hz, 3 H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 137.6,137.3,124.2,118.8$, $73.6,66.9,65.5,60.9,60.7,56.9,54.6,37.5,35.7,30.9,28.0,26.0,17.7,16.8,15.5$, 12.9; LRMS (EI, 70 eV) $m / z(\%) 344\left(\mathrm{M}^{+}, 100\right)$; HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$: 344.1624, found 344.1627 .

(1R,4aS,10aR)-methyl
7-isopropyl-8-methoxy-1,4a-dimethyl-9-oxo-1,2,3,4,4a,9,10,10a-octahydrophenan threne-1-carboxylate (26). To a solution of compound 25 ($3 \mathrm{~g}, 6.2 \mathrm{mmol}$) in acetone $(100 \mathrm{~mL})$ was added $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(3.68 \mathrm{~g}, 12.3 \mathrm{mmol})$ and N -hydroxyphthalimide $(4.03 \mathrm{~g}$, 24.7 mmol). The mixture was stirred at room temperature overnight, diluted with ethyl acetate, and filtered through a pad of silica gel. The filtrate was concentrated under reduced pressure to give a crude product, which was chromatographed on silica gel (5% EtOAc in cyclohexane) to give pure $26(1.85 \mathrm{~g}, 81.6 \%$) as a colourless oil, $[\alpha]_{D}^{25}+67.9\left(\mathrm{c} 0.98, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{KBr}) 2958,1720,1679,1471,1228,1037,840 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.78 ($s, 3 \mathrm{H}$), 3.65 (s, 3 H), 3.39 (sept, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.64 (m, 2 H), 2.42 (m, 1 H), $2.28(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.23(\mathrm{~m}, 5 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.20(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.7,177.8$, $157.4,154.7,140.8,131.6,124.6,118.5,62.4,52.0,46.1,42.6,38.9,37.5,37.5,36.5$, 25.8, 23.7, 23.4, 23.1, 18.0, 16.4; LRMS (EI, 70 eV) $m / z(\%) 358\left(\mathrm{M}^{+}, 40\right), 343$ (100).

(1R,4aS,10aR)-methyl
8-hydroxy-7-isopropyl-1,4a-dimethyl-9-oxo-1,2,3,4,4a,9,10,10a-octahydrophenan threne-1-carboxylate (27). To a solution of $26(22.2 \mathrm{mg}, 0.062 \mathrm{mmol})$ in dichloromethane (2 mL), under nitrogen at $-78^{\circ} \mathrm{C}$, was added $\mathrm{BBr}_{3}(0.018 \mathrm{~mL}, 0.186$ mol) and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and warmed to room temperature. An aqueous NaHCO_{3} solution (10\%) was added and the extracts were washed with brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a crude product which was chromatographed on silica gel ($5 \% \mathrm{EtOAc}$ in cyclohexane) to give pure 27 ($18.7 \mathrm{mg}, 88 \%$) as a white oil, $\operatorname{IR}(\mathrm{KBr}) 3432,2954,1727,1625,1429,1351$, $1249,1122,821 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 13.09(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.77 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (s, 3 H), 3.32 (sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (m, 2 H), $2.32(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.23(\mathrm{~m}, 5 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 205.0, 177.6, 160.6, 153.6, 134.7, 133.3, $114.6,113.0,52.2,46.5,43.3,37.7,37.4,37.0,36.4,26.0,23.6,22.3,22.1,18.1,16.4 ;$ LRMS (EI, 70 eV) m/z (\%) 344 ($\mathrm{M}^{+}, 72$), 329 (100).

(41R,5aS,6aR,7R,10aS)-methyl

3-isopropyl-7,10a-dimethyl-4-ox0-5a,6,6a,7,8,9,10,10a-octahydro-4H-phenanthro

 [9-b]oxirene-7-carboxylate (29). To a solution of 27 ($30.3 \mathrm{mg}, 0.088 \mathrm{mmol}$) in methanol (2 mL) at $0{ }^{\circ} \mathrm{C}$ was added sodium borohydride $(3.3 \mathrm{mg}, 0.088 \mathrm{mmol})$ in three portions. After stirring at $0{ }^{\circ} \mathrm{C}$ for 30 min , the mixture was quenched with an aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10\%) and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a crude productwhich was dissolved in $\mathrm{MeOH}(3 \mathrm{~mL})$ and $\mathrm{NaIO}_{4}(18.8 \mathrm{mg}, 0.088 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1$ mL) was added at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 50 min , the mixture was extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a crude product product which was chromatographed on silica gel (5% EtOAc in cyclohexane) to give pure $29(19.0 \mathrm{mg}, 63 \%)$ as a white oil, ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.93$ (dd, $\left.J=6.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.93 (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63 (s, 3 H), 2.80 (sept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.17-1.98 (m, 2H), 1.83-1.56 (m, 6 H), 1.24 (s, 3 H), 1.21 (s, 3 H), 1.08 (d, $J=2.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.06 (d, $J=$ $2.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.6, 178.1, 155.5, 141.5, 135.7, 118.9, 68.6, 57.2, 52.1, 47.3, 47.0, 38.5, 37.5, 37.4, 26.1, 24.3, 21.8, 21.5, 20.5, 17.6, 16.6; LRMS (EI, 70 eV) m/z (\%) 344 ($\mathrm{M}^{+}, 68$), 329 (100).

$(7,8) \beta,(9,11) \beta,(12,13) \alpha$-tris(epoxy)-14-oxo-abieta-19 α-oic acid methyl ester (5). To a solution of $29(31.0 \mathrm{mg}, 0.09 \mathrm{mmol})$ in acetonitrile (2 mL) and was added an aqueous Na_{2} (EDTA) solution $\left(4 \times 10^{-4} \mathrm{M}, 2 \mathrm{~mL}\right)$. The resulting homogeneous solution was cooled to $0{ }^{\circ} \mathrm{C}$, followed by addition of $1,1,1$-trifluoroacetone $(0.1 \mathrm{~mL})$ via a precooled syringe. To this homogeneous solution was added in portions a mixture of sodium bicarbonate ($22.7 \mathrm{mg}, 0.27 \mathrm{mmol}$) and Oxone ($115.3 \mathrm{mg}, 0.18 \mathrm{mmol}$) in a period of $1 \mathrm{~h}(\mathrm{pH} 7-7.5)$. The reaction was monitored by TLC. The mixture was poured into water and extracted with dichloromethane. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to give a crude product which was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$ and was added $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.1 \mathrm{~mL}, 1.0 \mathrm{mmol})$ at room temperature. After stirring for 1 h , the mixture was extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a crude product which was chromatographed on silica gel ($8 \% \mathrm{EtOAc}$ in cyclohexane) to give pure 5 $(22.0 \mathrm{mg}, 65 \%)$ as a white oil, $[\alpha]_{D}^{25}-50.2$ (c $0.45, \mathrm{CHCl}_{3}$); $\mathrm{IR}(\mathrm{KBr}) 3430,2950$,

2877, 1724, 1434, 1240, 1191, 947, $891 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.18(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.39 (sept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.22 (dd, $J=12.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.00 (dd, $J=15.1$, $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.55(6 \mathrm{H}, \mathrm{m}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.8,177.8$, $68.0,66.2,61.3,60.8,59.1,57.2,52.2,46.6,43.6,37.3,35.9,33.9,25.6,23.0,18.0$, 17.0, 16.8, 16.3; LRMS (EI, 70 eV) $\mathrm{m} / \mathrm{z}(\%) 376$ (${ }^{+}$, 20), 273 (100); HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right): 376.1784$, found 376.1886.
${ }^{1} \mathrm{H}$ NMR of compound 9 :

${ }^{13} \mathrm{C}$ NMR of compound 9 :

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 0}$:

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 0}$:

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 1}$:

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 1}$:

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 2}$:

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 2}$:

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 3}$:

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 3}$:

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 6}$:

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 6}$:

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 7}$:

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 7}$:

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 8}$:

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 8}$:

${ }^{1} \mathrm{H}$ NMR of compound 19 :

${ }^{1} \mathrm{H}$ NMR 400 MHz compound 19
${ }^{13} \mathrm{C}$ NMR of compound 19 :

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 0}$:

${ }^{13}$ C NMR of compound $\mathbf{2 0}$:

${ }^{1} \mathrm{H}$ NMR of compound 21:

${ }^{13} \mathrm{C}$ NMR of compound 21:

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3}$:

${ }^{13} \mathrm{C}$ NMR of compound 3 :

${ }^{1} \mathrm{H}$ NMR of compound 23:

${ }^{13} \mathrm{C}$ NMR of compound 23 :

${ }^{1}$ H NMR of compound 24:

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 4}$:

${ }^{1} \mathrm{H}$ NMR of compound 4:

${ }^{13} \mathrm{C}$ NMR of compound 4 :

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 6}$:

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 6}$:

${ }^{1}$ H NMR of compound 27:

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 7}$:

${ }^{1} \mathrm{H}$ NMR of compound 29:

${ }^{13} \mathrm{C}$ NMR of compound 29:

${ }^{1} \mathrm{H}$ NMR of compound 5 :

${ }^{13} \mathrm{C}$ NMR of compound 5 :

