Supporting Information

Multifunctional Chiral Phosphines-Catalyzed Highly Diastereoselective and Enantioselective Substitution of Morita-Baylis-Hillman Adducts with Oxazolones

Yuan-Liang Yang^a, Cheng-Kui Pei^a, and Min Shi^{a,b}*

 ^aSchool of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237 China, Fax: 86-21-64166128.
^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 China. <u>Mshi@mail.sioc.ac.cn</u>.

CONTENTS

1.	General Remarks and Procedure for the Preparation of Catalysts	S2
2.	Reference	.S17
3.	General Procedure and Spectroscopic Data of the Boc-protected Morita-Bayla adducts	is-Hillman S18
4.	General Procedure and Spectroscopic Data of the Products 3	.S29
5.	Conversion of 3j and 3b to the Corresponding Amino Acid Derivatives	.S60
6.	HPLC Spectra	.S63
7.	X-ray Structure of 3b	.S101

General Remarks: ¹H NMR spectra were recorded on a Bruker AM-300 or AM-400 spectrometer for solution in CDCl3 with tetramethylsilane (TMS) as internal standard; J-values are in Hz. Mass spectra were recorded with a HP-5989 instrument. All of the compounds reported in this paper gave satisfactory HRMS analytic data. Melting points were determined on a digital melting point apparatus and temperatures were uncorrected. Optical rotations were determined at 589 nm (sodium D line) by using a Perkin-Elmer-341 MC digital polarimeter; $[\alpha]_D$ -values are given in unit of 10 deg⁻¹ cm² g⁻¹. Infrared spectra were recorded on a Perkin-Elmer PE-983 spectrometer with absorption in cm⁻¹. Chiral HPLC was performed on a SHIMADZU SPD-10A vp series with chiral columns (Chiralpak AD-H, IC-H columns 4.6 × 250 mm, (Daicel Chemical Ind., Ltd.)). THF, toluene and Et₂O were distilled from sodium (Na) under argon (Ar) atmosphere. CH₃CN, 1,2-dichloroethane and dichloromethane were distilled from CaH₂ under argon (Ar) atmosphere.Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with Huanghai GF254 silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure. All the oxazolones were prepared according to the literature.^[1]

Reaction Procedure for the Preparation of Catalysts: Reaction procedure for the preparation of (*R*)-1-argio-3-(2'-(diargiophosphino)-1,1'-binaphthyl-2-yl)thiourea.

Compound 1: This is a known compound.^[2] $[\alpha]^{20}_{D} = -33.0$ (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.97-8.06 (3H, m, Ar-H), 7.89 (1H, d, J = 8.0 Hz, Ar-H), 7.63 (1H, d, J = 8.8 Hz, Ar-H), 7.58-7.52 (2H, m, Ar-H), 7.38-7.34 (3H, m, Ar-H), 7.26-7.24 (1H, m, Ar-H), 7.03 (1H, d, J = 8.8 Hz, Ar-H), 5.18 (1H, d, J = 6.8 Hz, ArOCH₂), 5.03 (1H, d, J = 6.8 Hz, ArOCH₂), 3.22 (3H, s, OCH₃); ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃): δ -74.9.

Compound 2: This is a known compound.^[2] $[\alpha]^{20}_{D} = +109.9$ (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.95 (1H, d, J = 9.2 Hz, Ar-H), 7.86 (1H, d, J = 8.0 Hz, Ar-H), 7.76 (1H, d, J = 9.2 Hz, Ar-H), 7.72 (1H, d, J = 9.6 Hz, Ar-H), 7.59 (1H, d, J = 8.8 Hz, Ar-H), 7.38-7.34 (1H, m, Ar-H), 7.24 (2H, d, J = 3.6 Hz, Ar-H), 7.20-7.08 (8H, m, Ar-H), 6.95-6.93 (1H, m, Ar-H), 5.05 (1H, d, J = 6.8 Hz, ArOCH₂), 5.00 (1H, d, J = 6.8 Hz, ArOCH₂), 4.37 (2H, d, J = 3.2 Hz CH₂Ph), 4.04 (1H, brs, ArNH), 3.15 (3H, s, OCH₃); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 153.3, 143.5, 139.8, 134.0, 133.7, 130.3, 129.9, 129.0, 128.3, 128.0, 127.9, 127.3, 126.8, 126.2, 125.4, 124.5, 124.0, 121.6, 120.6, 117.6, 113.9, 113.3, 95.0, 55.9, 47.6.

Compound 3: (R)-2'-(benzylamino)-1,1'-binaphthyl-2-ol

Compound **2** (1.79 g, 4.28 mmol) was dissolved into the mixed solvent of DCM/MeOH (15 mL/15 mL), and then 1.5 mL conc. HCl was added into the solution at room temperature. Then, the mixture was stirred for 8 hours at 60 °C. After being cooled to room temperature, the solution was poured into water and quenched by addition of saturated NaHCO₃ solution, extracted with CH₂Cl₂ twice, the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and residue was used for the next reaction without further purification, affording product **3** as white solid (1.60 g, 99% yield). m.p. 133-135 °C; $[\alpha]^{20}_{D}$ = +103.4 (c 1.0, CHCl₃). IR (CH₂Cl₂) v 3418, 3071, 3051, 3017, 1699, 1616, 1596, 1495, 1427, 1339, 1295, 1178, 1144, 972, 812, 747 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.93 (1H, d, *J* = 8.8 Hz, Ar-H), 7.87 (1H, d, *J* = 8.0 Hz, Ar-H), 7.81 (1H, d, *J* = 9.2 Hz, Ar-H), 7.76-7.73 (1H, m, Ar-H), 7.39 (1H, d, *J* = 8.8 Hz, Ar-H), 5.16 (1H, bs, ArOH), 4.37 (2H, s, CH₂Ph), 4.21 (1H, bs, NH); ¹³C NMR (100 MHz, CDCl₃): δ 152.0, 144.9, 139.3, 134.1, 133.4, 130.7, 130.5, 129.6, 128.5,

128.3, 128.2, 127.5, 127.2, 127.0, 126.9, 126.7, 124.6, 123.7, 123.4, 122.3, 117.7, 114.1, 108.1, 47.4; MS (EI) m/z (%) 375 (100) [M⁺], 284 (45.71), 267 (25.33), 242 (18.00), 230 (6.70), 169 (6.50), 155 (9.21), 98 (25.11), 91 (41.75), 85 (56.27), 71 (61.10), 57 (67.71), 43 (55.74); HRMS (EI) Calcd for C₂₇H₂₁NO [M⁺] requires 375.1623, Found 375.1629.

Compound 4: (R)-2'-(benzylamino)-1,1'-binaphthyl-2-yl trifluoromethanesulfonate

Procedure: Compound **3** (1.60 g, 4.27 mmol) was dissolved in 20 mL of CH₂Cl₂ and pyridine (12.81 mmol), and the mixture was cooled to 0 °C with ice-water bath, then Tf₂O (6.40 mmol) was added slowly. The resulting mixture was stirred at room temperature for 4 hours, and then the reaction was quenched by addition of 0.1 N HCl, and extracted with CH₂Cl₂, washed by water and brine, dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (EtOAc/PE = 1/16 as eluent) to furnish product **4** as white solid (1.38 g, 2.73 mmol, 64% yield). m.p. 143-146 °C; $[\alpha]^{20}_{D}$ = +49.7 (c 0.6, CHCl₃). IR (CH₂Cl₂) v 3433, 3059, 1781, 1712, 1621, 1600, 1497, 1421, 1344, 1213, 1141, 957,

942, 835, 811, 745 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.07 (1H, d, *J* = 8.8 Hz, Ar-H), 7.99 (1H, d, *J* = 8.4 Hz, Ar-H), 7.84 (1H, d, *J* = 8.8 Hz, Ar-H), 7.77-7.74 (1H, m, Ar-H), 7.60-7.56 (2H, m, Ar-H), 7.49 (1H, d, *J* = 7.8 Hz, Ar-H), 7.45-7.40 (1H, m, Ar-H), 7.27-7.13 (8H, m, Ar-H), 6.84-6.81 (1H, m, Ar-H), 4.43 (1H, d, *J* = 15.6 Hz), 4.37 (1H, d, *J* = 15.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 146.0, 144.2, 139.5, 133.6, 133.3, 133.0, 131.0, 130.6, 128.4, 128.1, 127.9, 127.5, 127.4, 127.2, 126.9, 126.8, 126.7, 123.4, 121.9, 119.9, 118.2 (CF₃, q, *J*_{C-F} = 318.6 Hz), 113.9, 109.0, 47.9; ¹⁹F NMR (376 MHz, CDCl₃): δ -74.6; MS (EI) *m/z* (%) 507 (100) [M⁺], 374 (93.19), 357 (19.40), 281 (10.40), 268 (19.03), 239 (15.07), 231 (30.76), 91 (57.40), 69(10.21); HRMS (EI) Calcd for C₂₈H₂₀NO₃F₃S [M⁺] requires 507.1116, Found 507.1119.

Compound 5: (R)-2'-(acetamino)-1,1'-binaphthyl-2-yl trifluoromethanesulfonate

Procedure: Compound **4** (3.58 g, 7.07mmol) was dissolved in mixed solvent of EtOH/CHCl₃ (80 mL/20 mL), then 1.2 g of Pd(OH)₂/C was added into the solution. The resulting mixture was heated to 40-50 °C for 8 hours. After the catalyst was filtered off, the solvent was removed under reduced pressure and the residue was purified by column chromatography on neutral Al₂O₃ (EtOAc/PE = 1/16 as eluent) to give the corresponding intermediate as white solid (2.60 g, 6.20 mmol, 87% yield). This white solid was dissolved in 10 mL of CH₂Cl₂ mixed with 1.5 mL AcOH and 3.0 mL Ac₂O and the resulting mixture was stirred at room temperature overnight. The reaction was quenched by addition of saturated NaHCO₃ solution, extracted with CH₂Cl₂, dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (EtOAc/PE = 1/4 as eluent) to furnish product **5** as off-white solid (2.80 g, 95% yield). This is a known compound. [α]²⁰_D = +72.8 (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.37 (1H, d, *J* = 8.8 Hz, Ar-H), 8.12 (1H, d, *J* = 9.2 Hz, Ar-H), 8.04 (1H, d, *J* = 9.2 Hz, Ar-H), 7.60-7.55 (2H, m, Ar-H), 7.42-7.34 (3H, m, Ar-H), 7.25 (1H, t, *J* = 8.4 Hz, Ar-H), 7.05 (1H, d, *J* = 8.4 Hz, Ar-H), 7.05 (1H, d, *J* = 8.4 Hz, Ar-H), 7.05 (1H, d, *J* = 8.4 Hz, Ar-H), 7.97 (1H, s, Ar-H), 1.75 (3H, s, COCH₃); ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃): δ -79.4.

Compound 6: (*R*)-N-(2'-bis(3,5-dimethylphenyl)phosphoryl)-1,1'-binaphthyl-2-yl)acetamide. This was prepared according to the previous literature.^[3] A white solid. m.p. 110-113 °C; $[\alpha]^{20}_{D} =$ -171.7 (c 0.6, CHCl₃). IR (CH₂Cl₂) v 3052, 3030, 2904, 1794, 1686, 1594, 1501, 1398, 1274, 1174, 1113, 877, 818, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 9.84 (1H, s, ArNH), 7.95 (1H, d, *J* = 8.0 Hz, Ar-H), 7.89 (1H, d, *J* = 8.0 Hz, Ar-H), 7.73 (1H, d, *J* = 8.8 Hz, Ar-H), 7.70 (1H, d, *J* = 8.8 Hz, Ar-H), 7.64-7.59 (3H, m, Ar-H), 7.56-7.49 (2H, m, Ar-H), 7.23-7.15 (3H, m, Ar-H), 7.10 (1H, d, *J* = 8.0 Hz, Ar-H), 7.00-6.98 (1H, m, Ar-H), 6.73 (1H, s, Ar-H), 6.70 (1H, s, Ar-H), 6.51 (1H, d, *J* = 8.4 Hz, Ar-H), 6.30 (1H, s, Ar-H), 2.38 (6H, s, ArCH₃), 1.92 (3H, s, COCH₃); 1.86 (6H, s, ArCH₃); ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄): δ 28.2; MS (EI) *m/z* (%) 567 (52.13) [M⁺], 552 (27.86), 309 (93.79), 267 (100), 257 (40.23), 133 (16.68), 91 (18.90), 57 (29.76), 43 (69.01); HRMS (EI) Calcd for C₃₈H₃₄NO₂P [M⁺] requires 567.2327, Found 567.2330.

Compound 7: (R)-2'-bis(3,5-dimethylphenyl)phospino)-1,1'-binaphthyl-2-amine

Procedure: Compound **6** (1.0 mmol, 0.57 mg) was dissolved in 20 mL of EtOH, and then 4.0 N HCl solution was added into the mixture. The resulting solution was heated to 60 °C overnight and the reaction was quenched by addition of saturated NaHCO₃ solution, washed with water, extracted by CH₂Cl₂ twice, dried by anhydrous Na₂SO₄. The solution was concentrated for the next step without further purification (quantitative yield). Triethylamine (13.49 g, 25 mmol) in toluene (20 mL) was added into this product mixture (2.80 g, 5.33 mmol) and then trichlorosilane (8.31 g, 12 mmol) was added. The resulting mixture was heated at 110 °C for three days. After being cooled to room temperature, the product mixture was diluted with dichloromethane, quenched with a small amount of saturated NaHCO₃ solution. The resulting suspension was filtered through Celite, and washed with dichloromethane. The combined extracts were dried over anhydrous Na₂SO₄, and the residue was chromatographed on silica gel (PE/EA = 8:1 as eluent) to provide compound **7** as white solid (1.85 g, 70% yield). m.p. 119-121 °C ; $[\alpha]^{20}_{D} = -201.3$ (c 1.0, CHCl₃). IR (CH₂Cl₂) v 3461,

3328, 3215, 3052, 2917, 1712, 1619, 1600, 1513, 1433, 1358, 1271, 1182, 873, 818, 747, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.89 (1H, d, *J* = 4.8 Hz, Ar-H), 7.87 (1H, d, *J* = 5.2 Hz, Ar-H), 7.79 (1H, d, *J* = 8.8 Hz, Ar-H), 7.72 (1H, d, *J* = 8.0 Hz, Ar-H), 7.52-7.46 (2H, m, Ar-H), 7.29-7.26 (2H, m, Ar-H), 7.12-7.09 (1H, m, Ar-H), 7.03 (1H, d, *J* = 7.2 Hz, Ar-H), 6.94-6.88 (4H, m, Ar-H), 6.77 (1H, s, Ar-H), 6.65 (1H, d, *J* = 8.0 Hz, Ar-H), 6.60 (1H, d, *J* = 8.0 Hz, Ar-H), 3.36 (2H, s, NH₂), 2.23 (6H, s, ArCH₃), 2.11 (6H, s, ArCH₃); ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄): δ -12.9; MS (EI) *m*/*z* (%) 509 (0.91) [M⁺], 525 (57.07), 267 (100), 266 (19.78), 239 (11.00), 133 (9.62), 99 (11.37), 85 (24.21), 71 (26.49), 57 (47.14), 43 (25.25); HRMS (EI) Calcd for C₃₆H₃₂NP [M⁺] requires 509.2272, Found 509.2271.

L1: (R)-1-(2'-(bis(3,5-dimethylphenyl)phosphino)-1,1'-binaphthyl-2-yl)-3-phenylthiourea

Procedure: This compound was prepared according to the previous literature.^[4] Compound 7 (800 mg, 1.57 mmol) was dissolved in 2.0 mL of dry THF, and then isothiocyanatobenzene (255 mg, 1.88 mmol) was added and the reaction mixture was heated to 60 °C under argon for 7 days. After cooling to room temperature, the solution was concentrated by vacuum and the residue was purified

by column chromatography on silica gel (EtOAc/PE = 1/8 as eluent) to provide L1 as white solid (620 mg, 61% yield). m.p. 112-115 °C; $[\alpha]^{20}_{D}$ = +158.2 (c 0.6, CHCl₃). IR (CH₂Cl₂) v 3326, 3044, 2963, 1789, 1707, 1595, 1497, 1308, 1261, 1183, 1117, 840, 817, 748, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.07 (1H, d, *J* = 8.8 Hz), 7.97 (2H, d, *J* = 8.8 Hz), 7.90 (2H, d, *J* = 8.4 Hz), 7.80 (1H, d, *J* = 8.0 Hz), 7.50-7.41 (3H, m) 7.30-7.19 (3H, m), 7.09-7.06 (3H, m), 6.91-6.88 (2H, m), 6.74 (4H, d, *J* = 7.8 Hz), 6.67 (1H, s), 6.62 (1H, d, *J* = 8.4 Hz), 6.53 (2H, d, *J* = 8.8 Hz), 2.18 (6H, s, ArCH₃), 2.04 (6H, s, ArCH₃); ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄): δ -12.8; MS (ESI) *m/z* (%) 645.5 [M⁺+H]; HRMS (ESI) Calcd for C₄₃H₃₈N₂PS [M⁺+H] requires 645.2488, Found 645.2483.

L2: (R)-1-benzyl-3-(2'-(bis(3,5-dimethylphenyl)phosphino)-1,1'-binaphthyl-2-yl)thiourea

Procedure: Compound 7 (800.0 mg, 1.57 mmol) was dissolved in 2.0 mL dry THF, and then (isothiocyanatomethyl)benzene (280.7 mg, 1.88 mmol) was added. The resulting mixture was heated to 60 °C under argon for 7 days, cooled to room temperature, concentrated by vacuum, and

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

the residue was purified by column chromatography on silica gel (EtOAc/PE = 1/8 as eluent) to provide L2 as white solid (580.0 mg, 56% yield). m.p. 116-119 °C; $[\alpha]^{20}_{D}$ = +190.5 (c 0.5, CHCl₃). IR (CH₂Cl₂) v 3367, 3058, 2921, 1782, 1697, 1424, 1369, 1254, 1179, 1143, 1076, 848, 819, 747, 693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.95 (1H, d, *J* = 8.8 Hz), 7.91-7.89 (2H, m), 7.84 (1H, d, *J* = 8.4 Hz), 7.55-7.46 (3H, m), 7.39-7.35 (1H, m), 7.22-7.17 (4H, m), 7.05-7.00 (4H, m), 6.98 (1H, s), 6.94 (1H, s), 6.83 (1H, d, *J* = 8.4 Hz), 6.75 (2H, d, *J* = 8.8 Hz), 6.56 (2H, d, *J* = 8.8 Hz), 6.40 (1H, brs), 4.77-4.74 (1H, m), 3.99 (1H, dd, *J*₁ = 14.8 Hz, *J*₂ = 4.0 Hz), 2.27 (6H, s, ArCH₃), 2.07 (6H, s, ArCH₃); ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄): δ -14.0; MS (ESI) *m/z* (%) 659.6 [M⁺+H]; HRMS (ESI) Calcd for C₄₄H₄₀N₂PS [M⁺+H] requires 659.2644, Found 659.2651.

L3: (R)-1-(2'-(diphenylphosphino)-1,1'-binaphthyl-2-yl)-3-phenylurea

This is a known compound. $[\alpha]^{20}{}_{D} = +72.3$ (c 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.32 (1H, d, J = 8.8 Hz), 8.00 (1H, d, J = 8.8 Hz), 7.91 (2H, t, J = 8.4 Hz), 7.85 (1H, d, J = 8.8 Hz), 7.52 (1H, t, J = 7.6 Hz), 7.40 (1H, dd, $J_{I} = 8.8$ Hz, $J_{2} = 2.8$ Hz), 7.32-6.95 (17H, m), 6.76 (1H, d, J

L4:

(*R*)-1-(2'-(bis(3,5-dimethylphenyl)phosphino)-1,1'-binaphthyl-2-yl)-3-(3,5-bis(trifluoromethyl) phenyl)thiourea

A white solid. yield: 77%. m.p. 118-122 °C; $[\alpha]^{20}_{D}$ = +348.3 (c 0.5, CHCl₃). IR (CH₂Cl₂) v 3052, 2921, 1779, 1707, 1580, 1473, 1383, 1277, 1250, 1178, 1134, 992, 883, 847 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.28 (1H, d, J = 4.8 Hz), 8.11 (1H, d, J = 8.8 Hz), 7.97-7.93 (3H, m), 7.66-7.61 (4H, m), 7.54-7.46 (3H, m), 7.30-7.27 (2H, m), 7.11 (1H, d, J = 8.8 Hz), 7.08-7.04 (1H, m), 6.81 (1H, s), 6.78 (1H, s), 6.75 (1H, d, J = 8.8 Hz), 6.73 (1H, s), 6.71 (1H, s), 6.60 (1H, s), 6.58 (1H, s), 2.11 (6H, s, ArCH₃), 2.10 (6H, s, ArCH₃); ³¹P NMR (162 MHz, CDCl₃, 85% H₃PO₄): δ -13.5; ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃): δ -63.0; MS (ESI) *m/z* (%) 781.4 [M⁺+H]; HRMS (ESI) Calcd for C₄₅H₃₆F₆N₂PS [M⁺+H] requires 781.2236, Found 781.2239.

L6: (R)-1-benzyl-3-(2'-(bis(3,5-dimethoxyphenyl)phosphino)-1,1'-binaphthyl-2-yl)thiourea

A white solid. yield: 58%. m.p. 103-105 °C; $[\alpha]^{20}_{D} = +123.8$ (c 0.5, CHCl₃). IR (CH₂Cl₂) v 2932, 1580, 1524, 1485, 1453, 1411, 1327, 1280, 1202, 1153, 1060, 1042, 817, 747 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.97 (1H, d, J = 8.8 Hz), 7.93 (2H, d, J = 8.8 Hz), 7.83 (1H, d, J = 8.0 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.53-7.48 (2H, m), 7.37-7.28 (2H, m), 7.23-7.19 (3H, m), 7.13-7.11 (2H, m), 7.05-6.96 (3H, m), 6.71 (1H, d, J = 8.8 Hz), 6.47-6.42 (2H, m), 6.37 (1H, d, J = 2.4 Hz), 6.35 (1H, d, J = 2.4 Hz), 6.23 (1H, t, J = 2.4 Hz), 6.09 (1H, d, J = 2.4 Hz), 6.07 (1H, d, J = 2.4 Hz), 4.78 (1H, brs, CH₂Ph), 4.23 (1H, dd, $J_1 = 12.8$ Hz, $J_2 = 3.6$ Hz, CH₂Ph), 3.70 (6H, s, ArOCH₃), 3.55 (6H, s, ArOCH₃); ³¹P NMR (CDCl₃, 162 MHz, 85% H₃PO₄): δ -10.4; MS (ESI) *m/z* (%) 723.4 [M⁺+H]; HRMS (ESI) Calcd for C₄₄H₄₀O₄N₂PS [M⁺+H] requires 723.2448, Found 723.2441.

Reference:

- [1] a) Obrecht, D.; Altorfer, M.; Lehmann, C.; Schönholzer, P.; Müller, K. J. Org. Chem. 1996, 61, 4080. b) Chen, F. M. F.; Kuroda, K.; Benoiton, N. L. Synthesis 1979, 230.
- [2] Takashi, O.; Kohsuke, O.; Keiji, M. J. Am. Chem. Soc. 2007, 129, 2410.
- [3] Štěpán, V.; Martin, S.; Vladimír, H.; Miroslav, P.; Pavel, K. J. Org. Chem. 1998, 63, 7738.
- [4] Shi, Y.-L.; Shi, M. Adv. Synth. Catal. 2007, 349, 2129.

Typical procedure for the preparation of Boc-protected Morita-Baylis-Hillman adducts.

To an ice-water cooled solution of A (10.0 mmol) in dry CH_2Cl_2 (20.0 mL) was added Boc₂O (11.0 mmol) and DMAP (0.5 mmol) in dry CH_2Cl_2 (20.0 mL) over half an hour. The reaction mixture was stirred at room temperature overnight. The solution was washed with aqueous hydrochloric acid (15%, 20 mL), saturated sodium bicarbonate (20 mL), and brine (20 mL) sequentially, dried over anhydrous sodium sulfate, concentrated, and purified by column chromatography to get the product

tert-butyl 1-(4-chlorophenyl)-2-methylene-3-oxobutyl carbonate **1a**: a white solid; yield: 77%; m.p. 97-99 °C; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.34-7.27 (m, 4H), 6.50 (s, 1H), 6.23 (brs, 1H), 6.16 (d, *J* = 1.2 Hz, 1H), 2.31 (s, 3H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 152.4, 147.4, 136.9, 134.1, 128.8, 128.6, 125.5, 82.8, 74.3, 27.7, 26.0; IR (neat) v 3065, 3034, 2981, 2934, 1745, 1681, 1370, 1277, 1159 cm⁻¹; MS (%) m/e 254 (M-C₄H₈, 19), 209 (71), 195 (24), 193 (30), 192 (40), 175 (70), 115 (56), 57 (100), 43 (81); HRMS (EI) for C₁₂H₁₀O₄Cl (M-C₄H₈): 253.0268; Found: 253.0265.

tert-butyl 1-(4-bromophenyl)-2-methylene-3-oxobutyl tert-butyl carbonate **1b**: a white solid; yield: 67%; m.p. 101-103 °C; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.45-7.43 (m, 2H), 7.28-7.25 (m, 2H), 6.50 (s, 1H), 6.24 (s, 1H), 6.16 (s, 1H), 2.31 (s, 3H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 152.1, 147.3, 137.4, 131.5, 129.1, 125.5, 122.2, 82.7, 74.2, 27.6, 26.0. IR (neat) v 2981, 2934, 1746, 1681, 1370, 1488, 1370, 1280, 1157, 1084, 1073 cm⁻¹; MS (ESI) m/e 377 (M+Na); HRMS (ESI) for C₁₆H₁₉BrNaO₄ (M+Na): 377.0359; Found: 377.0359.

tert-butyl 2-methylene-1-(4-nitrophenyl)-3-oxobutyl carbonate **1c**: a white solid; yield: 87%; m.p. 112-115 °C; ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.19-8.17 (m, 2H), 7.62-7.59 (m, 2H), 6.61 (s, 1H), 6.33 (s, 1H), 6.27 (s, 1H), 2.35 (s, 3H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 197.0, 151.9, 147.5, 146.7, 145.4, 128.1, 126.4, 123.5, 83.1, 73.6, 27.5, 25.8. IR (neat) v 3478, 3341, 3112, 2982, 2936, 1747, 1681, 1608, 1526, 1370, 1252, 1156, 1086, 975, 853 cm⁻¹; MS (ESI) m/e 344 (M+Na); HRMS (ESI) for C₁₆H₁₉NNaO₆ (M+Na): 344.1105; Found: 344.1105.

tert-butyl 2-methylene-3-oxo-1-p-tolylbutyl carbonate **1d**: a white solid; yield: 57%; m.p. 79-82 °C; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.27 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 6.53 (s, 1H), 6.20 (s, 1H), 6.12 (s, 1H), 2.31 (s, 3H), 2.30 (s, 3H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 152.3, 147.7, 137.9, 134.9, 129.0, 127.3, 125.5, 82.3, 74.9, 27.6, 26.0, 21.0; IR (neat) v 3476, 3348, 2981, 2932, 1745, 1682, 1515, 1370, 1276, 1160, 1083, 973, 884 cm⁻¹; MS (ESI) m/e 313 (M+Na); HRMS (ESI) for C₁₇H₂₂NaO₄ (M+Na): 313.1410; Found: 313.1414.

tert-butyl 1-(2-methoxyphenyl)-2-methylene-3-oxobutyl carbonate **1e**: a white solid. yield: 52%; m.p 119-121 °C; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.30-7.25 (m, 2H), 6.94-6.88 (m, 2H), 6.87 (d, 1H, J = 8.4 Hz), 6.22 (s, 1H), 5.82 (d, J = 1.2 Hz, 1H), 3.82 (s, 3H), 2.36 (s, 3H), 2.30 (s, 3H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 197, 156.7, 152.5, 147.0, 129.4, 127.3, 126.7, 126.2, 120.4, 110.8, 82.3, 69.9, 55.5, 27.7, 26.3; IR (CH₂Cl₂) v 2982, 1738, 1674, 1634, 1602, 1495, 1467, 1392, 1368, 1272, 1243, 1080, 985, 961, 942, 872 cm⁻¹; MS (EI) *m/z* (%) 306.(2.61) (M⁺), 250 (6.02), 206 (41.08), 205 (94.30), 189 (23.01), 175 (35.34), 145 (23.06), 131 (36.81), 121 (13.11), 97 (28.71), 77 (19.60), 57 (87.43), 43 (100); HRMS (EI) Calcd for C₁₇H₂₂O₅ (M⁺) requires 306.1467, Found 306.1460.

1-(3-bromophenyl)-2-methylene-3-oxobutyl tert-butyl carbonate **1f**: a white solid; yield: 52%; m.p. 100-103 °C; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.52-7.51 (m, 1H), 7.42-7.39 (m, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.19 (t, *J* = 8.0 Hz, 1H), 6.50 (s, 1H), 6.25 (s, 1H), 6.17 (d, *J* = 1.2 Hz, 1H), 2.33 (s, 3H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 152.1, 147.2, 140.3, 131.3, 130.2, 130.0, 126.3, 125.8, 122.4, 82.9, 74.1, 27.7, 26.0; IR (neat) v 2981, 2927, 1746, 1681, 1573, 1475, 1370, 1280, 1159, 1085, 971, 789 cm⁻¹; MS (ESI) m/e 377 (M+Na); HRMS (ESI) for C₁₆H₁₉BrNaO₄ (M+Na): 377.0359; Found: 377.0354.

tert-butyl 2-methylene-3-oxo-1-(4-(trifluoromethyl)phenyl)butyl carbonate **1g**: a white solid; yield: 45%; m.p. 89-93 °C; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.58 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.8 Hz, 2H), 6.59 (s, 1H), 6.27 (s, 1H), 6.20 (s, 1H), 2.32 (s, 3H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 197, 152.1, 147.1, 142.2 (d, $J_{C-F} = 1.2$ Hz), 130.2 (q, $J_{C-F} = 32.4$ Hz), 127.5, 125.9, 125.3 (q, $J_{C-F} = 4.0$ Hz), 123.9(q, $J_{C-F} = 271.0$ Hz), 82.8, 74.1, 27.5; ¹⁹F NMR (CDCl₃, 376 MHz, CFCl₃): δ -62.7. IR (neat) v 2983, 2936, 1748, 1682, 1608, 1421, 1371, 1277, 1165, 1068, 974, 853 cm⁻¹; MS (ESI) m/e 367 (M+Na); HRMS (ESI) for C₁₇H₁₉F₃NaO₄ (M+Na): 367.1128; Found: 367.1126.

tert-butyl 1-(3-methoxyphenyl)-2-methylene-3-oxobutyl carbonate **1h**: a colorless oil. yield: 75%; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.23 (t, *J* = 7.6 Hz, 1H), 6.98-6.95 (m, 1H), 6.92-6.91 (m, 1H), 6.83-6.81 (m, 1H), 6.54 (s, 1H), 6.22 (s, 1H), 6.10 (d, *J* = 1.2 Hz, 1H), 3.78 (s, 3H), 2.32 (s, 3H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 159.5, 152.3, 147.6, 139.5, 129.4, 125.7, 119.6, 113.7, 112.8, 82.5, 74.7, 55.2, 27.7, 26.1; IR (CH₂Cl₂) v 2977, 2937, 1741, 1679, 1460, 1394, 1369, 1305, 1274, 1251, 1161, 1089, 1045, 942, 898 cm⁻¹; MS (EI) *m/z* (%) 306.(6.86) [M⁺], 250 (4.51), 206 (42.71), 205 (55.37), 189 (16.61), 175 (59.06), 163 (6.09), 145 (10.07), 135 (11.34), 121 (20.08), 103 (15.47), 84 (11.10), 77 (13.19), 57 (100), 43 (87.19); HRMS (EI) Calcd for C₁₇H₂₂O₅ [M⁺] requires 306.1467, Found 306.1462.

tert-butyl 2-methylene-3-oxo-1-(3-(trifluoromethyl)phenyl)butyl carbonate **1i**: a white solid; yield: 61%; m.p. 48-49 °C; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.61 (t, J = 8.4 Hz, 2H), 7.54 (d, J = 7.6 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 6.59 (s, 1H), 6.28 (s, 1H), 6.20 (s, 1H), 2.33 (s, 3H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 197, 152.1, 147.1, 139.2, 131.0, 130.7 (q, $J_{C-F} = 32.0$ Hz), 128.9, 128.0,125.9, 125.0 (q, $J_{C-F} = 3.7$ Hz), 123.91 (q, $J_{C-F} = 3.7$ Hz), 123.90 (q, $J_{C-F} = 270.7$ Hz), 83.0, 74.2, 27.6; ¹⁹F NMR (CDCl₃, 376 MHz, CFCl₃): δ -62.6; IR (neat) v 2983, 2972, 1749, 1675, 1327, 1285, 1272, 1251, 1160, 1119, 1072, 971, 956, 847 cm⁻¹; MS (ESI) m/e 367 (M+Na); HRMS (ESI) for C₁₇H₁₉F₃NaO₄ (M+Na): 367.1128; Found: 367.1130.

tert-butyl 2-methylene-3-oxo-1-(thiophen-2-yl)butyl carbonate **1n**: a white solid. yield: 32%; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.27-7.25 (m, 1H), 7.08-7.07 (m, 1H), 6.94 (dd, $J_I = 5.2$, $J_2 = 3.6$, 1H), 6.81 (s, 1H), 6.27 (s, 1H), 6.26 (d, J = 1.2 Hz, 1H), 2.35 (s, 3H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 152.1, 147.3, 140.7, 127.1, 126.8, 126.1, 125.2, 82.8, 70.2, 27.7, 26.0; IR (CH₂Cl₂) v 2978, 2926, 1736, 1631, 1431, 1393, 1370, 1316, 1344, 1299, 1252, 1155, 1076, 1043, 962, 923, 868, 847 cm⁻¹; MS (EI) *m/z* (%) 306.(6.86) [M⁺], 250 (4.51), 206 (42.71), 205 (55.37), 189 (16.61), 175 (59.06), 163 (6.09), 145 (10.07), 135 (11.34), 121 (20.08), 103 (15.47), 84 (11.10), 77 (13.19), 57 (100), 43 (87.19); MS (ESI) m/e 305 (M+Na); HRMS (ESI) for C₁₄H₁₈NaO₄S (M+Na): 305.0818; Found : 305.0821.

tert-butyl 1-(3-methoxyphenyl)-2-methylene-3-oxobutyl carbonate **1o**: a colorless oil. yield: 16%; ¹H NMR (400 MHz, CDCl₃, TMS) δ 6.14 (s, 1H), 6.03 (d, *J* = 0.8 Hz, 1H), 5.46-5.43 (m, 1H), 2.36 (s, 3H), 1.78-1.59 (m, 2H), 1.47 (s, 9H), 0.91 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 152.8, 148.3, 124.7, 82.1, 74.9, 27.7, 27.6, 26.0, 9.7; IR (CH₂Cl₂) v 2976, 1741, 1679, 1459, 1394, 1369, 1305, 1275, 1251, 1161, 1089, 1044, 942, 898 cm⁻¹; MS (ESI) m/e 251 (M+Na); HRMS (ESI) for C₁₂H₂₀NaO₄ (M+Na): 251.1254; Found: 251.1260.

General Procedure for the Preparation of 3 from the Reaction of 1a with 2a Using 3a as an Example in the Presence of L2

To a mixture of **1a** (0.11 mmol, 34 mg), **2a** (0.10 mmol, 21 mg) and catalyst **L2** (13 mg, 0.020 mmol) was added 1.0 mL of dichloromethane at room temperature (20 °C) under argon. The reaction solution was monitored by TLC .After the reaction complete, the solution was concentrated under reduced pressure and the residue was further purified by silica gel column chromatography (EtOAc/PE = 1/16) to give the target product **3a**.

Preparative thin layer chromatography was performed to obtain the pure *syn*-adduct for spectroscopic analyses (eluent: DCM/PE = 2/1).

(S)-4-((R)-1-(4-chlorophenyl)-2-methylene-3-oxobutyl)-4-isopropy-2-phenyloxazol-5(4H)-one

3a: Following the general procedure, the syn/anti ratio (16:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major 2.46 ppm, δ minor: 2.79 ppm). The mixture was purified by column chromatography using silica gel to give a mixture of diastereoisomer along with trace amount of impurity (34 mg, 86% overall yield in a diastereomeric ratio = 16:1). m.p. for syn-3a = 107-109 °C; $[\alpha]_{D}^{20}(syn-3a) = -52.0$ (c 0.5, CHCl₃). IR (CH₂Cl₂): v 2972, 1811, 1672, 1651, 1488, 1453, 1295, 1200, 1157, 1110, 1046, 1016, 961, 914, 887, 811, 783 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) for *syn*-**3a**: δ 7.87 (2H, d, *J* = 6.8 Hz, Ph-H), 7.56 (1H, t, *J* = 7.6 Hz, Ph-H), 7.45 (2H, t, J = 7.6 Hz, Ph-H), 7.27 (1H, s, =CH₂), 7.16 (2H, d, J = 8.4 Hz, Ar-H), 7.05 (2H, d, J = 8.4 Hz, Ar-H), 6.50 (1H, s, =CH₂), 4.90 (1H, s, Ar-CH), 2.46 (1H, qu, *J* = 6.8 Hz, -CH(CH₃)₂), 2.32 (3H, s, COCH₃), 1.10 (3H, d, J = 6.8 Hz, -CH(CH₃)₂), 0.81 (3H, d, J = 6.8 Hz, -CH(CH₃)₂); ¹³C NMR (100 MHz, CDCl₃) for syn-3a: δ 198.0, 177.9, 160.3, 145.9, 135.0, 133.3, 132.7, 131.5, 128.8, 128.7, 128.0, 127.8, 125.4, 79.8, 46.2, 32.3, 25.6, 17.5, 15.3; MS (EI(syn-3a)) m/z (%) 395 (1.86) [M⁺], 193 (35.40), 105 (84.48), 86 (51.69), 84 (82.05), 77 (32.57), 71 (8.47), 57 (11.35), 43 (100); HRMS (EI) Calcd for $C_{23}H_{22}CINO_3$ [M⁺] requires 395.1292, Found 395.1288; The ee of the syn-diastereomer was determined to be 97% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 90:10, 0.7 mL/min, λ = 230 nm, t (major) = 6.98 min, t (minor) = 8.57 min].

¹H NMR (400 MHz, CDCl₃, TMS) for the crude product:

(S)-4-((R)-1-(4-bromophenyl)-2-methylene-3-oxobutyl)-4-isopropy-2-phenyloxazol-5(4H)-one **3b**: Following the general procedure, the *syn/anti* ratio (16:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major: 2.46 ppm, δ minor: 2.79 ppm). The mixture was purified by column chromatography using silica gel to give a mixture of diastereoisomer along with trace amount of impurity (36 mg, 82% overall yield in a diastereomeric ratio = 16:1); a white solid. m.p. for syn-3b = 103-105 °C; $[\alpha]^{20}_{D}(syn-3b) = -42.5$ (c 1.0, CHCl₃). IR (CH₂Cl₂): v 2922, 1811, 1678, 1651, 1485, 1454, 1342, 1296, 1157, 1113, 1072, 1047, 1022, 1010, 964, 911, 884, 811, 784 cm⁻¹; ¹H NMR (400MHz, CDCl₃, TMS) for *syn*-**3b**: δ 7.88-7.86 (2H, m, Ph-H), 7.57-7.52 (1H, m, Ph-H), 7.46-7.42 (2H, m, Ph-H), 7.28 (1H, s, =CH₂), 7.21 (2H, d, J = 8.8 Hz, Ar-H), 7.10 (2H, d, *J* = 8.8 Hz, Ar-H), 6.50 (1H, s, =CH₂), 4.89 (1H, s, Ar-CH), 2.46 (1H, qu, *J* = 6.8 Hz, -CH(CH₃)₂), 2.31 (3H, s, COCH₃), 1.10 (3H, d, *J* = 6.8 Hz, -CH(CH₃)₂), 0.81 (3H, d, *J* = 6.8 Hz, -CH(CH₃)₂); ¹³C NMR (CDCl₃, 100 MHz) for *syn*-**3b**: δ 198.0, 177.9, 160.3, 145.9, 135.6, 132.9, 131.9, 130.9, 128.8, 128.7, 127.7, 125.3, 121.6, 79.7, 46.2, 32.3, 25.5, 17.5, 15.3; MS (EI(syn-3b)) m/z (%) 439 (2.07) [M⁺], 239 (32.76), 237 (33.60), 202 (6.34), 158 (31.42), 115 (12.37), 105 (100.00), 77 (36.26), 43 (88.45); HRMS (EI) Calcd for $C_{23}H_{22}BrNO_3$ [M⁺] requires 439.0783, Found 439.0785; The ee of the syn-diastereomer was determined to be 97% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 90:10, 0.7 mL/min, λ = 230 nm, t (major) = 7.28 min, t (minor) = 8.61 min].

¹H NMR (400 MH_Z, CDCl₃, TMS) for the crude product:

¹H NMR (400 MHz, CDCl₃, TMS) for the *syn*-diastereomer

(*S*)-4-((*R*)-1-(4-nitrophenyl)-2-methylene-3-oxobutyl)-4-isopropy-2-phenyloxazol-5(4H)-one 3c: Following the general procedure, the *syn/anti* ratio (4:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major: 2.51 ppm, δ minor: 2.79 ppm). The mixture was purified by column chromatography using silica gel to give a mixture of diastereoisomer along with trace amount of impurity (39 mg, 95% overall yield in a diastereomeric ratio = 4:1); a white solid. m.p. for *syn*-3c = 114-117 °C; $[\alpha]^{20}_{D}$ (*syn*-3c) = -79.7 (c 1.0, CHCl₃); $[\alpha]^{20}_{D}$ (*anti*-3c) = -139.5 (c 0.5,

CHCl₃). IR (CH₂Cl₂): v(syn-3c) 2922, 1813, 1676, 1645, 1604, 1522, 1453, 1367, 1342, 1320, 1289, 1163, 1106, 1044, 1025, 973, 910, 877, 855, 833, 783 cm⁻¹; R (CH₂Cl₂): v(anti-3c) 2961, 2925, 1782, 1680, 1646, 1605, 1522, 1493, 1450, 1347, 1258, 1174, 1070, 1015, 964, 859. ¹H NMR (300 MHz, CDCl₃, TMS) for *syn*-**3c**: δ 7.95 (2H, d, J = 9.0 Hz, Ar-H), 7.87 (2H, d, J = 7.2 Hz, Ar-H), 7.57 (1H, t, J = 7.2 Hz, Ph-H), 7.48-7.39 (5H, m, Ph-H and =CH₂), 6.60 (1H, s, =CH₂), 5.03 (1H, s, Ar-CH), 2.51 (1H, qu, J = 7.2 Hz, -CH(CH₃)₂), 2.35 (3H, s, COCH₃), 1.11 (3H, d, J = 7.2 Hz, -CH(CH₃)₂), 0.81 (3H, d, J = 7.2 Hz, -CH(CH₃)₂); ¹H NMR (400 MHz, CDCl₃, TMS) for *anti*-3c: δ 8.10-8.05 (2H, m), 7.56-7.41 (4H, m), 7.36-7.31 (3H, m), 6.79 (1H, s), 6.41 (1H, s), 5.55 (1H, s), 2.79 (1H, qu, J = 6.8 Hz), 2.21 (3H, s), 1.22 (3H, d, J = 6.8 Hz), 1.10 (3H, d, J = 6.8 Hz); ¹³C NMR (75 MHz, CDCl₃) for *syn*-**3c**: δ 198.0, 177.6, 160.5, 147.0, 145.1, 144.2, 133.0, 131.1, 129.8, 128.8, 127.7, 124.9, 123.0, 79.4, 46.5, 32.4, 25.5, 17.4, 15.2; ¹³C NMR (100 MHz, CDCl₃) for *anti-***3c**: δ 197.2, 169.4, 163.3, 147.2, 144.5, 142.8, 137.1, 131.5, 130.8, 129.2, 128.5, 126.6, 123.1, 106.7, 51.2, 28.1, 25.1, 18.9; MS (EI(*syn*-3c)) *m/z* (%) 406 (0.12) [M⁺], 202 (19.95), 174 (5.82), 115 (1.70), 105 (100.00), 77 (15.77), 51 (2.09), 43 (11.30); HRMS (EI) Calcd for C₂₃H₂₂N₂O₅ [M⁺] requires 406.1529, Found 406.1531; MS (ESI(*anti-*3c)) m/e 407 (M^+ +H); HRMS (ESI) for C₂₃H₂₃N₂O₅ (M+H): 407.1610, Found: 407.1602; The ee of the syn-diastereomer was determined to be 98% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 90:10, 0.7 mL/min, λ = 230 nm, t (major) = 9.77 min, t (minor) = 12.36 min]; The ee of the *anti*-diastereomer was determined to be 94% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 90:10, 0.5 mL/min, λ = 230 nm, t (major) = 21.78 min, t (minor) = 20.54 min].

¹H NMR (300 MHz, CDCl₃, TMS) for the crude product:

¹H NMR (300 MHz, CDCl₃, TMS) for the *syn*-diastereomer

(S)-4-isorpopyl-4-((R)-2-methylene-3-oxo-1-p-tolylbutyl)-2-phenyloxazol-5(4H)-one **3d**: Following the general procedure, the syn/anti ratio (20:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major: 2.46 ppm, δ minor: 2.75 ppm). The mixture was purified by column chromatography using silica gel to give a mixture of diastereoisomers along with trace amount of impurity (34 mg, 91% overall yield in a diastereomeric ratio = 20:1); a white solid. m.p. for syn-3d = 90-93 °C; $[\alpha]^{20}_{D}(syn-3d) = -53.3$ (c 0.7, CHCl₃). IR (CH₂Cl₂): v 2921, 1812, 1679, 1652, 1322, 1294, 1046, 1022, 963, 909, 882, 810, 785 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) TMS) for syn-3d: δ 7.88-7.85 (2H, m, Ph-H), 7.55-7.51 (1H, m, Ph-H), 7.46-7.41 (2H, m, Ph-H), 7.24 (1H, s, =CH₂), 7.10 (2H, d, J = 8.0 Hz, Ar-H), 6.88 (2H, d, J = 7.6 Hz, Ar-H), 6.46 (1H, s, =CH₂), 4.90 (1H, s, Ar-CH), 2.46 (1H, qu, *J* = 6.8 Hz, -CH(CH₃)₂), 2.30 (3H, s, COCH₃), 2.15 (3H, s, PhCH₃), 1.11 (3H, d, J = 6.8 Hz, -CH(CH₃)₂), 0.81 (3H, d, J = 6.8 Hz, -CH(CH₃)₂); ¹³C NMR (100 MHz, CDCl₃) for syn-3d: δ 198.2, 178.1, 160.0, 146.4, 136.9, 133.3, 132.4, 130.0, 128.6, 128.5, 128.3, 127.7, 125.7, 80.1, 46.5, 32.3, 25.7, 20.9, 17.6, 15.4; MS (EI(syn-3d)) m/z (%) 375 (1.26) [M⁺], 173 (41.78), 131 (8.05), 115 (4.62), 105 (33.00), 86 (14.60), 84 (22.95), 77 (22.56), 43 (100); HRMS (EI) Calcd for $C_{24}H_{25}NO_3$ [M⁺] requires 375.1834, Found 375.1834; The ee of the syn-diastereomer was determined to be 96% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 90:10, 0.7 mL/min, λ = 230 nm, t (major) = 6.78 min, t (minor) = 7.78 min].

(S)-4-isorpopyl-4-((R)-1-(2-methoxyphenyl)-2-methylene-3-oxobutyl)-2-phenyloxazol-5(4H)-o **ne 3e**: Following the general procedure, the *syn/anti* ratio (5:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major: 2.45 ppm, δ minor: 2.79 ppm). The mixture was purified by column chromatography using silica gel to give a mixture of diastereoisomers along with trace amount of impurity (37 mg, 94% overall yield in a diastereomeric ratio = 5:1). m.p. for $syn-3e = 119-121 \text{ °C}; [\alpha]^{20}{}_{D} (syn-3e) = +55.5 (c 0.7, CHCl_3); [\alpha]^{20}{}_{D} (anti-3e) = -7.7 (c 0.5, CHCl_3).$ IR (CH₂Cl₂): v(syn-3e) 2921, 1817, 1676, 1647, 1489, 1461, 1449, 1344, 1290, 1240, 1198, 1154, 1109, 1043, 1023, 955, 910, 882, 787, 728 cm⁻¹; IR (CH₂Cl₂): v(anti-3e) 2961, 2926, 2854, 1826, 1780, 1685, 1655, 1599, 1492, 1258, 1216, 1169, 1105, 1072, 1022, 951, 881, 800.¹H NMR (400 MHz, CDCl₃, TMS) for syn-3e: δ 7.88 (2H, d, J = 8.4 Hz, Ph-H), 7.53 (1H, t, J = 7.2 Hz, Ph-H), 7.44 (2H, t, J = 7.2 Hz, Ph-H), 7.31 (1H, dd, $J_1 = 7.8$ Hz, $J_2 = 1.2$ Hz, Ar-H), 7.09-7.04 (1H, m, Ar-H), 6.97 (1H, s, =CH₂), 6.83-6.81 (1H, m, Ar-H), 6.63-6.60 (1H, m, Ar-H), 6.37 (1H, s, =CH₂), 5.71 (1H, s, Ar-CH), 3.87 (3H, s, Ar-OCH₃), 2.45 (1H, qu, J = 6.8 Hz, -CH(CH₃)₂), 2.27 (3H, s, COCH₃), 1.12 (3H, d, *J* = 6.8 Hz, -CH(CH₃)₂), 0.84 (3H, d, *J* = 6.8 Hz, -CH(CH₃)₂); ¹H NMR (400 MHz, CDCl₃, TMS) for anti-3e: δ 7.57-7.55 (2H, m), 7.34-7.24 (5H, m), 6.88-6.73 (2H, m), 6.60 (1H, s), 6.29 (1H, s), 6.01 (1H, s), 3.84 (3H, s), 2.79 (1H, qu, *J* = 6.8 Hz), 2.21 (3H, s), 1.22 (3H, d, J = 6.8 Hz), 1.13 (3H, d, J = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) for syn-3e: δ 198.5, 177.7, 159.9, 157.1, 147.4, 132.4, 130.9, 128.6, 128.4, 128.3, 127.7, 125.8, 125.3, 119.4, 111.4, 80.0, 56.0, 38.1, 32.5, 26.0, 17.4, 15.8; ¹³C NMR (100 MHz, CDCl₃) for anti-3e: δ 197.7, 168.5, 158.1, 146.1, 137.8, 130.5, 129.9, 128.7, 128.3, 128.1, 127.3, 126.7, 126.1, 119.6, 111.3, 69.9, 56.1, 43.3, 28.0, 27.7, 25.7, 19.0, 18.8; MS (EI(syn-3e)) m/z (%) 391 (0.51) [M⁺], 190 (6.62), 189 (47.94), 147 (20.16), 131 (6.13), 115 (4.41), 105 (31.61), 86 (61.28), 84 (100.00), 77 (23.16), 43 (89.95); HRMS (EI) Calcd for C₂₄H₂₅NO₄ [M⁺] requires 391.1784, Found 391.1785; MS (ESI(*anti-***3**e)) m/e 392 (M⁺+H); HRMS (ESI) for $C_{24}H_{26}NO_4$ (M⁺+H): 392.1861, Found: 392.1856. The ee of the syn-diastereomer was determined to be 95% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 90:10, 0.7 mL/min, $\lambda = 230$ nm, t (major) = 7.02 min, t (minor) = 8.57 min]; The ee of the anti-diastereomer was determined to be 94% [determined by HPLC, Chiralpak IC-H, n-hexane/isopropanol = 95:5, 0.3 mL/min, λ = 230 nm, t (major) = 31.09 min, t (minor) = 31.33 min].

¹H NMR (400 MHz, CDCl₃, TMS) for the *anti*-diastereomer (containing some impurities)

(*S*)-4-((*R*)-1-(3-bromophenyl)-2-methylene-3-oxobutyl)-4-isopropy-2-phenyloxazol-5(4H)-one 3f: Following the general procedure, the *syn/anti* ratio (15:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major: 2.47 ppm, δ minor: 2.80 ppm). The mixture was purified by column chromatography using silica gel to give a mixture of diastereoisomer along with trace amount of impurity (40 mg, 91% overall yield in a diastereomeric ratio = 15:1); a white solid. m.p. for *syn*-3f = 154-156 °C; $[\alpha]^{20}{}_{D}(syn$ -3f) = -71.8 (c 0.8, CHCl₃). IR (CH₂Cl₂): v 2974, 2954, 1811, 1673, 1655, 1470, 1288, 1196, 1159, 1111, 1041, 1019, 978, 916, 888, 876, 800, 731

cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) for *syn*-**3f**: δ 7.87 (2H, d, *J* = 6.8 Hz, Ph-H), 7.55 (1H, t, *J* = 7.6 Hz, Ph-H), 7.45 (2H, t, *J* = 7.2 Hz, Ph-H), 7.35 (1H, s, Ar-H), 7.28 (1H, s, =CH₂), 7.19 (2H, dd, *J*₁ = 8.0 Hz, *J*₁ = 2.0 Hz, Ar-H), 6.97 (1H, t, *J* = 8.0 Hz, Ar-H), 6.52 (1H, s, =CH₂), 4.89 (1H, s, Ar-CH), 2.47 (1H, qu, *J* = 6.8 Hz, -CH(CH₃)₂), 2.34 (3H, s, COCH₃), 1.10 (3H, d, *J* = 6.8 Hz, -CH(CH₃)₂), 0.82 (3H, d, *J* = 6.8 Hz, -CH(CH₃)₂); ¹³C NMR (CDCl₃, 100 MHz) for *syn*-**3f**: δ 198.0, 177.8, 160.4, 145.6, 138.8, 133.0, 132.7, 130.5, 129.5, 129.1, 129.0, 128.7, 127.8, 125.3, 121.6, 79.7, 46.6, 32.2, 25.6, 17.5, 15.3; MS (EI(*syn*-**3f**)) *m/z* (%) 439 (2.18) [M⁺], 237 (5.17), 202 (20.39), 174 (5.64), 158 (8.15), 115 (6.41), 105 (100.00), 84 (11.45), 77 (25.88), 43 (39.26); HRMS (EI) Calcd for C₂₃H₂₂BrNO₃ [M⁺] requires 439.0783, Found 439.0790; The ee of the *syn*-diastereomer was determined to be 97% [determined by HPLC, Chiralpak IC-H, n-hexane/isopropanol = 99:1, 0.7 mL/min, λ = 230 nm, t (major) = 15.63 min, t (minor) = 8.57 min].

(S)-4-isorpopyl-4-((R)-2-methylene-3-oxo-1-(4-(trifluorophenyl))butyl)-2-phenyloxazol-5(4H)-

one 3g: Following the general procedure, the syn/anti ratio (16:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major: 2.50 ppm, δ minor: 2.78 ppm). The mixture was purified by column chromatography using silica gel to give a mixture of diastereoisomer along with trace amount of impurity (37 mg, 86% overall yield in a diastereomeric ratio = 16:1); a white solid. m.p. for syn-3g = 122-123 °C; $[\alpha]^{20}_{D}(syn-3g) = -57.3$ (c 0.8, CHCl₃). IR (CH₂Cl₂): v 2978, 2881, 1813, 1673, 1650, 1617, 1493, 1451, 1323 1292, 1251, 1198, 1128, 1110, 1043, 1018, 986, 969, 911, 881, 821, 781 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) for syn-**3g**: δ 7.86 (2H, d, J = 7.2 Hz, Ph-H), 7.55 (1H, t, J = 7.8 Hz, Ph-H), 7.44 (2H, t, J = 7.2 Hz, Ph-H), 7.33-7.38 (5H, m, Ar-H and =CH₂), 6.54 (1H, s, =CH₂), 5.00 (1H, s, Ar-CH), 2.50 (1H, qu, J = 6.8 Hz, -CH(CH₃)₂), 2.33 $(3H, s, COCH_3)$, 1.11 $(3H, d, J = 6.8 \text{ Hz}, -CH(CH_3)_2)$, 0.82 $(3H, d, J = 6.8 \text{ Hz}, -CH(CH_3)_2)$; ¹³C NMR (100 MHz, CDCl₃) for syn-3g: δ 198.0, 177.8, 160.4, 145.6, 140.7, 132.8, 130.6, 129.5 (q, $J_{C-F} = 32.0 \text{ Hz}$), 129.2, 128.7, 127.7, 125.3, 124.8 (q, $J_{C-F} = 3.7 \text{ Hz}$), 123.9 (q, $J_{C-F} = 207.7 \text{ Hz}$), 79.7, 46.6, 32.3, 25.5, 17.4, 15.3; ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃): δ (syn-3g) -62.7; MS (EI(syn-3g)) m/z (%) 429 (1.67) [M⁺], 202 (24.30), 174 (5.44), 165 (0.60), 106 (8.18), 105 (100.00), 84 (9.37), 77 (23.72), 43 (26.76); HRMS (EI) Calcd for $C_{24}H_{22}F_3NO_3$ [M⁺] requires 429.1552, Found 429.1557; The ee of the syn-diastereomer was determined to be 96% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 95:5, 0.7 mL/min, λ = 230 nm, t (major) = 7.02 min, t

¹³C NMR (100 MHz, CDCl₃, TMS) for the *syn*-diastereomer

ne 3h: Following the general procedure, the *syn/anti* ratio (12:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major: 2.47 ppm, δ minor: 2.77 ppm). The mixture was purified by column chromatography using silica gel to give a mixture of diastereoisomer along

with trace amount of impurity (36 mg, 92% overall yield in a diastereomeric ratio = 12:1); a white solid. m.p. for *syn-***3h** = 117-119 °C; $[\alpha]^{20}{}_{\rm D}$ (*syn-***3h**) = -49.8 (c 0.7, CHCl₃). IR (CH₂Cl₂): v 2974, 1818, 1680, 1651, 1597, 1491, 1467, 1451, 1294, 1259, 1244, 1199, 1154, 1111, 1045, 1021, 969,

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

902, 864, 794, 779, 729 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS) for *syn*-**3h**: δ 7.87 (2H, d, J = 7.2Hz, Ph-H), 7.53 (1H, t, J = 7.5 Hz, Ph-H), 7.43 (2H, t, J = 7.2 Hz, Ph-H), 7.26 (1H, s, =CH₂), 7.00 (1H, t, J = 7.8 Hz, Ar-H), 6.82 (1H, d, J = 6.8 Hz, Ar-H), 6.78-6.76 (1H, m), 6.61 (1H, dd, $J_1 = 10.8$ Hz, $J_2 = 3.2$ Hz, Ar-H), 6.49 (1H, s, =CH₂), 4.92 (1H, s, Ar-CH), 3.57 (3H, s, Ar-OCH₃), 2.47 (1H, qu, J = 7.2 Hz, -CH(CH₃)₂), 2.32 (3H, s, COCH₃), 1.12 (3H, d, J = 7.2 Hz, -CH(CH₃)₂), 0.84 (3H, d, J = 7.2 Hz, -CH(CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) for *syn*-**3h**: δ 198.2, 178.0, 160.1, 158.9, 146.1, 137.9, 132.5, 128.7, 128.6, 127.7, 125.6, 122.7, 115.3, 113.5, 80.0, 55.0, 46.9, 32.3, 25.7, 17.6, 15.4; MS (EI(*syn*-**3h**)) *m/z* (%) 391 (4.95) [M⁺], 203 (4.09), 189 (77.39), 147 (45.34), 132 (6.29), 115 (8.73), 105 (100.00), 77 (52.88), 51 (5.77), 43 (84.84); HRMS (EI) Calcd for C₂₄H₂₅NO₄ [M⁺] requires 391.1784, Found 391.1788; The ee of the *syn*-diastereomer was determined to be >99% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 90:10, 0.7 mL/min, $\lambda = 230$ nm, t (major) = 7.21 min, t (minor) = 17.78 min].

(S)-4-isorpopyl-4-((R)-2-methylene-3-oxo-1-(3-(trifluorophenyl))butyl)-2-phenyloxazol-5(4H)one 3i: Following the general procedure, the syn/anti ratio (16:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major: 2.50 ppm, δ minor: 2.75 ppm). The mixture was purified by column chromatography using silica gel to give a mixture of diastereoisomer along with trace amount of impurity (38 mg, 89% overall yield in a diastereomeric ratio = 16:1). a white solid. m.p. for syn-3i = 80-83 °C; $[\alpha]^{20}_{D}(syn-3i) = -45.2$ (c 0.9, CHCl₃). IR (CH₂Cl₂): v 2924, 1806, 1673, 1655, 1620, 1449, 1366 1288, 1161, 1177, 1131, 1096, 1042, 1021, 979, 968, 918, 891, 814, 729 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) for *syn*-**3i**: δ 7.82 (2H, d, *J* = 9.6 Hz, Ar-H), 7.56-7.51 (1H, m, Ar-H), 7.45-7.40 (4H, m, Ar-H), 7.35 (1H, s, =CH₂), 7.32 (1H, d, J = 10.8, Ar-H), 7.22-7.27 (1H, m, Ar-H), 6.56 (1H, s, =CH₂), 5.00 (1H, s, Ar-CH), 2.50 (1H, qu, J = 6.8 Hz, -CH(CH₃)₂), 2.35 $(3H, s, COCH_3)$, 1.12 $(3H, d, J = 6.8 \text{ Hz}, -CH(CH_3)_2)$, 0.83 $(3H, d, J = 6.8 \text{ Hz}, -CH(CH_3)_2)$; ¹³C NMR (CDCl₃, 100 MHz) for *syn*-**3i**: δ 197.9, 177.8, 160.6, 145.8, 137.7, 134.1 (d, $J_{C-F} = 1.5$ Hz), 132.7, 130.1 (q, J_{C-F} = 30.0 Hz), 129.0, 128.6, 128.5, 126.7 (q, J_{C-F} = 3.7 Hz), 125.3, 124.2 (q, J_{C-F} = 3.7 Hz), 123.8 (q, J_{C-F} = 270.6 Hz), 79.8, 46.9, 32.3, 25.4, 17.5, 15.3; ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃): δ -62.8; MS (EI(*syn*-**3i**)) *m/z* (%) 429 (0.65) [M⁺], 227 (0.91), 202 (23.69), 174 (5.14), 128 (0.71), 115 (3.23), 105 (100.00), 77 (23.72), 51 (2.72), 43 (26.76); HRMS (EI) Calcd for $C_{24}H_{22}F_{3}NO_{3}$ [M⁺] requires 429.1552, Found 429.1554; The ee of the syn-diastereomer was determined to be 97% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 90:10, 0.7

¹³C NMR(100 MHz, CDCl₃, TMS) for the *syn*-diastereomer

(S)-4-((R)-1-(4-bromophenyl)-2-methylene-3-oxobutyl)-4-isobutyl-2-phenyloxazol-5(4H)-one

3j: Following the general procedure, the syn/anti ratio (3:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major: 4.68 ppm, δ minor: 4.86 ppm). The mixture was purified by column chromatography using silica gel to give a mixture of diastereoisomer along with trace amount of impurity (38 mg, 84% overall yield in a diastereometic ratio = 3:1); a white solid. m.p. for syn-3j = 123-126 °C; $[\alpha]^{20}_{D}(syn-3j) = -28.1$ (c 0.6, CHCl₃); $[\alpha]^{20}_{D}(anti-3j) = -2.1$ (c 0.4, CHCl₃). IR (CH₂Cl₂): v(syn-3j) 2920, 1808, 1671, 1652, 1486, 1452, 1357, 1318, 1293, 1157, 1242, 1148, 1114, 1073, 1045, 1023, 1014, 988, 975, 928, 891, 853, 818, 779 cm⁻¹; IR (CH₂Cl₂): v(anti-3j) 2969, 1816, 1683, 1653, 1487, 1451, 1141, 1320, 1291, 1261, 1216, 1095, 1021, 869. ¹H NMR (400 MHz, CDCl₃, TMS) for *syn*-**3***j*: δ 7.89-7.87 (2H, m, Ph-H), 7.59-7.55 (1H, m, Ph-H), 7.48-7.44 (2H, m, Ph-H), 7.24 (1H, s, =CH₂), 7.22-7.19 (2H, m, Ar-H), 7.07-7.04 (2H, m, Ar-H), 6.48 (1H, s, =CH₂), 4.68 (1H, s, Ar-CH), 2.31 (3H, s, COCH₃), 2.13 (1H, dd, J₁ = 14.4 Hz; J₂ = 6.4 Hz, CH₂CH(CH₃)₂), 1.86 (1H, dd, *J*₁ = 14.4 Hz; *J*₂ = 6.0 Hz, CH₂CH(CH₃)₂), 1.49 (1H, qu, *J* = 6.8 Hz, $CH_2CH(CH_3)_2$), 0.86 (3H, d, J = 6.8 Hz, $CH_2CH(CH_3)_2$), 0.81 (3H, d, J = 6.8 Hz, CH₂CH(CH₃)₂); ¹H NMR (400 MHz, CDCl₃ TMS) for *anti*-**3***j*: δ 8.05-8.03 (2H, m), 7.64-7.60 (1H, m), 7.55-7.49 (4H, m), 7.44-7.41 (2H, m), 6.21 (1H, s), 6.15 (1H, s), 4.86 (1H, s), 2.26 (3H, s), 1.84 $(2H, d, J = 6.4 \text{ Hz}), 1.45 (1H, qu, J = 6.8 \text{ Hz}), 0.79 (6H, t, J = 6.8 \text{ Hz}); {}^{13}\text{C NMR} (100 \text{ MHz}, \text{CDCl}_3)$ for syn-3j: δ 198.2, 179.8, 160.1, 146.7, 135.2, 132.7, 131.6, 131.1, 128.8, 128.5, 127.7, 125.5, 121.7, 49.9, 44.1, 25.6, 25.2, 23.8, 23.5; ¹³C NMR (100 MHz, CDCl₃) for anti-**3**j: δ 197.6, 179.8, 160.3, 146.9, 138.1, 132.8, 131.6, 131.4, 129.0, 128.9, 127.9, 125.6, 121.3, 75.9, 47.8, 45.3, 25.3, 25.0, 23.9, 23.3; MS (EI(syn-3j)) m/z (%) 453 (0.34) [M⁺], 366 (1.68), 239 (25.08), 237 (25.26), 216 (4.96), 202 (6.34), 158 (31.42), 115 (16.91), 105 (100.00), 77 (34.68), 43 (51.45); HRMS (EI) Calcd for $C_{24}H_{24}BrNO_3$ [M⁺] requires 453.0940, Found 453.0941; MS (ESI(*anti-3j*)) m/e 454 (M^++H) ; HRMS (ESI) for C₂₄H₂₅NO₃Br (M⁺+H): 454.1029, Found: 454.1012; The ee of the syn-diastereomer was determined to be 91% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 90:10, 0.7 mL/min, λ = 230 nm, t (major) = 7.55 min, t (minor) = 9.14 min]; The ee of the anti-diastereomer was determined to be 98% [determined by HPLC, Chiralpak IC-H, n-hexane/isopropanol = 98:2, 0.3 mL/min, λ = 230 nm, t (major) = 41.25 min, t (minor) = 51.36 min].

¹H NMR (400 MHz, CDCl₃, TMS) for the *anti*-diastereomer (containing some impurities)

(*S*)-4-((*R*)-1-(4-chlorophenyl)-2-methylene-3-oxobutyl)-4-methyl-2-phenyloxazol-5(4H)-one 3k: Following the general procedure, the *syn/anti* ratio (4:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major: 4.75 ppm, δ minor: 4.86 ppm). The mixture was purified by column chromatography using silica gel to give a mixture of diastereoisomers along with trace amount of impurity (33 mg, 90% overall yield in a diastereomeric ratio = 4:1); a white solid. m.p. for *syn*-3k = 123-125 °C; $[\alpha]^{20}_{D}$ (*syn*-3k) = -0.7 (c 0.7, CHCl₃); $[\alpha]^{20}_{D}$ (*anti*-3k) = -11.2 (c 0.4, CHCl₃). IR(CH₂Cl₂): v(*syn*-3k) 1818, 1789, 1658, 1620, 1492, 1450, 1323, 1295, 1168, 1092, 1072,

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

1017, 982, 898, 818, 782 cm⁻¹; IR(CH₂Cl₂): v(*anti*-**3**k) 2958, 2925, 2854, 1822, 1742, 1683, 1652, 1491, 1452, 1375, 1292, 1259, 1216, 1199, 1091, 917, 876. ¹H NMR (400 MHz, CDCl₃, TMS) for syn-3k: § 7.90-7.87 (2H, m, Ph-H), 7.58-7.54 (1H, m, Ph-H), 7.47-7.43 (2H, m, Ph-H), 7.25 (1H, s, =CH₂), 7.16-7.13 (2H, m, Ar-H), 7.08-7.06 (2H, m, Ar-H), 6.52 (1H, s, =CH₂), 4.75 (1H, s, Ar-CH), 2.33 (3H, s, COCH₃), 1.58 (3H, s, PhCH₃); ¹H NMR (400 MHz, CDCl₃, TMS) for anti-3k: δ 8.05-8.03 (2H, m), 7.64-7.51 (5H, m), 7.31-7.29 (2H, m), 6.23 (1H, s), 6.16 (1H, s), 4.86 (1H, s), 2.26 (3H, s), 1.45 (3H, s); ¹³C NMR (100 MHz, CDCl₃) for *syn*-3k: δ 198.3, 179.7, 160.2, 146.2, 135.1, 133.4, 132.8, 131.0, 128.7, 128.5, 128.1, 127.8, 125.5, 72.9, 48.9, 25.5, 22.5; ¹³C NMR (100 MHz, CDCl₃) for anti-3k: δ 179.6, 179.7, 160.5, 147.4, 136.9, 133.2, 133.0, 131.1, 128.9, 128.6, 128.3, 127.9, 125.6, 72.0, 47.0, 25.3, 23.9; MS (EI) *m/z* (%) 367 (2.11) [M⁺], 339 (1.06), 195 (19.54), 193 (58.52), 158 (3.08), 151 (3.21), 141 (2.81), 115 (21.09), 105 (69.94), 77 (44.95), 43 (100); HRMS (EI(*syn*-**3**k)) Calcd for $C_{21}H_{18}CINO_3$ [M⁺] requires 367.0975, Found 367.0973; MS $(\text{ESI}(anti-3\mathbf{k}))$ m/e 368 (M⁺+H); HRMS (ESI) for C₂₁H₁₉NO₃Cl (M⁺+H): 368.1057, Found: 368.1048; The ee of the syn-diastereomer was determined to be 97% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 90:10, 0.7 mL/min, λ = 230 nm, t (major) = 9.13 min, t (minor) = 12.97 min]; The ee of the *anti*-diastereomer was determined to be 90% [determined by HPLC, Chiralpak IC-H, n-hexane/isopropanol = 95:5, 0.7 mL/min, λ = 230 nm, t (major) = 15.92 \min , t (minor) = 17.68 min].

¹H NMR (400 MHz, CDCl₃, TMS) for the *syn*-diastereomer

¹³C NMR (100 MHz, CDCl₃, TMS) for the *syn*-diastereomer

(S)-4-methyl-4-((R)-2-methylene-3-oxo-1-p-tolylbutyl)-2-phenyloxazol-5(4H)-one 3I: Following the general procedure, the *syn/anti* ratio (10:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major: 4.75 ppm, δ minor: 5.29 ppm). The mixture was purified by column chromatography using silica gel to give a mixture of diastereoisomer along with trace amount of impurity (31 mg, 90% overall yield in a diastereomeric ratio = 10:1); a white solid. m.p. for syn-3l =113-114 °C; $[\alpha]_{D}^{20}$ (syn-31) = +13.2 (c 0.9, CHCl₃). IR (CH₂Cl₂): v 2924, 1820, 1672, 1651, 1450, 1289, 1170, 1008, 969, 900, 814, 721 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.90-7.8 (2H, m, Ph-H), 7.57-7.53 (1H, m, Ph-H), 7.47-7.43 (2H, m, Ph-H), 7.21 (1H, s, =CH₂), 7.09 (2H, dd, J₁ = 6.4 Hz; *J*² = 2.0 Hz, Ar-H), 6.90 (2H, d, *J* = 7.6 Hz, Ar-H), 6.45 (1H, s, =CH₂), 4.75 (1H, s, Ar-CH), 2.32 (3H, s, COCH₃), 2.17 (3H, s, ArCH₃), 1.58 (3H, s, PhCH₃); ¹³C NMR (100 MHz, CDCl₃) for syn-31: § 198.5, 180.0, 160.0, 146.6, 137.0, 133.4, 132.5, 129.4, 128.7, 128.6, 128.1, 127.8, 125.8, 73.2, 49.2, 25.5, 22.5, 20.9; MS (EI(*syn-3I*)) *m/z* (%) 347(1.42) [M⁺], 319 (1.82), 173 (74.97), 141 (3.11), 131 (14.80), 115 (12.13), 105 (37.01), 97 (3.87), 77 (34.49), 43 (100); HRMS (EI) Calcd for C₂₂H₂₁NO₃ [M⁺] requires 347.1521, Found 347.1523; The ee of the syn-diastereomer was determined to be 96% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 90:10, 0.7 mL/min, $\lambda = 230$ nm, t (major) = 8.52 min, t (minor) = 11.32 min].

(R)-4-((R)-1-(4-bromophenyl)-2-methylene-3-oxobutyl)-2,4-diphenyloxazol-5(4H)-one **3m**: Following the general procedure, the *syn/anti* ratio (7:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major: 6.25 ppm, δ minor: 6.22 ppm). The mixture was purified by column chromatography using silica gel to give a mixture of diastereoisomers along with trace amount of impurity (40 mg, 85% overall yield in a diastereomeric ratio = 7:1); a white solid. m.p. for syn-3m = 93-95 °C; $[\alpha]^{20}_{D}(syn-3m) = -192.6$ (c 0.6, CHCl₃). IR (CH₂Cl₂): v 2922, 1809, 1650, 1486, 1449, 1365, 1324, 1297, 1065, 1011, 988, 961, 925, 905, 883, 814, 786 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.97 (2H, d, *J* = 7.2 Hz, Ar-H), 7.65-7.58 (3H, m, Ar-H), 7.49 (2H, t, *J* = 6.8 Hz, Ar-H), 7.35-7.20 (7H, m, Ar-H), 7.07 (1H, s, =CH₂), 6.25 (1H, s, =CH₂), 5.37 (1H, s, Ar-CH), 2.12 (3H, s, COCH₃); ¹³C NMR (100 MHz, CDCl₃) for *syn*-**3m**: δ 198.1, 177.7, 161.0, 145.5, 136.8, 134.8, 133.1, 131.9, 131.1, 129.3, 128.9, 128.7, 128.4, 128.0, 126.0, 125.3, 121.9, 77.4, 50.6, 25.4; MS (EI(syn-3m)) m/z (%) 428.(56.76) [M⁺-COCH₃], 386 (100.00), 307 (16.38), 304 (37.96), 227 (16.95), 202 (88.69), 193 (10.03), 173 (21.15), 152 (16.34), 105 (67.55), 77 (37.81), 43 (56.29); HRMS (EI) Calcd for $C_{26}H_{20}BrNO_3$ [M⁺] requires 473.0627, Found 473.0625; The ee of the syn-diastereomer was determined to be 92% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 90:10, 0.7 mL/min, λ = 230 nm, t (major) = 13.75 min, t (minor) = 14.80 min].

(S)-4-isopropyl-4-((R)-2-methylene-3-oxo-1-(thiophen-2-yl)butyl)-2-phenyloxazol-5(4H)-one **3n**: Following the general procedure, the *syn/anti* ratio (12:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major: 5.35 ppm, δ minor: 5.70 ppm). The mixture was purified by column chromatography using silica gel to give a mixture of diastereoisomers along with trace amount of impurity (35 mg, 95% overall yield in a diastereomeric ratio = 12:1); a white solid. m.p. for *syn*-**3n** = 78-80 °C; $[\alpha]_{D}^{20}(syn$ -**3n**) = -79.5 (c 0.4, CHCl₃). IR (CH₂Cl₂): v 2922, 1817, 1653, 1622, 1451, 1427, 1390, 1361, 1336, 1322, 1293, 1254, 1234, 1198, 1156, 1111, 1069, 1042, 1020, 967, 904, 879, 856, 783 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS) for *syn*-**3n**: δ 7.96-7.92 (2H,

m, Ph-H), 7.59-7.54 (1H, m, Ph-H), 7.49-7.44 (2H, m, Ph-H), 7.21 (1H, s, =CH₂), 7.01 (1H, d, J = 7.2 Hz, thiophen-H), 6.94 (1H, d, J = 3.0 Hz, thiophen-H), 6.76 (1H, dd, $J_1 =$ 6.8 Hz; $J_2 =$ 3.2 Hz, thiophen-H), 6.47 (1H, s, =CH₂), 5.35 (1H, s, Ar-CH), 2.32-2.45 (4H, m, COCH₃, CH(CH₃)₂), 1.09 (3H, d, J = 6.6 Hz, CH(CH₃)₂), 0.84 (3H, d, J = 6.6 Hz, CH(CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) for *syn*-**3n**: δ 197.8, 178.0, 160.9, 146.7, 140.3, 132.6, 129.4, 128.7, 128.0, 127.9, 126.3, 125.7, 80.3, 41.6, 32.6, 25.5, 17.6, 15.4; MS (EI(*syn*-**3n**)) *m/z* (%) 367 (1.45) [M⁺], 339 (1.65), 324 (2.02), 165 (89.62), 123 (23.90), 105 (57.74), 97 (3.87), 77 (43.30), 57 (6.77), 43 (100); HRMS (EI) Calcd for C₂₁H₂₀NO₃S [M⁺] requires 367.1242, Found 367.1248; The ee of the *syn*-diastereomer was determined to be 95% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 90:10, 0.7 mL/min, $\lambda =$ 230 nm, t (major) = 6.91 min, t (minor) = 8.57 min].

¹³C NMR (75 MHz, CDCl₃, TMS) for the *syn*-diastereomer

(S)-4-isopropyl-4-((R)-3-methylene-4-oxopentan-2-yl)-2-phenyloxazol-5(4H)-one 3o:

Following the general procedure, the *syn/anti* ratio (7:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major: 0.76 ppm, δ minor: 0.68 ppm). The mixture was purified by column chromatography using silica gel to give a mixture of diastereoisomers along with trace amount of impurity (30 mg, 96% overall yield in a diastereomeric ratio = 7:1); a colorless liquid. $\left[\alpha\right]_{D}^{20} = +16.9$ (c 1.0, CHCl₃). IR (CH₂Cl₂): v 2965, 2916, 1817, 1774, 1681, 1655, 1580, 1451, 1371, 1336, 1321, 1293, 1261, 1163, 1094, 1022, 954, 920, 880, 799, 761 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.98-7.95 (2H, m, Ar-H), 7.59-7.54 (1H, m, Ar-H), 7.50-7.46 (2H, m, Ar-H), 7.36-7.32 (0.5H, (anti-3o), m, Ar-H), 6.23 (0.14H (anti-3o), s, =CH₂), 6.20 (1H, s, =CH₂), 6.18 (1H, s, =CH₂), 5.91 (0.14H (anti-30), s, =CH₂), 3.89 (0.14H (anti-30), dd, J₁ = 11.6 Hz; J₂ = 3.2 Hz, CH₂CH), 3.69 (1H, dd, $J_1 = 11.6$ Hz; $J_2 = 4.0$ Hz, CH₂CH), 2.92-2.85 (0.14H (*anti-***30**), m), 2.30-2.20 (4.4H, m, CH(CH₃)₂, COCH₃), 1.69-1.51 (2H, m, CH₃CH₂), 1.33-1.28 (0.28H (anti-30), m, CH₃CH₂), 1.23 (0.42H (*anti-***3o**), d, *J* = 6.8 Hz, CH(CH₃)₂), 1.19 (0.42H (*anti-***3o**), d, *J* = 6.8 Hz, CH(CH₃)₂), 0.97 (3H, d, *J* = 6.8 Hz, CH(CH₃)₂), 0.89 (3H, d, *J* = 6.8 Hz, CH(CH₃)₂), 0.76 (3H, t, *J* = 7.2 Hz, CH₃CH₂), 0.68 (0.42H (*anti-***30**), t, J = 7.2 Hz, CH₃CH₂); ¹³C NMR (CDCl₃, 100 MHz): δ (major) 199.3, 179.5, 159.5, 148.0, 132.6, 128.7, 127.8, 126.2, 125.7, 80.2, 41.8, 32.3, 25.7, 22.6, 16.8, 16.6, 11.5; MS (EI) *m/z* (%) 313 (1.43) [M⁺], 271 (4.10), 242 (8.07), 203 (11.73), 188 (2.29), 174 (3.13), 155 (1.12), 105 (100), 77 (24.27), 57 (11.42), 43 (25.48); HRMS (EI) Calcd for $C_{19}H_{23}NO_3$ [M⁺] requires 313.1678, Found 313.1679; The ee of the syn-diastereomer was determined to be 85% [determined by HPLC, Chiralpak IC-H, n-hexane/isopropanol = 99:1, 0.5

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Methyl

2-((R)-(4-chlorophenyl)((S)-4-isopropyl-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)methyl)acrylate **3p**: To a mixture of **1p** (0.11 mmol, 36 mg), **2a** (0.10 mmol, 21 mg) and catalyst **L2** (13 mg, 0.020 mmol) was added 1.0 mL of THF at room temperature under argon. The resulting mixture was heated to 40 °C and monitored by TLC. After the reaction complete, the solution was concentrated under reduced pressure and the residue was further purified by silica gel column chromatography (EtOAc/PE = 1/20) to give the target product **3p** (13 mg, 32% yield), a white solid, m.p. for *syn*-**3p** = 98-100 °C. The *syn/anti* ratio (2:1) was determined by ¹H NMR spectroscopic analysis of the crude product (δ major: 2.79 ppm, δ minor: 2.62 ppm). $[\alpha]^{20}_{D}$ (syn-**3**p) -100.3 (c 0.6, CHCl₃). IR (CH₂Cl₂): v 2967, 1772, 1717, 1649, 1491, 1441, 1408, 1386, 1157, 1122, 1090, 1071, 1013, 1002, 969, 947, 921, 885, 782 cm⁻¹; ¹H NMR (400MHz, CDCl₃, TMS) for *syn*-**3p**: δ 7.52-7.50 (2H, m), 7.33-7.31 (3H, m), 7.21 (4H, s), 6.49 (1H, s), 5.23 (1H, s), 3.65 (3H, S) 2.79 (1H, qu, *J* = 6.8 Hz, $-CH(CH_3)_2$, 1.21 (3H, d, J = 6.8 Hz, $-CH(CH_3)_2$), 1.08 (3H, d, J = 6.8 Hz, $-CH(CH_3)_2$); ¹³C NMR (CDCl₃, 100 MHz) for syn-**3**p: δ 169.3, 166.5, 163.4, 137.4, 136.6, 133.7, 132.0, 130.3, 129.0, 128.4, 128.2, 126.7, 106.8, 53.4, 52.3, 28.0, 18.9, 18.7; MS (EI(*syn-***3p**)) *m/z* (%) 411 (1.64) [M⁺], 308 (14.13), 266 (5.64), 209 (69.26), 177 (4.46), 149 (38.93), 130 (13.74), 115 (22.47), 105 (100.00), 77 (33.65), 59 (11.86); HRMS (EI) Calcd for $C_{23}H_{22}CINO_4$ [M⁺] requires 411.1237, Found 411.1248; The ee of the syn-diastereomer was determined to be 86% [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol = 95:5, 0.7 mL/min, λ = 230 nm, t (major) = 11.42 min, t (minor) = 10.17 min].

General procedure for the hydrolysis of addition products 3j and 3b to the corresponding amino acid.

The addition product *syn-***3j** (30 mg, 60 µmol) was dissolved in mixed solvent of MeCN/DCM (0.20 mL/0.10 mL), then 0.10 mL conc. HCl was added. The resulting mixture was stirred at room temperature for two days. The solvent was removed under reduced pressure and the residue was purified by column chromatography on SiO₂ gel (DCM/EtOH = 40/1 ~ 10/1 as eluent) to give the corresponding amido acid **4j** as white solid (18 mg, 45 µmol, 75% yield).m.p. 95-97 °C; $[\alpha]^{20}_{D}$ = +75.2 (c 0.7, CHCl₃). IR (neat): v 2954, 2922, 2851, 1815, 1697, 1487, 1464, 1382, 1328, 1211, 1154, 1106, 1073, 1009, 909, 821 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.42 (2H, d, *J* = 8.4 Hz), 6.98 (2H, d, *J* = 8.4 Hz), 5.54 (1H, s), 5.01 (1H, s), 3.81 (1H, s), 2.31-2.04 (4H, m), 1.80-1.75 (1H, m), 1.42-1.29 (1H, m), 0.92 (3H, d, *J* = 6.6 Hz), 0.86 (3H, d, *J* = 6.6 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 172.5, 170.8, 152.8, 139.9, 131.1, 130.8, 119.9, 111.8, 84.6, 58.1, 48.3, 25.0, 24.6, 23.5, 15.6; MS (ESI) m/e 350 (M-H₂O-HCl)⁺; HRMS (ESI) for C₁₇H₂₁NO₂Br (M-H₂O-HCl)⁺: 350.0750, Found: 350.0757.

The addition product *syn*-**3b** (65.0 mg, 148 µmol) was dissolved in 500 µL 1,4-dioxane, then 80.0 µL, 3.0 M HCl aqueous solution was added. The resulting mixture was stirred at room temperature for 8 hours. The solvent was removed under reduced pressure and the residue was purified by column chromatography on SiO₂ gel (DCM/EtOH = 40/1 ~ 20/1 as eluent) to give the corresponding amino acid derivative **4b** as white solid (18.0 mg, 39 µmol, 67% yield based on the recovered **3b**, 39.0 mg starting material was recovered). m.p. 139-141 °C; $[\alpha]^{20}_{D}$ = +28.3 (c 0.9, CHCl₃). IR (CH₂Cl₂): v 2927, 2855, 1780, 1714, 1674, 1520, 1487, 1394, 1365, 1264, 1218, 1074, 1011, 895, 801 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 8.51 (1H, bs), 7.87 (2H, d, *J* = 7.2 Hz), 7.57 (1H, d, *J* = 6.8 Hz), 7.48 (2H, d, *J* = 6.8 Hz), 7.36 (2H, d, *J* = 8.7 Hz), 7.22 (2H, d, *J* = 8.7 Hz), 6.43 (1H, s), 5.12 (1H, s), 4.78 (1H, bs), 2.81 (1H, qu, *J* = 7.2 Hz), 2.39 (3H, s), 1.08 (3H, d, *J* = 7.2 Hz), 1.05 (3H, d, *J* = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 202.1, 169.6, 162.5, 147.6, 137.9, 133.8, 132.9, 132.2, 131.4, 130.8, 128.8, 127.3, 121.0, 72.6, 51.2, 33.4, 26.8, 18.7, 18.0; MS (ESI) m/e 458 (M⁺+H); HRMS (ESI) for C₂₃H₂₅NO₄Br (M⁺+H): 458.0952, Found: 458.0961.

HPLC spectra:

Chiral HPLC report: racemate (*syn-3a*)

HPLC REPORT

Sample Name: yyl-9-87	Date: ####
Column: AD-H	Mobile Phase: $hex/ipr = 90/10$
Velocity (mL/min): 0.7	Detection Wavelength (nm): 230

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 90/10; Flow rate: 0.7 mL/min; $t_{minor} = 8.57$ min, $t_{major} = 6.98$ min; ee% = 97.

HPLC REPORT

Sample Name: yyl-9-64-2 Column: AD-H Velocity (mL/min): 0.7

Supplementary Material (ESI) for Organic & Biomolecular Chemist	ry
This journal is (c) The Royal Society of Chemistry 2011	

NO	R. Time	Peak Area	Percent	Peak Height
1	8.424	98792	51.47	7409
2	8.991	93152	48.53	6696
			Ph N Pr	

Chiral HPLC report: racemate (*anti-3a*)

HPLC REPORT

Sample Name: yyl-9-96-2	Date: ####
Column: AD-H	Mobile Phase: $hex/ipr = 90/10$
Velocity (mL/min): 0.7	Detection Wavelength (nm): 230

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 90/10; Flow rate: 0.7 mL/min; $t_{minor} = 8.85$ min, $t_{major} = 9.23$ min; ee% = 88 (using L4 as a chiral ligand).

HPLC REPORT

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 90/10; Flow rate: 0.7 mL/min; $t_{minor} = 8.81$ min, $t_{major} = 9.40$ min; ee% = 90 (using L2 as a chiral ligand in DMF).

HPLC REPORT

NO	R. Time	Peak Area	Percent	Peak Height	
1	7.167	476710	50.38	26700	
2	8.407	469426	49.62	32299	

Chiral HPLC report: racemate (syn-3b)

HPLC REPORT

Sample Name: yyl-10-13 Column: AD-H Velocity (mL/min): 0.7 Date: #### Mobile Phase: hex/ipr = 90/10 Detection Wavelength (nm): 230

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 90/10; Flow rate: 0.7 mL/min; $t_{minor} = 8.61$ min, $t_{major} = 7.28$ min; ee% = 97.

NO	R. Time	Peak Area	Percent	Peak Height
1	9.531	557139	50.06	29268
2	12.438	555823	49.94	28097

Chiral HPLC report: racemate (*syn-3c*)

HPLC REPORT

Sample Name: yyl-10-15 Column: AD-H Velocity (mL/min): 0.7

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 90/10; Flow rate: 0.7 mL/min; $t_{minor} = 12.36$ min, $t_{major} = 9.77$ min; ee% = 98.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

<u>实验者:</u> 报告时间: 2010-07-20, 19:27:36 积分方法:面积归一法

Chiral HPLC report: racemate (*anti-3c*)

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 90/10; Flow rate: 0.5 mL/min; $t_{minor} = 20.54$ min, $t_{major} = 21.78$ min; ee% = 94.

Sample Name: yyl-10-17 Column: AD-H Velocity (mL/min): 0.7 Date: #### Mobile Phase: hex/ipr = 90/10 Detection Wavelength (nm): 230

Chiral HPLC report: racemate (syn-3d)

HPLC REPORT

Sample Name: yyl-10-19 Column: AD-H Velocity (mL/min): 0.7

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 90/10; Flow rate: 0.7 mL/min; $t_{minor} = 7.78$ min, $t_{major} = 6.78$ min; ee% = 96.

())	Sample Columr Velocity	Name: yyl-10 n: AD-H y (mL/min): 0	0-20 .7	Date: #### Mobile Pha Detection V	se: hex/ipr Vavelength	r = 90/10 (nm): 230
(0.050					
(0.040				22	
(0.030			078	8.65	
ne (0.020			Ň	Λ	
(0.010-				Λ	
ſ	000					
,		100 200 30	0 400 500 60		Δ 9 00 10 00	
	0.00	1.00 2.00 0.0	0 4.00 0.00 0.0	0 7.00 0.00	5.00 10.00	11.00 12.00
	NO	R. Time	Peak Area	Percent	Peak Height	
	1	7.078	442027	49.99	21469	
	2	8.695	442129	50.01	27315	
			Ph O{			
				D		

Chiral HPLC report: racemate (*syn-3e*)

HPLC REPORT

Sample Name: yyl-10-21
Column: AD-H
Velocity (mL/min): 0.7

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 90/10; Flow rate: 0.7 mL/min; $t_{minor} = 8.57$ min, $t_{major} = 7.02$ min; ee% = 95.

5验时间: 2010-07-18,17:32:44 背图文件:D:\HPLC\杨衰梁\yyl-11-1-2-new-IC-230nm-0.3-95-5.org 实验者: 报告时间: 2010-07-20,19:35:12 积分方法:面积归一法 色谱图(yyl-11-1-2-new-IC-230nm-0.3-95-5.org) 500 450 400 350 300 (≧ 250-≝ ₩ 200 150 100 50 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 时间 (min) 分析结果表 ó 峰号 峰名 保留时间 峰高 峰面积 含量 31. 317 33. 603 185209, 281 7503865.000 50.0961 1 2 171393.563 7475071.00049.9039 总计 356602.844 14978936.000 100.0000

Chiral HPLC report: racemate (anti-3e)

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak IC column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 95/5; Flow rate: 0.3 mL/min; $t_{minor} = 33.33$ min, $t_{major} = 31.09$ min; ee% = 94.

Chiral HPLC report: racemate (syn-3f)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak IC column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 99/1; Flow rate: 0.7 mL/min; $t_{minor} = 39.97$ min, $t_{major} = 15.63$ min; ee% = 97.

Chiral HPLC report: racemate (*syn-3g*)

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 95/5; Flow rate: 0.7 mL/min; $t_{minor} = 8.45$ min, $t_{major} = 7.72$ min; ee% = 96.

Chiral HPLC report: racemate (syn-3h)

HPLC REPORT

ÓCH₃

Sample Name: yyl-10-43 Column: AD-H Velocity (mL/min): 0.7

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 90/10; Flow rate: 0.7 mL/min; $t_{minor} = 17.78$ min, $t_{major} = 7.21$ min; ee% = >99.

Chiral HPLC report: racemate (syn-3i)

HPLC REPORT

Sample Name: yyl-10-42 Column: AD-H Velocity (mL/min): 0.7

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 90/10; Flow rate: 0.7 mL/min; $t_{minor} = 8.78$ min, $t_{major} = 5.38$ min; ee% = 97.

Sample Name: yyl-10-48Date: ####Column: AD-HMobile Phase: hex/ipr= 90/10Velocity (mL/min): 0.7Detection Wavelength (nm): 230

Chiral HPLC report: racemate (syn-3j)

HPLC REPORT

Sample Name: yyl-10-49 Column: AD-H Velocity (mL/min): 0.7

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 90/10; Flow rate: 0.7 mL/min; $t_{minor} = 9.14$ min, $t_{major} = 7.55$ min; ee% = 91.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011 积分方法: 面积归一法

		-# 104	-= m.iv	
1	39.468	178487.797	12183999.000	48.8318
2	50. 423	138391.859	12766958.000	51. 1682
总计		316879.656	24950957.000	100.0000

Chiral HPLC report: racemate (anti-3j)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011 祝分方法: 面积归一法

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak IC column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 98/2; Flow rate: 0.3 mL/min; $t_{minor} = 51.36$ min, $t_{major} = 41.25$ min; ee% = 98.

Sample Name: yyl-10-50 Column: AD-H Velocity (mL/min): 0.7 Date: #### Mobile Phase: hex/ipr = 90/10 Detection Wavelength (nm): 230

Chiral HPLC report: racemate (*syn-***3k**)

HPLC REPORT

Sample Name: yyl-10-51 Column: AD-H Velocity (mL/min): 0.7

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 90/10; Flow rate: 0.7 mL/min; $t_{minor} = 12.97$ min, $t_{major} = 9.13$ min; ee% = 97.

经 号	峰名	保留时间	峰高	峰面积	含量
1		15.837	419188.063	8306206.000	49.2016
2		17.567	341142.906	8575762.000	50.7984
: 计			760330. 969	16881968.000	100.0000

Chiral HPLC report: racemate (anti-3k)

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak IC column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 95/5; Flow rate: 0.7 mL/min; $t_{minor} = 17.68$ min, $t_{major} = 15.92$ min; ee% = 90.

Sample Name: yyl-10-52Date: ####Column: AD-HMobile Phase: hex/ipr = 90/10Velocity (mL/min): 0.7Detection Wavelength (nm): 230

				C
1	8.458	2257992	50.04	145742
2	11.224	2254124	49.96	131197

Chiral HPLC report: racemate (syn-3l)

HPLC REPORT

Sample Name: yyl-10-53 Column: AD-H Velocity (mL/min): 0.7

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 90/10; Flow rate: 0.7 mL/min; $t_{minor} = 11.31$ min, $t_{major} = 8.52$ min; ee% = 96.

Sample Name: yyl-10-56Date: ####Column: AD-HMobile Phase: hex/ipr = 90/10Velocity (mL/min): 0.7Detection Wavelength (nm): 230

Chiral HPLC report: racemate (syn-3m)

HPLC REPORT

Sample Name: yyl-11-1-1 Column: AD-H Velocity (mL/min): 0.7

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 90/10; Flow rate: 0.7 mL/min; $t_{minor} = 13.75$ min, $t_{major} = 14.80$ min; ee% = 92.

Sample Name: yyl-10-91Date:20100406Column: AD-HMobile Phase: hex/ipr = 90/10Velocity (mL/min): 0.7Detection Wavelength (nm): 230

Chiral HPLC report: racemate (*syn-3n*)

HPLC REPORT

Sample Name: yyl-10-92 Column: AD-H Velocity (mL/min): 0.7

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011 0.30 0.25 0.20 ₹ 0.15 0.10 0.05 8.562 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 0.00 NO R. Time Peak Area Percent Peak Height 6.913 5259223 97.28 307423 1 2 147025 2.72 8.562 10728

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 90/10; Flow rate: 0.7 mL/min; $t_{minor} = 8.56$ min, $t_{major} = 6.91$ min; ee% = 95.

Chiral HPLC report: racemate (*syn-30*)

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak IC column; $\lambda = 214$ nm; eluent: Hexane/Isopropanol = 99/1; Flow rate: 0.5 mL/min; $t_{minor} = 22.87$ min, $t_{major} = 34.31$ min; ee% = 85%.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

实验时间: 2010-06-19,11:18:14 谱图文件:D:\HPLC\杨袁梁\yy1-10-62-1-AD-H-0.7-95-5-230nm.org

实验者: 报告时间: 2011-01-05,15:11:38 积分方法:面积归─法

Chiral HPLC report: racemate (*syn-***3p**)

Chiral HPLC report: Enantiomeric excess was determined by HPLC with a Chiralpak AD column; $\lambda = 230$ nm; eluent: Hexane/Isopropanol = 95/5; Flow rate: 0.7 mL/min; $t_{minor} = 11.43$ min, $t_{major} = 10.17$ min; ee% = 86%.

The crystal data of **3b** have been deposited in CCDC with number 779521. Empirical Formula: $C_{23}H_{22}BrNO_3$; Formula Weight: 440.33; Crystal Color, Habit: colorless, prismatic; Crystal Dimensions: 0.398 x 0.325 x 0.280 mm; Crystal System: Orthorhombic; Lattice Parameters: a = 10.5465(15)Å, b = 13.646(2)Å, c = 14.694(2)Å, $\alpha = 90^\circ$, $\beta = 90^\circ$, $\gamma = 90^\circ$, $V = 2114.8(5)Å^3$; Space group: P2(1)2(1)2(1); Z = 4; D_{calc} = 1.383 g/cm³; F₀₀₀ = 904; Diffractometer: Rigaku AFC7R; Residuals: R; R_w: 0.0406, 0.0835.