Supporting Information for

Synthesis of (1R,2R)-DPEN-Derived Triazolium Salts and Their

 Application in Asymmetric Intramolecular Stetter ReactionsMin-Qiang Jia, Yi Li, Zi-Qiang Rong, and Shu-Li You*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032 (China), Fax: (+86) 21-54925087
E-mail: slyou@sioc.ac.cn

Table of Contents

General Methods S2
Experimental Details and Characterization Data S3-S14
References S15
NMR Spectra S17-S47

General Methods.

All reactions utilizing air- or moisture-sensitive reagents were carried out in flame-dried glassware under a dry Ar atmosphere. All solvents were purified and dried according to standard methods prior to use.
${ }^{1} \mathrm{H}$ NMR spectra were recorded on a VARIAN Mercury 300 MHz spectrometer in chloroform- d_{3}. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data are reported as $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet or unresolved, brs = broad singlet, coupling constant (s) in Hz, integration). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a VARIAN Mercury 75 MHz spectrometer in chloroform $-\mathrm{d}_{3}$. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a VARIAN Mercury 282 MHz spectrometer. Chemical shifts are reported in ppm with $\mathrm{CCl}_{3} \mathrm{~F}$ signal at 0.00 ppm as an external standard.

Optical rotations $\left([\alpha]_{\mathrm{D}}\right)$ were measured on a Perkin-Elmer 785A UV/VIS Detector polarimeter. Enantiomeric excesses were determined by HPLC analysis on chiral stationary phases [CHIRALPAK AD-H or CHIRALCEL OD-H or CHIRALCEL OB-H (Daicel Chemical Ind., Ltd., $\Phi 0.46 \mathrm{~mm} \times 25 \mathrm{~cm}$)].

Preparation of (5R,6R)-5,6-diphenylpiperazin-2-one 7^{1}

To a solution of ($1 R, 2 R$)-1,2-diphenyl-1,2-ethanediamine ($2.12 \mathrm{~g}, 10 \mathrm{mmol}$) and $\mathrm{NaOH} 0.4 \mathrm{~g}(10 \mathrm{mmol})$ in 30 mL of absolute ethanol was added a solution of ethyl bromoacetate $1.65 \mathrm{~g}(1.1 \mathrm{~mL}, 10 \mathrm{mmol})$ in 20 mL of absolute ethanol over three hours. The reaction was stirred at room temperature for another two days, and then refluxed overnight. After removal of the solvent at reduced pressure, purification by silica gel column chromatography eluting with $5 \% \mathrm{MeOH}$ in EtOAc afforded title compound 7 as a white solid ($1.4 \mathrm{~g}, 54 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11-6.86(\mathrm{~m}, 10 \mathrm{H})$, $6.51(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 3 \mathrm{H}), 2.19(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,138.5,138.4,128.28,128.24,128.19,128.10,127.7,127.4$, 65.8, 64.4, 50.0.

Preparation of (5R,6R)-5,6-diphenyl-4-tosylpiperazin-2-one 8

To a solution of compound $7(1.0 \mathrm{~g}, 4 \mathrm{mmol})$ in pyridine (20 mL), p-toluenesulfonyl chloride ($0.99 \mathrm{~g}, 5.2 \mathrm{mmol}$) was added slowly and the mixture was stirred at rt for 24 h. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with $\mathrm{HCl}(1 \mathrm{~N})$, water and brine. The organic layer was dried over NaSO_{4}, filtered, and concentrated under reduced pressure. The crude residue was purified by flash chromatography on silica gel $($ EtOAc$/ \mathrm{n}$-hexane $=1 / 1)$ afforded title compound $\mathbf{8}$ as a white solid $(1.4 \mathrm{~g}, 87 \%$ yield $)$. $[\alpha]_{\mathrm{D}}{ }^{20}=+22.4\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.94-7.31(\mathrm{~m}, 14 \mathrm{H})$, $5.30(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{dd}, \mathrm{J}=5.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,143.5,139.8,137.3,135.2,129.4,128.9,128.3,128.0,127.2$, 127.1, 126.0, 61.2, 59.1, 45.0, 21.4. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3431,3423,2914$,

1685, 1344, 1162, 1096, 1056, 807, 762, 695, 668, 572; MS (ESI, m/z, rel. intensity) $407.2(\mathrm{M}+\mathrm{H})$; HRMS (MALDI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})$: 407.1424; Found: 407.1429. m.p. $178-179{ }^{\circ} \mathrm{C}$.

Preparation of triazolium salts 6a-d ${ }^{2}$

8
A flamed-dried 50 mL round bottom flask was charged with compound $8(0.81 \mathrm{~g}, 2.0$ $\mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. Trimethyloxonium tetrafluoroborate ($0.36 \mathrm{~g}, 2.4 \mathrm{mmol}$) was added and the mixture was stirred for about 1 day at rt . The corresponding aryl hydrazine (2.4 mmol) was added and stirred for another 1 day. The solvent was evaporated and chlorobenzene (20 mL) was added, followed by triethyl orthoformate $(2.5 \mathrm{~mL} /$ day, 15 mmol$)$. The mixture was then heated to $110^{\circ} \mathrm{C}$ and stirred at this temperature for about 3 d . After completion (monitored by NMR), the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography and further purified by recrystallization in hexane/ethyl acetate. All the yields indicated below refer to those obtained after recrystallization.

6a: White solid, yield $50 \% .[\alpha]_{\mathrm{D}}{ }^{20}=+121.3^{\circ}\left(\mathrm{c}=0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.05(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, ~ J=17.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.24(\mathrm{~m}, 13 \mathrm{H}), 7.15(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}$), $4.48(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz , CDCl_{3}): $\delta-150.2,-150.3 ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.3,144.7,139.7,135.2$, $134.3,133.0,131.4,130.2,130.0,129.7,129.3,127.22,127.17,126.4,120.7,62.1$,
$61.6,38.0,21.5$; IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3064,2918,1595,1455,1353,1162$,
 $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}-\mathrm{BF}_{4}\right)$: 507.1849; Found: 507.1851. m.p. 213-216 ${ }^{\circ} \mathrm{C}$.

6b: Pale yellow solid, yield 27\%; $[\alpha]_{\mathrm{D}}{ }^{20}=+24.3^{\circ}\left(\mathrm{c}=0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-6.93(\mathrm{~m}, 16 \mathrm{H}), 6.77(\mathrm{~s}$, $1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3$ H), $2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-150.2,-150.3 ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.6,148.9,144.6,138.9,135.4,135.2,133.0,130.0,129.61,129.58$, $129.3,127.4,127.2,126.3,122.3,115.2,61.9,61.7,55.7,37.9,21.5$; IR (thin film): $v_{\text {max }}\left(\mathrm{cm}^{-1}\right)=3059,2918,2842,1597,1520,1454,1352,1260,1162,1057,835,729$, 699; MS (ESI, m/z, rel. intensity) $537.5\left(\mathrm{M}_{\left.-1-F_{4}\right) \text {; HRMS (ESI) calcd for }}\right.$ $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}-\mathrm{BF}_{4}\right)$: 537.1955; Found: 537.1957. m.p. 124-126 ${ }^{\circ} \mathrm{C}$.

6c: White solid, yield 30%; $[\alpha]_{\mathrm{D}}{ }^{20}=+68.4^{\circ}\left(\mathrm{c}=0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 10 \mathrm{H}), 7.19(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 2 \mathrm{H}$), 6.98 (s, 3 H), 5.86 (s, 1 H), 5.10 (d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=17.4$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.43(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
$-150.1,-150.2 ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 149.7, 144.7, 144.4, 142.6, 135.4, 135.2, $133.2,130.0,129.8,129.69,129.65,129.3,127.2,127.1,126.1,62.3,61.7,38.1,21.6$, 21.2, 17.0; IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3065,2924,2854,1651,1597,1579,1500$, 1450, 1354, 1267, 1162, 1059, 930, 815, 757, 730, 699; MS (ESI, m/z, rel. intensity) 549.4 (M-BF $)_{4}$; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (M-BF4): 549.2319; Found: 549.2315. m.p. 221-223 ${ }^{\circ} \mathrm{C}$.

6d: White solid, yield $63 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+31.7^{\circ}\left(\mathrm{c}=0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.15(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 2 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.10(\mathrm{~m}, 14 \mathrm{H}), 6.59(\mathrm{~d}, \mathrm{~J}=$ $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=17.7$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-63.5,-150.1 ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.4,144.8,141.5,135.8,135.3,134.3,134.1,133.8,133.1,130.1$, $130.0,129.8,129.5,129.4,127.5,127.2,126.9,121.95,121.92,62.9,61.6,38.1,21.5 ;$ IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3068,2922,1596,1538,1455,1367,1281,1144,1074$, 898, 814, 756, 698; MS (ESI, m/z, rel. intensity) 643.2 (M-BF4); HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}-\mathrm{BF}_{4}\right)$: 643.1597; Found: 643.1597. m.p. $162-163{ }^{\circ} \mathrm{C}$.

The substrates were prepared according to literatures precedent. ${ }^{3-6}$ All spectral data was matched with literature description.

$9 a^{5}$

White solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.57(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56(\mathrm{dd}, J=6.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J$ $=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=2.1,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

$9 b^{5}$
White solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.53(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dt}, J=4.2,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=2.1$, $15.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{dd}, J=1.8,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, $1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

$9 c^{5}$
White solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.53(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.12-7.06 (m, 2H), $6.90(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dt}, J=2.1,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}$, $J=2.1,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

9d ${ }^{5}$
Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.33(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.68(\mathrm{dd}, J=1.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.25$ (dd, $J=6.3,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

$9 e^{5}$
Orange solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.22(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{dt}, J=3.9,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.97(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=2.1,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.41$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.

$\mathbf{9 f}^{5}$
White solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.33(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.48 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dt}, J=4.2,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.34$ $(\mathrm{d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=1.8,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

$9 g^{5}$
White solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.44(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=4.2,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17$ (d, $J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$ (dt, $J=4.5,15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.24 (dt, $J=1.5,15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=1.5,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

$9 h^{5}$
White solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.49(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$,
7.49 (dd, $J=2.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dt}, J=4.5,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.19(\mathrm{dt}, J=1.8,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=1.8,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

$9 i^{5}$
White solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.47(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.63 (dd, $J=2.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dt}, J=4.5,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.19(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=2.1,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

9j

Yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.31(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.52 (t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39-7.31 (m, 2H), 6.97 (dt, $J=6.9,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.1, 165.3, 141.4, 139.3, 133.8, 133.7, 132.3, 128.3, 125.7, 123.9, 60.2, 33.9, 13.9. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3061,2981,2848$, 2742, 1716, 1652, 1587, 1461, 1368, 1317, 1267, 1198, 1041, 978, 754, 679; MS (EI, m / z, rel. intensity) $250\left(\mathrm{M}^{+}, 2\right), 137$ (100); HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$: 250.0664. Found: 250.0663 .

9k

White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.53(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.43(\mathrm{dd}, J=3.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.22(\mathrm{dt}, J$ $=2.0,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=2.0,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J$
$=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.9,165.3,163.7,142.0,139.3$, $130.5,124.9,124.8,123.5,113.1,67.8,60.9,14.1$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3080$, 2966, 2903, 1694, 1588, 1524, 1368, 1342, 1273, 1193, 1025, 945, 749, 676; MS (EI, m / z, rel. intensity) 233 (24), 206 (33), 85 (100); HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{6}$ $\left(\mathrm{M}^{+}\right): 279.0743$. Found: 279.0747 ; m.p. $71-73{ }^{\circ} \mathrm{C}$.

91^{6}
Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.37(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=1.8,7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H})$.

General Procedure for Enantioselective Intramolecular Stetter Reactions:

A flame dried Schlenk tube was cooled to room temperature and filled with argon. To this tube were added triazolium salt $\mathbf{6 c}(6.4 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and xylene (1.0 $\mathrm{mL})$. Then to this solution was added $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mu \mathrm{~L}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, the solution was stirred at room temperature for 30 minutes. The substrate $9(0.1 \mathrm{mmol})$ was then added. After the reaction was complete (monitored by TLC), the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ immediately, quenched with $5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, The organic layer was separated, and the aqueous layer was extracted three times with ethyl acetate. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by silica gel column chromatography (n-Hexane/EtOAc $=10 / 1$) to afford the product 10 .

$10 a^{5}$
Colorless oil, 95% yield, 93% ee [Daicel Chiralpak AD-H, hexane/2-propanol $=97 / 3$, $v=0.7 \mathrm{~mL} \cdot \min ^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=23.1 \mathrm{~min}, \mathrm{t}($ minor $\left.)=34.9 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{20}=$ $-6.8\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{dd}, J=1.8,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.51-7.45 (m, 1H), 7.05-6.96 (m, 2H), 4.60 (dd, $J=5.4,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.39-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=4.8,17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{dd}, J=8.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

$10 b^{5}$
Colorless oil, 98% yield, 95% ee [Daicel Chiralpak AD-H, hexane/2-propanol $=95 / 5$, $v=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=13.4 \mathrm{~min}, \mathrm{t}($ minor $\left.)=20.8 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{20}=$ $-20.5\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~s}, J=1 \mathrm{H}), 7.28(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=5.1,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.26(\mathrm{~m}$, $3 \mathrm{H}), 3.35-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=4.8,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=8.7,17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

$10 c^{5}$
Yellow oil, 95% yield, 88% ee [Daicel Chiralpak AD-H, hexane/2-propanol $=95 / 5$, v $=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=19.9 \mathrm{~min}, \mathrm{t}($ minor $\left.)=28.6 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{20}=$ -24.2 (c = 1.0, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (dd, 3.3, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=5.1,11.1 \mathrm{~Hz}, 1 \mathrm{H})$,
4.30-4.16 (m, 3H), 3.77 ($\mathrm{s}, 3 \mathrm{H}), 3.36-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=4.5,16.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.43(\mathrm{dd}, J=8.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

$10 d^{5}$
Yellow oil, 87% yield, 97% ee [Daicel Chiralpak AD-H, hexane/2-propanol $=95 / 5, v$ $=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=21.4 \mathrm{~min}, \mathrm{t}($ minor $\left.)=27.5 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{20}=$ $-10.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.59$ $(\mathrm{dd}, J=2.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=5.4,11.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{t}, \mathrm{J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.24(\mathrm{~m}, 1 \mathrm{H})$, $2.94(\mathrm{dd}, J=4.8,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=8.4,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H})$.

$10 e^{5}$
Yellow oil, 56% yield, 95% ee [Daicel Chiralpak AD-H, hexane/2-propanol $=90 / 10$, $v=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=18.9 \mathrm{~min}, \mathrm{t}($ minor $\left.)=20.7 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{20}=$ $+9.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.34$ $(\mathrm{dd}, J=2.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=5.1,11.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.26-4.14 (m, 3H), 3.38 (q, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$), 3.23-3.15 (m, 1H), 2.95 (dd, $J=4.8,17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=8.7,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 6 H).

$10 f^{5}$
Yellow oil, 98% yield, 80% ee [Daicel Chiralpak AD-H, hexane/2-propanol $=97 / 3$, v $=0.7 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=17.9 \mathrm{~min}, \mathrm{t}($ minor $\left.)=24.0 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{20}=$ $-11.2\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=5.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=4.5,17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{dd}, J=8.1,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

$10 \mathrm{~g}^{5}$
Yellow oil, 98% yield, 81% ee [Daicel Chiralpak AD-H, hexane $/ 2$-propanol $=90 / 10$, $v=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=16.2 \mathrm{~min}, \mathrm{t}($ minor $\left.)=22.1 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{20}=$ -26.1 (c = 1.0, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{dd}, J=1.5,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{dd}, J=1.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=5.4,11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.28(\mathrm{~m}, 1 \mathrm{H})$, $2.91(\mathrm{dd}, J=4.8,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=8.7,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 3 H).

$10 h^{5}$
Yellow oil, 98% yield, 78% ee [Daicel Chiralpak AD-H, hexane $/ 2$-propanol $=95 / 5, v$ $=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=14.8 \mathrm{~min}, \mathrm{t}($ minor $\left.)=21.6 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{20}=$ $-13.7\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39-7.43 (m, 1H), $6.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=5.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J$ $=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.36-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=4.8,17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43(\mathrm{dd}, J=8.1,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

$10 i^{5}$
Yellow oil, 93% yield, 78% ee [Daicel Chiralcel OD-H, hexane/2-propanol $=97 / 3$, v $=0.5 \mathrm{~mL} \cdot \min ^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=29.1 \mathrm{~min}, \mathrm{t}($ major $\left.)=32.1 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{20}=$ $-12.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ $(\mathrm{dd}, J=2.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=5.4,11.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.29(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.36-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=$ $4.5,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=8.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

10j
Yellow oil, 70% yield, 89% ee [Daicel Chiralpak AD-H, hexane/2-propanol $=97 / 3, v$ $=0.7 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=21.0 \mathrm{~min}, \mathrm{t}($ minor $\left.)=25.6 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{20}=$ -62.2 (c = 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.37-3.34 (m, 2H), 3.13-3.10 (m, 1H), 2.98 (dd, $J=5.1,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60$ $(\mathrm{dd}, J=6.9,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 194.5, 171.6, 141.7, 133.2, 130.3, 129.6, 127.3, 124.9, 60.8, 44.4, 34.3, 30.8, 14.1. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2980,1732,1681,1588,1437,1177,1028,765,737$; MS (EI, m / z, rel. intensity) $250\left(\mathrm{M}^{+}, 5\right), 163$ (100); HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$: 250.0664. Found: 250.0662 .

10k

White solid, 90% yield, 0% ee [Daicel Chiralpak AD-H, hexane/2-propanol $=70 / 30$, $v=1.0 \mathrm{~mL} \cdot \min ^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=12.7 \mathrm{~min}, \mathrm{t}($ minor $\left.)=20.3 \mathrm{~min}\right] .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{dd}, J=2.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=5.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.35(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=4.8,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=7.5$, $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.6,170.8$, 165.6, 142.1, 130.3, 123.9, 120.0, 119.2, 70.6, 61.2, 42.1, 29.8, 14.1. IR (thin film): $v_{\text {max }}\left(\mathrm{cm}^{-1}\right)=2986,1731,1692,1439,1339,1012,856,750,622$; MS (EI, m / z, rel. intensity) $279\left(\mathrm{M}^{+}, 1\right)$, 192 (100); HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{6}\left(\mathrm{M}^{+}\right): 279.0743$. Found: 279.0745; m.p. $86-88^{\circ} \mathrm{C}$.

101
Yellow oil, 59\% yield, 0% ee [Daicel Chiralcel OB-H, hexane/2-propanol $=90 / 10, v$ $=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=21.3 \mathrm{~min}, \mathrm{t}$ (major) $\left.=37.9 \mathrm{~min}\right] .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.08(\mathrm{~m}$, $2 \mathrm{H}), 4.89(\mathrm{dd}, J=3.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{dd}, J=3.6,17.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.83(\mathrm{dd}, J=7.5,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.4,172.4,169.3,138.0,124.2,122.1,120.9,113.5,81.0,61.2,36.0,13.9$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2983,2935,1724,1615,1464,1327,1191,1026,891,760$; MS (EI, m/z, rel. intensity) $220\left(\mathrm{M}^{+}, 28\right), 147$ (100); HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4}$ $\left(\mathrm{M}^{+}\right): 220.0736$. Found: 220.0739 .

References

[1] (a) L. Darko and J. Karliker, J. Org. Chem.,1971, 36, 3810. (b) R. R.R. Taylor, H. C. Twin and R. A. Batey et al., Tetrahedron, 2010, 66, 3370.
[2] (a) Y. Li, Z. Feng and S.-L. You, Chem. Commun., 2008, 2263. (b) M. S. Kerr, J. Read de Alaniz and T. Rovis, J. Org. Chem., 2005, 70, 5725.
[3] E. Ciganek, Synthesis, 1995, 5, 1311.
[4] X. Han, L.-W. Ye, X.-L. Sun and Y. Tang, J. Org. Chem., 2009, 74, 3394.
[5] J. Read de Alaniz, M. S. Kerr, J. L. Moore and T. Rovis, J. Org. Chem., 2008, 73, 2033.
[6] S.-L. Cui, J. Wang, X.-F. Lin and Y.-G. Wang, J. Org. Chem., 2007, 72, 7779.

实验时间：2010－11－15，19：59：14
谱图文件：D：\date $\backslash j m q \backslash$ jmq1－6320101115191907．org

实验者：jmq
报告时间：2011－01－03，23：24：55

实验时间：2010－12－5，14：55：57
谱图文件：D：\date\} \backslash \mathrm { mqq } \backslash \mathrm { jmq } 1 - \mathrm { rac } 2 0 1 0 1 2 0 5 1 4 2 1 1 9 ．org

实验者：jmq
报告时间：2010－12－5，14：57：49

分析结果表

峰号	峰名	保留时间	峰高	峰面积

实验时间：2010－11－27，16：57：11
谱图文件：D：\date\jmq \jmq1－7720101127163048．org

实验者：jmq
报告时间：2011－01－03，23：39：10

峰号	峰名	保留时间	峰高	峰面积

分析结果表

峰号	峰名	保留时间	峰高	峰面积

实验时间：2010－11－27，18：05：09
业图文件：D：\date $\backslash j m q \backslash j m q 1-7820101127173307$ ．org

峰号	峰名	保留时间	峰高	峰面积

实验时间：2010－11－27，18：44：55
谱图文件：D：\date $\backslash \mathrm{jmq} \backslash \mathrm{jmq} 1-78 \mathrm{rac} 20101127181020$ ．org

实验者：jmq
报告时间：2010－11－27，19：19：15

时间（min）
分析结果表

峰号	峰名	保留时间	峰高	峰面积

（10）

实验时间：2010－11－29，14：03：47
谱图文件：D：\date $\backslash j m q \backslash j m q 1-7920101129132810$ ．ors
实验者： jmq
报告时间：2011－01－03，23：42：45

分析结果表

峰号	峰名	保留时间	峰高	峰面积

实验者：jmq
报告时间：2010－11－29，14：53：35

色谱图（jmq1－79rac20101129140359．org）

分析结果表

峰号	峰名	保留时间	峰高	峰面积

实验时间：2010－12－9，11：18：01
谱图文件：D：\date\jmq\jmq1－9320101209104701．org
实验者： jmq
树间： $2010-12-9,11: 21: 07$

分析结果表

峰号	峰名	保留时间	峰高	峰面积

实验时间：2010－12－9，12：23： 25
谱图文件：D：\date $\backslash \mathrm{jmq} \backslash \mathrm{jmq} 1-93 \mathrm{rac} 20101209115811$ ．org
实验者： jmq
报告时间：2010－12－9，12：27：49

分析结果表

峰号	峰名	保留时间	峰高	峰面积

实验时间：2010－11－25，9：30：27
谱图文件：D：\date\} \backslash \mathrm { jmq } \backslash \mathrm { jmq } 1 - 7 5 2 0 1 0 1 1 2 5 0 8 5 1 3 7 ．org
实验者：jmq
报告时间：2011－01－03，23：34：06

实验时间：2010－11－25，10：01：09
谱图文件：D：\date\jmq\jmq1－75rac20101125093228．org

实验者：jmq
报告时间：2011－01－03，23：37：09

实验时间：2010－11－27，20：22：31
谱图文件：D：\date $\backslash j m q \backslash j m q 1-8020101127195622$ ．org
实验者： jmq
报告时：2010－11－27，20：27：19

实验时间：2010－11－27，20：56：10
谱图文件：D：\date $\backslash \mathrm{jmq} \backslash \mathrm{jmq1} 1-80 \mathrm{rac} 20101127202411$ ．org

实验者：jmq
报告时间：2010－11－27，20：59：20

分析结果表

峰号	峰名	保留时间	峰高	峰面积

实验时间：2010－11－25，0：01：02
谱图文件：D：\date $\backslash \mathrm{jmq} \backslash \mathrm{jmq} 1-7420101124233118$ ．org
实验者：jmq ${ }^{\text {jm }}$ 据：2011－01－03，23：27：08

色谱图（jmq1－7420101124233118．org）

分析结果表

峰号	峰名	保留时间	峰高	峰面积

实验者：jmq
报告时间：2011－01－03，23：30：54

峰号	峰名	保留时间	峰高	峰面积

（10）

实验时间：2010－12－4，12：40：49
谱图文件：D：\date\jmq\jmq1－8920101204120302．org

实验者：jmq
报告时间：2010－12－4，12：47：48

分析结果表

峰号	峰名	保留时间	峰高	峰面积

实验时间：2010－12－04，13：20：16
谱图文件：D：\date $\backslash \mathrm{jmq} \backslash \mathrm{jmq1}$－89rac20101204124200．org

实验者：jmq
报告时间：2010－12－04，13：23：59

分析结果表

| 峰号 | 峰名 | 保留时间 | 峰高 | 峰面积 |
| :---: | ---: | :---: | :---: | :---: | 含量 \quad| 1 | 28.985 | 153544.859 | 6703626.500 | 49.9836 |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 31.878 | 141922.813 | 6708016.000 | 50.0164 |
| 总计 | | 295467.672 | 13411642.500 | 100.0000 |

实验时间：2010－12－02，22：39：25
谱图文件：D：\date \backslash jmq \backslash jmq1－8620101202220720．org

实验者：jmq
报告时间：2010－12－02，22：42：55

分析结果表

峰号	峰名	保留时间	峰高	峰面积

分析结果表

峰号	峰名	保留时间	峰高	峰面积

实验时间：2010－11－30，23：00：07
谱图文件：D：\date \backslash jmq jmq1－8220101130222443．or
实验者：jmq
报告时间：2010－12－5，18：28：37

分析结果表

峰号	峰名	保留时间	峰高	峰面积

实验时间：2010－11－30，22：16：38
谱图文件：D：\date $\backslash \mathrm{jmq} \backslash \mathrm{jmq1} 1-82 \mathrm{rac} 20101130215022$ ．org

实验者：jmq
报告时间：2010－11－30，23：04：47

分析结果表

峰号	峰名	保留时间	峰高	峰面积

	 ${ }_{\text {0．78 }}^{0.95} \int^{82}$			Roz
10 STANDARD 10 OBSERVE，blank line	1 ，\quad ，	${ }_{4}$	USER：	
（1）	SWl： 4803 PW： 4.2 us PD： 10 sec		16384	

实验时间：2010－12－4，10：37：45
谱图文件：D：\date\jmq\jmq1－8720101204094738．org
实验者：jmq
报告时间：2010－12－4，12：24：50

峰号	峰名	保留时间	峰高	峰面积

峰号	峰名	保留时间	峰高	峰面积

